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Abstract

The paper presents a new BERT model, fine-
tuned for parsing of Bulgarian texts. This
model is extended with a new neural network
layer in order to incorporate shallow syntac-
tic information during the training phase. The
results show statistically significant improve-
ment over the baseline. Thus, the addition of
syntactic knowledge - even partial - makes the
model better. Also, some error analysis has
been conducted on the results from the parsers.
Although the architecture has been designed
and tested for Bulgarian, it is also scalable for
other languages. This scalability was shown
here with some experiments and evaluation on
an English treebank with a comparable size.

1 Introduction

In this paper we present a transformer-based archi-
tecture for dependency parsing which is extended
to accommodate some predefined shallow depen-
dency information. The predefined information
came from two sources: lexicons and shallow gram-
mars. The Dependency information — dependency
relations (arcs and labels) — are represented within
the lexicon at least in two varieties: (1) represen-
tation of valency frames, and (2) representation
of multiword expressions (MWESs). For a recent
overview see (Giouli and Barbu Mititelu, 2024). In
our in-house lexicons we use partial dependency
trees in order to represent the obligatory grammar
information such as the object and clitic relations
of the verbal head and the modification relations of
the nominal head. For example, the MWEs “kick
the bucket” is expected to have in the lexicon two
dependency relations — from the article “the” to
the head noun “’bucket’ the relation is “det” and
from “bucket” to the head verb “kick” the relation
is “obj”.

Our goal was set to implement a parser that is
able to incorporate preliminary dependency rela-
tions among words — even partial — from the
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lexicon, thus before parsing of the whole sentence
this step has been performed. Similarly, shallow
grammars provide sets of rules over the word forms
and their grammatical annotation. These grammars
are known to produce partial but reliable analyses
mostly achieving 100 % accuracy. In the exper-
iments reported in this paper both sources have
been explored. The experiments and evaluation
were performed for Bulgarian and English.

The structure of the paper is as follows: the
next section provides a focused overview of related
work; section 3 describes the Dependency pars-
ing architecture that was implemented in our work.
This section also elaborates on the modification
of the initial architecture towards the incorpora-
tion of some sure information from lexicons and
shallow grammars. In section 4 the experimental
settings are described in detail. Here also the re-
sults are presented and discussed. In section 5 the
manual evaluation of the results is outlined. Sec-
tion 6 concludes the paper and presents some future
directions of research.

2 Related Work

Zhou et al. (2023) show that prepositional phrase
attachment poses the biggest challenge to under-
standing syntax by LL.Ms. The case study on train-
ing the dynamics of the LLMs revealed that the
majority of syntactic knowledge is learned dur-
ing the initial stages of training. For these rea-
sons, we started with the injection of partial but
sure linguistic information into the model. Shen
et al. (2021) propose a new syntax-aware language
model — Syntactic Ordered Memory (SOM). The
model explicitly models the structure with an incre-
mental parser and maintains the conditional prob-
ability setting a standard language model (left-to-
right). The related experiments show that SOM
can achieve strong results in language modeling,
incremental parsing and syntactic generalization
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tests, while using fewer parameters than other mod-
els. The model uses constituency trees for English
and these trees are embedded in a grid-like mem-
ory representation. The authors report improve-
ment on phenomena like gross syntactic states and
long-distance dependencies. In our case instead of
incremental approach we use predefined partial syn-
tactic information. Yoshida et al. (2024) propose
a novel method called tree-planting. This means
to implicitly “plant” trees into attention weights of
Transformer LMs to reflect syntactic structures of
natural language. Transformer LMs trained with
tree-planting are called Tree-Planted Transformers
(TPT). They learn syntax on small treebanks via
tree-planting and then scale on large text corpora
via continuous learning with syntactic scaffolding.
Our approach is similar since it uses dependency
subtrees but it relies only on chunks and MWEs as
‘islands of certainty’. Another difference is that we
add syntactic information within the transformer
network during the fine-tuning phase, but in future
we plan to pre-train a model on partially annotated
corpora.

