
TRAC-2024 Workshop, pages 32–36
20 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

32

ScalarLab@TRAC2024: Exploring Machine Learning Techniques
for Identifying Potential Offline Harm in Multilingual Commentaries

Anagha H C, Saatvik Krishna M, Soumya Sangam Jha,
Vartika T Rao, Anand Kumar M
Department of Information Technology

National Institute of Technology, Karnataka, Surathkal, India
{hcanagha.211it008, skm.211it056, soumyajha.211it068,

vartikatrao.211it077,m_anandkumar}@nitk.edu.in

Abstract
The objective of the shared task, Offline Harm Potential Identification (HarmPot-ID), is to build models to
predict the offline harm potential of social media texts. "Harm potential" is defined as the ability of an online
post or comment to incite offline physical harm such as murder, arson, riot, rape, etc. The first subtask
was to predict the level of harm potential, and the second was to identify the group to which this harm was
directed towards. This paper details our submissions for the shared task that includes a cascaded SVM
model, an XGBoost model, and a TF-IDF weighted Word2Vec embedding-supported SVM model. Our system
ranked 4th in the first subtask and 3rd in the second. Several other models that were explored have also been detailed.

Keywords: Offline Harm, Harm Potential, HarmPot, Text classification, Offline harm, TF-IDF, weighted word
embeddings

1. Introduction

There has been an increased use of social media
in the current society. It is estimated that approxi-
mately 62.3 % of the population uses social media.
This has led to a large section of society gaining ac-
cess to airing their opinions on social media. While
it might seem that this may give more people ac-
countability, on the contrary, it has led to factions
of people openly expressing their harmful discrimi-
natory opinions online, by making use of pseudo-
anonymity that many social media platforms allow,
like Twitter and Reddit. While this is creating a
harmful space for users online, it also exposes the
mindset of people who have potentially dangerous
views.

The shared task, Offline Harm Potential Identifi-
cation (HarmPot-ID), aims to exploit the data online
to predict the probability of a person committing
a crime offline through their comments made on
social media. Using the data, we were tasked to
predict whether a specific social media post is likely
to cause offline harm events like riots, arson, mur-
der, rape, etc. With an increased rate of violent
crimes across the world, early detection could po-
tentially save many lives.

The shared task consisted of two subtasks. The
first sub-task was a 4-class classification task to
predict the level of harm potential. Class ’0’ refers
to completely harmless content that poses no threat
of causing any offline harm. Class ’1’ refers to the
comment that could incite an offline harm event
given specific conditions or context. Class ’2’ refers
to the comments most likely to incite an offline

harm event in most contexts. Class ’3’ refers to
the comments that will incite or initiate an offline
harm event in any context. The second sub-task
required predicting five labels: Gender, Religion,
Descent, Caste, and Political Ideology, each a bi-
nary classification task. This subtask could also
be looked at as a multi-label classification task.

The dataset (Kumar et al., 2024b) provided con-
sisted of multilingual, code-mixed (Hindi, English,
and Meitei) comments collected from various social
media platforms like YouTube, Twitter, and Tele-
gram. A few records include text consisting of only
emojis, numbers, or texts from other scripts. De-
tails about the number of samples in the train, dev,
and test sets are given in Table1, script distribu-
tions in Table 2 and class distributions in Table 3
and 4.

Firstly, the multi-lingual code-mixed data renders
general pre-trained models ineffective. Moreover,
the unbalanced nature of the dataset makes it hard
for the models to accurately predict the categories
of harm.

In this paper, we propose systems to overcome
these challenges using methods such as balanced
class weights, oversampling and even training word
embedding models on our dataset.

The rest of this paper is organized as follows.
Section II discusses the background and related
works. Section III describes the methodology. Sec-
tion IV contains the experimentation. Section V
discusses the results, Section VI contains the con-
clusion, and Section VII concludes the paper with
future directions.



33

File Labelling Number of Records
Train Labelled 50,788
Dev Labelled 6,349
Test Unlabelled 6,349

Table 1: Number of Records

File Hindi Bengali English Others
Train 4,956 3,862 40,690 1,280
Dev 646 468 5,086 149
Test 644 449 5,093 163

Table 2: Script Distribution

2. Methodology

2.1. Data Preprocessing
Data preprocessing techniques are incorporated
to make the data usable for training the models.

2.1.1. Lowering of Text and Removal of
Punctuation

The initial preprocessing step involved the conver-
sion of all Roman script text to lowercase and the
subsequent removal of all punctuation marks.

2.1.2. Mapping Emojis

Emojis were systematically correlated with words
by utilizing the Python library ’emoji.’ This process
entailed the conversion of emojis into their corre-
sponding textual descriptions. For instance, the
thumbs-up emoji was algorithmically assigned to
the word ’thumbs_up.

2.2. Models Used
The textual data underwent vectorization utilizing
the TF-IDF vectorizer. The resulting vector size
was (50,788, 1,06,486). Subsequently, various
models were implemented, each employing spe-
cific techniques as delineated below. Parameters
other than the ones explicitly mentioned were set
to default values.

2.2.1. Logistic Regression and XGBoost

The logistic regression (LR) model was trained us-
ing L2 regularization, and Stochastic Average Gra-

Class Training Validation
0 16,135 2,017
1 21,554 2,695
2 12,211 1,526
3 888 111

Table 3: Sub-Task 1a Class Distribution

Label Class Training Validation
Gender 0 46,358 5,169

1 10,779 1,180
Religion 0 51,616 5,704

1 5,521 645
Descent 0 55,501 6,169

1 1,636 180
Caste 0 56,518 6,291

1 619 58
Political Ideology 0 56,682 6,301

1 455 48

Table 4: Sub-Task 1b Class Distribution

dient descent was used as the optimization algo-
rithm to solve the convex optimization problem dur-
ing training. An LR model with the balanced class
weights parameter was trained to assign higher
significance to minority classes. To address the
class imbalance, the data underwent oversampling
via the Adaptive Synthetic Sampling (ADASYN)
technique (He et al., 2008), and an LR model was
trained on the augmented dataset. Furthermore,
in sub-task 1a, the labels were subjected to one-
hot encoding before model training. This encoding
method was also applied to the oversampled data.
The oversampled data was also trained on a model
with the balanced class weights parameter. Sub-
task 1b was treated as a separate multi-label binary
classification task and an LR classifier was trained
for each label. A similar training mechanism was
used for XGBoost while giving equal importance
to both positive and negative classes by adjusting
the scale_pos_weight parameter.

2.2.2. SVM

The SVM model was trained on the training dataset
for sub-task 1a. Initially, a linear kernel was em-
ployed, with a regularization parameter (C) set to
1. Given the multi-label classification nature of the
sub-task, distinct SVMs were trained for each label,
maintaining the same parameter settings. Subse-
quently, an evaluation of model performance led to
the adoption of the radial basis function (RBF) ker-
nel for all SVM models, as it demonstrated superior
performance compared to the linear kernel.

2.2.3. Cascaded SVM

A cascaded SVM was trained for sub-task 1b. A
SVM was trained on the entire training data for sub-
task 1a. The instances classified as 0 for sub-task
1a were directly classified as 0 for all the labels of
sub-task 1b. This is inferred from the fact that if a
comment does not pose any harm, it will not harm
any of the sections mentioned as labels in sub-task
1b. Separate SVMs were then trained to classify



34

the instances which were classified as 1,2, and 3
in sub-task 1a.

Figure 1: Cascaded SVM

2.2.4. Hierarchical SVM

From the above methods, it was noticed that the
models were misclassifying classes 1, 2, and 3 in
sub-task 1a. Hence, all the instances of classes
1, 2, and 3 were grouped together. A binary SVM
classifier was trained to detect if there is no harm
(class 0) or some form of harm (class 1, 2, and 3).
Subsequently, another multi-class SVM classifier
was trained to classify the level of harm to classes
1, 2, and 3.