The combination of information from different
sources in order to improve the overall performance
of the parser is not a new idea. This is especially
true for the combination of various machine learn-
ing techniques with sure symbolic knowledge un-
der the motto “why to guess if we already know?”.
With respect to dependency parsing Ozates et al.
(2020) use special rules to introduce dependency
relations between certain word forms in the sen-
tences. Each rule identifies some arcs within the
dependency tree. The rules are applied recursively
up to the moment when no more applications are
possible. The result from the application of the
rules is encoded as additional token embeddings
which are concatenated with embeddings used by
the actual neural network parser. The parser used
in their experiments is an LSTM-based dependency
parser — Stanford’s Graph-based Neural Depen-
dency Parser (Dozat et al., 2017). The baseline
is the parser trained without these extended em-
beddings, and thus later trained with them. The
paper reports on improving UAS (about 2 %) and
LAS (near 3 %). Our approach differs from theirs
in several ways: (1) We fine-tune a BERT' lan-
guage model as a dependency parsing model. The
fine-tuning step requires the existence of a depen-

"BERT model is introduced by Devlin et al. (2018).
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dency treebank”. In addition to the treebanks we
relied on the supplement of “suggested” arcs which
would facilitate arcs prediction and labeling (see
below). These arcs we considered to be the linguis-
tic knowledge added to the respective treebank. (2)
the linguistic knowledge added during the training
is not necessary to be the same as during the in-
ference time. In this way the approach could be
used when there are no reliable sources of such
linguistic knowledge. The existence of a treebank,
of course, is obligatory. (3) The additions of depen-
dency relations in parallel to the treebank look like
redundant information, but it plays an important
role during the parsing of new texts.

In the next section we present the specifics of
the dependency parsing model that has been imple-
mented for the experiments reported in this paper.

3 Graph-based Dependency Parsing

In the implementation of our dependency parsing
based on LLMs we follow the approach of McDon-
ald et al. (2006) about a graph-based dependency
parsing performed in two steps: (1) determination
of dependency arcs in the syntactic tree — the im-
mediate domination relation over the tokens in the
sentence — for each token to find its immediate
parent token (adding special token for the root of
the sentence); and (2) labeling the selected arcs
with the appropriate dependency relations. This
approach was adopted by many of the recent de-
pendency parsers ((Dozat and Manning, 2017), for
instance) — where a transformer-based model is
used for determining the context-aware token em-
beddings, and an additional model for the selection
of the arcs (Head selection model) as well as for
the labels.

In our implementation both - the transformer
model and the head selection model - are directly
connected - the head selection model is integrated
as an additional layer over the last layer of the trans-
former model. The head selection model is similar
to any other token classification model, except that
the number of classes is dynamic — the number
of possible heads in the sentence varies. When
sub-word tokenization is performed, only the first
token of each word is used, while the others are
ignored during training and inference phases. In
the next sections the implementation of the parser
is presented in more details.

*In our experiments the available Bulgarian and one of

the English Universal Dependency Treebanks — https://
universaldependencies.org/


https://universaldependencies.org/
https://universaldependencies.org/

3.1 Head Classification — (UAS)

As it was mentioned above, the first step of the
parser is to identify the arcs. This is done by se-
lecting the head of each word form in the sentence.
The head could be any of the other word forms in
the sentence, or a specially included token for the
root of the sentence.

Since the number of the possible heads in a sen-
tence is dynamic — (it depends on the number
of tokens within the sentence) — a simple linear
(affine) transformation is not applicable. Instead,
a self-attention mechanism is used due to its abil-
ity to aggregate information from sequences with
different lengths.

Let s = (wp, w1, ..., wg) denote a sentence of
length S, where wy is the special token for the head
of the root. The representation of wy within the
transformer encoding of the sentence is associated
with the [CLS] token. In order to use a technique
similar to self-attention, we exploit some parts of
the corresponding matrices for each word form in
the sentence. Thus we define the following matri-
ces and vectors:

* Let h; = Model(w;) be the embedding of wj,
produced by an encoder model. (h; € R%)
fori € [0, S];

e Let ¢ = QueryMatriz(h;) and k; =
KeyMatriz(h;) (gi,k; € R%) be linear
(affine) transformations of h; for i € [1, 5]
and of h; for j € [0, 5];

o Let K € R4 x5! pe the matrix with rows -
kj for j € [0, S].