Figure 2: Hierarchical SVM

2.2.5. Using Word2Vec embeddings

To train the word2vec (Mikolov et al., 2013) model,
we used the previous year’s TRAC conference
data (TRAC 2018, TRAC2020, TRAC 2022) along
with this year’s. We ensured that the distribution
in scripts and languages was identical to that of
the original train, dev, and test set and that none
of the instances were repeated. We had 97,217
instances, of which 77,055, 12,257, 6,131, and
1,774 were in English, Hindi, Bengali, and unde-
fined scripts, respectively.

We trained both a CBOW (Continuous Bag of
Words) model and a skip-gram model. A simple
DNN and an attention-based LSTM model were
trained using the embeddings obtained. Both an
embedding size of 100 and 300 were tried. Addi-
tionally, due to the code-mixed nature of the data,
a tri-gram training method was used to accurately

Word Embeddings Micro F1 Score
skipgram 0.5948

skipgram-tri 0.5248
cbow 0.6087

cbow-tri 0.5248
GloVe 0.42

Table 5: Word Embeddings and Micro F1 Score

Figure 3: Weighted Document Embedding Frame-
work adapted from (Sharmila et al., 2019)

capture the language patterns, as Hindi and Ben-
gali have some similarities in their word structure
and improve the language model’s overall perfor-
mance.

2.2.6. Using TF-IDF weighted Word2Vec
embeddings with SVM

Due to good results being shown by SVM, we used
TF-IDF weighed Word2Vec embeddings (Sharmila
et al., 2019) to obtain document embeddings and
trained the SVM on that. The word embeddings
were obtained as described previously. To obtain
the TF-IDF weighted Word2Vec, the vocabulary of
the TF-IDF and Word2Vec were matched, and the
resultant embeddings were obtained by multiplying
the TF-IDF embedding matrix and the word2vec
embedding matrix.

2.2.7. Using GloVe embedings

GloVe (Global Vectors for Word Representation)
(Pennington et al., 2014) is a technique to obtain
word embeddings. The model was retrained on
the same data used to train the Word2Vec (Mikolov
et al., 2013) model. A simple DNN and an attention
based model were trained on the word embeddings
obtained. Additionally a TF-IDF weighed word em-
bedding method was also used to train a SVM.



35

Method Sub-task 1 Gender Religion Caste Descent Political
Ideology

LR 0.632 0.851 0.929 0.990 0.975 0.992
LR with Balanced
Class Weights

0.61 0.79 0.91 0.94 0.96 0.99

LR with Oversam-
pling using AdaSYN

0.57 0.78 0.82 0.9 0.97 0.99

LR with One-Hot
Encoded Data

0.62 - - - - -

LR with Oversam-
pled One-Hot En-
coded Data

0.56 - - - - -

LR with Oversam-
pled Data and
Balanced Class
Weights

0.55 0.78 0.82 0.9 0.97 0.99

LR - Multi-Label
Classifer

- 0.56 0.56 0.56 0.56 0.56

XGB 0.596 0.857 0.932 0.991 0.976 0.995
XGB with Balanced
Class Weights

- 0.636 0.931 0.99 0.971 0.994

XGB with Oversam-
pling using AdaSYN

0.548 0.699 0.922 0.972 0.964 0.994

XGB with One-Hot
Encoded Data

0.492 - - - - -

XGB with Oversam-
pled One-Hot En-
coded Data

0.445 - - - - -

XGB with Over-
sampled Data and
Balanced Class
Weights

- 0.52 0.524 0.644 0.938 0.993

XGB - Multi-Label
Classifer

- 0.495 0.495 0.495 0.495 0.495

SVM 0.673 0.869 0.932 0.991 0.975 0.992
SVM Cascade 0.673 0.87 0.935 0.98 0.99 0.994
word2vec dnn skip-
gram

0.594 - - - - -

word2vec dnn
skipgram-tri

0.524 - - - - -

word2vec dnn cbow 0.608 - - - - -
word2vec dnn
cbow-tri

0.524 - - - - -

Cascading SVM
TF-IDF weighted
Word2Vec

0.626 0.848 0.923 0.974 0.987 0.993

Hierarchical SVM 0.66 - - - - -

Table 6: Results (micro-F1 scores of each task)

3. Results

All the results (Micro-F1 scores) shown in table 6
are tested on the Dev set, whereas the final shared
task results are evaluated on the test set.