The distribution over all possible heads of w;
is obtained with softmax across the multiplication
of ¢; and K (¢; K € R5t1). The encoder model
weights and the transformations are trained with a
cross entropy loss between the distribution over the
heads and the one-hot encoded label of the correct
head:

s S

Loss = — Z Z ik Llog((softmax(¢; K))x)

i=1 k=0
where:

S is the sequence length.

® Yik = {

1,
0,

if wy, is the head of w;

otherwise
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+ ¢; € R% is the output vector of the query
matrix transformation for the word w;.

o K € R%*5*1 is the matrix with rows - the
outputs of the key matrix transformation for
all words in the sentence.

This end-to-end training fine-tunes the encoder
model weights. It is done simultaneously over all
words in a sentence and over multiple sentences
in a batch. During inference the model produces
distribution over the possible heads for each word.
A simple strategy to predict the head of each word
is to calculate the argmax of the distribution.

Prediction(w;) = argmazxy_y(qiK)

We use this prediction for validation during
training. However, it is well known that this
greedy prediction does not guarantee a construc-
tion of a tree (although in more than 95 % of the
cases a tree is produced). Thus, we adopted the
Chu-Liu-Edmonds algorithm for the construction
of a Maximum Spanning Tree over the full graph
of all potential dependency arcs of the sentence
to implement and to select the most probable tree
(McDonald (2006)). The full graph in our case is
presented as a transition matrix composed of the
vectors for the distribution of the possible heads
for each word in the sentence. Over this graph we
apply the Chu-Liu-Edmonds algorithm.

Our head classification layer can be seen as
a simplified version of the (Dozat and Manning,
2017) Deep Bi-affine attention. While they use an
LSTM to produce embeddings, we use BERT and
our scores are just the dot products of the heads and
dependents transformations while they transform
the outputs and then use a Bi-affine transformation
to produce the scores. We argue that a simpler layer
is sufficient, because of the expressive power of the
pre-trained BERT.

3.2 Incorporating the Information from the
Lexicons and Shallow Grammars

As it was mentioned above, our goal is to incorpo-
rate “sure” information about the syntactic struc-
ture of a given sentence in the process of parsing
in such a way that it improves the performance of
the parser. Such information could be used during
the training time (fine-tuning) of the parser as well
as during the inference time.

Let s = (wp,ws, ..., wg) denote a sentence of
length .S, and wy is the special token for the root as
above. T'is a dependency tree for s if and only if



T = {(wi,wj,li)|Wi €s,w;j € s, l; € DL},

where T' is a tree, the root of T"is wo, wj is the
head node of w;, and DL is a set of labels for the
dependency relations. The “sure” syntactic infor-
mation for the sentence s is a subset of arcs in the
dependency tree 7: Tp C 1. We call Tp a set
of prompting arcs. In the experiments reported in
this paper we use only unlabeled arcs, because we
would like to see their influence on the unlabeled
parsing. In our opinion, the additional information
— the labels and grammatical features — might be
incorporated in a similar manner. Thus, Tp con-
tains arcs from some of the words in the sentence
to their heads.

Our main intuition is that we could use the
prompting arcs to urge the model to pay more at-
tention to the “sure” heads provided by Tp.

The incorporation of the additional information
from the set T'p can be done in at least two ways.
First, through a simple extension over the model,
described in the previous subsection, is to modify
the scores for the corresponding arcs predicted by
the model to an infinitely large score. In this way
we will force the Chu-Liu-Edmonds algorithm to
always select these arcs. A similar approach could
be used with the argmax head selection algorithm.

One disadvantage of this method is that it has an
effect only during the actual head selection phase.
Thus, the transformer model cannot take advantage
of the predefined arcs. Motivated by the intuition
that incorporating the information as early as pos-
sible would facilitate the model predictions for the
other words, as a second solution we propose an
extension to the layers of the encoder model, which
are used to prompt the model with the predefined in-
formation. Since only a fraction of the dependency
arcs are predefined, this prompting is done only on
a small number of words in the sentence. Thus,
to implement this intuition within the model we
modify the typical architecture of the transformer
model.

Let us consider the standard architecture of
the transformer block for the encoding model.
It consists of two major elements: the first ele-
ment includes a Multi-Headed Self-Attention layer
(M H A) with following residual connections and
normalization. The second element is a Feed-
Forward Network (F'F'N), also with following
residual connections and layer normalization (L V).
The output of each of the elements are denoted in
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the following way:
Oaiin(X) = LN(X + MHA(X))

is the result of the first element — Multi Headed
Self-Attention, residual connections and layer nor-
malization. Then

Offn(X) = LN(X + FFN(X))

18 the result of the second element — Feed-Forward
Network, residual connections and layer normal-

1zation.

> Add &. Norm

[

~» Add & Norm

Prompt
Attention

Feed Forward
J

¥ Add & Norm

Multi-Head
Attention

S

Figure 1: The modified encoder layer with prompt at-
tention

Our modification introduces a bias to the
embedding of each token towards the embedding
of its predefined head. This is done by the
prompting attention (PA) sublayer:

Opa(X) -

(LN(wi + 305 10, ) * Prompt(luj)))wieX ’

where

* Prompt(x) is a learnable linear (affine) trans-
formation which transforms the head embed-

ding.
1, if w; is the predefined head
¢ I(Z7 J) = of Wj
0, otherwise

The function (4, 7) is an input to the model and
it behaves as a matrix which indicates the prede-
fined arcs. The final modified encoder layer looks
like this:

Layer(X) = Of tn(Opa(Oqiin(X))).

The graphical representation of the modified Trans-
former block is depicted in Fig. 1.



The Multi Head Attention and FFN parame-
ters are initialized from the weights of the pre-
trained model, while the prompt attention param-
eters are randomly initialized and later learned by
fine-tuning. The current implementation allows
for a prompt attention sublayer only in some pre-
selected layers in the BERT architecture. In this
way we could use it only for some of BERT layers.
Adding the prompt attention to the last few layers
of the model produces best results. We prove this
by performing experiments with different settings.
In our opinion the reason for this is as follows:
adding it to more layers of BERT introduces too
many newly initialized parameters and they require
longer training.

After the modifications, the head classification
layer from 3.1 is appended to the model and it is
fine-tuned by an end-to-end training.

3.3 Relation Classification — (LAS)

After receiving the structure of the syntax tree, an-
other model is trained to predict the labels of the
word - head arcs.

Let h; = Model(w;) and hj = Model(w;) be the
embeddings of the words w; and w; and let w; be
the head of w;.

The number of relation classes are of a fixed size,
so a linear (affine) classifier can be used. The em-
beddings of the word and its head (predicted in
the previous step) are concatenated, then passed
through the transformation. The distribution across
the possible classes for the relation between w; and
its head wj is ¢; = Classifier(Concat(h;, hj)).
The model is end-to-end trained with cross-entropy
loss. Currently the addition of some predefined
information for the label classification is outside
the scope of our work.

4 Experiments

In this section we present the experiment settings
that were used to evaluate the new dependency
architecture as well as the results from the differ-
ent experiments. We performed experiments with
two Universal Dependency Treebanks: BTB Bul-
garian Treebank (Osenova and Simov 2015) and
the GUM English Treebank (Zeldes, 2017). The
Bulgarian treebank was selected because we are
mainly interested in Dependency Parsing for Bul-
garian. Also, we have access to many language
resources and tools for Bulgarian like Chunk gram-
mars for recognition of noun chunks, verbal com-
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plex chunks, prepositional chunks, lexicon with
MWEs (still quite modest as a coverage). By per-
forming experiments also for English, we wanted
to provide some initial evidence that our architec-
ture is not language specific. The GUM English
Treebank was selected because its size is similar to
that of BTB Bulgarian Treebank.

For the experiments with the Bulgarian parser
we used a pre-trained BERT model with 355M pa-
rameters as an encoder which produced the initial
embeddings of the tokens. The BERT model was
trained by us on 20B of Bulgarian tokens. Our pre-
training dataset consists of mainly Web data, liter-
ature, administrative and scientific documents, as
well as Wikipedia articles. The model was trained
for 3 epochs and the pre-training took 23 hours for
a single epoch on 16 Nvidia A100s. The models
will be uploaded on Huggingface.