3.1. Model Performance

Cascaded SVM gives the best results (Micro-F1
scores) on average for all tasks. The results are
detailed in table 6.



36

3.2. Word Embeddings
The CBOW model worked the best among all the
word embedding techniques. The results of a sim-
ple DNN trained on different word embeddings are
detailed in the table 5. Due to this, for further
analysis of combined models, we stick to CBOW
Word2Vec.

3.3. Submission Details
Our team, ScalarLab, made 3 submissions - Cas-
cading SVM, Cascading SVM with TF-IDF weighted
word embeddings, and an XGBoost Model. Our
standings at the end of the evaluation phase are
shown in tables 7 and 8.

User Team Rank Micro-F1
Yestin CLTL 1.00 0.74
xsd 2.00 0.73
lazyboy.blk 1024m 3.00 0.71
ScalarLab 4.00 0.67

Table 7: Results of Sub-Task 1a

User Team Rank Micro-F1
Yestin CLTL 1.00 0.96
xsd 2.00 0.96
ScalarLab 3.00 0.95

Table 8: Results of Sub-Task 1b

4. Conclusion

From our extensive work with various models, we
have concluded that the SVM model with cascading
has performed the best with a 0.673 Micro F1 score
on the first subtask and an average of 0.9455 micro
F1 on the second subtask. The weighted document
vectors attained less accuracy than the traditional
TF-IDF-based SVM. For future work, BERT embed-
dings can be implemented. It would also be ideal to
investigate the performance of this model on other
code-mixed datasets. We believe this work can
help further the understanding of code-mixed text
classification and offline potential harm detection.

5. Bibliographical References

Haibo He, Yang Bai, Edwardo Garcia, and Shutao
Li. 2008. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. pages 1322
– 1328.

Raj Kumar, Om Bhalla, Manohar Vanthi, S. M.
Wani, and Shivam Singh. 2024a. Harmpot: An
annotation framework for evaluating offline harm
potential of social media text. ArXiv.

Ritesh Kumar, Ojaswee Bhalla, Shehlat Maknoon
Vanthi, Madhu Wani, and Siddharth Singh.
2024b. Harmpot: An annotation framework for
evaluating offline harm potential of social me-
dia text. In Proceedings of the the 2024 Joint
International Conference on Computational Lin-
guistics, Language Resources and Evaluation,
Torino, Italy.

Kirti Kumari, Shaury Srivastav, and Rajiv Ranjan
Suman. 2022. Bias, threat and aggression iden-
tification using machine learning techniques on
multilingual comments. In Proceedings of the
Third Workshop on Threat, Aggression and Cy-
berbullying (TRAC 2022), pages 30–36. Associ-
ation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space.

Jessica Pater and Elizabeth Mynatt. 2017. Defin-
ing digital self-harm. In Proceedings of the 2017
ACM Conference on Computer Supported Coop-
erative Work and Social Computing (CSCW ’17),
pages 1501–1513. Association for Computing
Machinery.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Lin-
guistics.

D. Sharmila, S. Kannimuthu, G. Ravikumar, and
K. Anand. 2019. Kce dalab-apda@ fire2019:
Author profiling and deception detection in ara-
bic using weighted embedding. https://
ceur-ws.org/Vol-2517/T2-10.pdf.

https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/IJCNN.2008.4633969
https://arxiv.org/abs/2403.11108
https://arxiv.org/abs/2403.11108
https://arxiv.org/abs/2403.11108
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2998181.2998224
https://doi.org/10.1145/2998181.2998224
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://ceur-ws.org/Vol-2517/T2-10.pdf
https://ceur-ws.org/Vol-2517/T2-10.pdf

	Introduction
	Methodology
	Data Preprocessing
	Lowering of Text and Removal of Punctuation
	Mapping Emojis

	Models Used
	Logistic Regression and XGBoost
	SVM
	Cascaded SVM
	Hierarchical SVM
	Using Word2Vec embeddings
	Using TF-IDF weighted Word2Vec embeddings with SVM
	Using GloVe embedings


	Results
	Model Performance
	Word Embeddings
	Submission Details

	Conclusion
	Bibliographical References