For the experiments with the English parser,
BERT large uncased was used (Devlin et al., 2018)
because the model architecture is similar to our
pre-trained BERT. The difference in the parame-
ter count comes from the bigger embedding layer
because of the larger vocabulary size of our model.

The notion of Tp C T — the set of “sure”
arcs in the dependency tree T, can easily ex-
tended to a whole treebank by applying the same
procedure to each sentence in a given treebank.
We denote the set of arcs for the whole treebank
as Tp(TreeBankName) with additional super-
scripts if necessary. For Bulgarian we adopted the
available constituent-based cascaded chunk gram-
mars where each rule was applied over each sen-
tence annotated with grammatical features (the
XPOS column of the CoONLLU format was used as
defined for all Universal Dependency treebanks).
The rules are ordered and applied according to
the specified order on the basis of the result from
the previous rules. A very simple example is the
following one: if the current sentence contains a
preposition (R) and a noun chunk (/N Chunk), then
the following rule can be applied:

R, NChunk — PChunk

When the whole grammar is applied, the arcs
within each of the chunks are selected for the cor-
responding sentence. For example, for the above
PChunk we could predict an arc from the preposi-
tion to the head of the N C'hunk with label “case”.
The arcs and their labels could be defined uniquely
on the basis of the chunks and grammatical features
of the words in them.

The lexicon of the MWEs contains a uniform rep-



Model Training set Tp(BTB)¢"MWE — Tp(BTB)® Tp(BTB)*
UAS LAS UAS LAS UAS LAS

Corrected Argmax ~ Tp(BTB)° 09640  0.9361  0.9614 0.9335 0.9694 0.9409
Corrected MST Tp(BTB)° 0.9640  0.9361  0.9615 0.9337 0.9695 0.9410
Prompted-10 Tp(BTB)Y 0.9655 0.9370  0.9626 0.9340 0.9690 0.9400
Prompted-20 Tp(BTB)? 09641  0.9360 0.9606 0.9324 0.9700 0.9411
Prompted-0-40 Tp(BT B)+40 09672 09392 0.9640 0.9362 0.9718 0.9433
Prompted-ChMWE  Tp(BTB)“"MWE (09655  0.9374  0.9510 0.9231 0.8307 0.8665

Table 1: Accuracy of UAS and LAS of the models on the UD_Bulgarian-BTB test set with different subsets of
predefined arcs. The different models are trained on different training sets. The first two models were trained on the
treebank without any prompting arcs. For these two models the MST ones are performing generally better. Thus, we
selected Corrected MST as a baseline model (highlighted in bold and italics) because it achieved the best result on
the treebank without any prompting arcs. As the best new model we selected Prompted-0-40 because it achieved the
best result (highlighted in bold) over Tp (BT B )ChM WE _ (ChMW E = Chunk grammars and MWE lexicon). .
This is a realistic scenario, because the prompting arcs are produced by shallow grammars and the lexicons which
could be applied over new texts. This model also produced better results over the treebank without prompting arcs.
Prompted-0-40 produced even better results (underlined in the table) over the test set with 20 % random prompting
arcs. But this is an unrealistic scenario because we do not have reliable sources for such prompting arcs.

resentation of each MWE which contains not only = model) we call the setup Corrected models. Thus,
the strings, but also dependency relations for the ~ we have Corrected Argmax and Corrected MST
structure of the MWE and some grammatical fea- models. As it was mentioned before, for a base-
tures of its internal elements — see (Osenova and  line of the models we use Corrected MST models.
Simov, 2024). Here only MWEs that are realized  The corrected Argmax will be reported in order to
continuously in the text, and which are unambigu-  demonstrate the performance of the parser model
ous are used. strictly by itself.

The set of arcs selected in this way for the univer- Also, the fact that in most of cases Corrected
sal BTB treebank is Tp (BT B)"MWE It contains ~ Argmax and Corrected MST produced very close re-
around 25 % of all arcs in the treebank. When  sults is an evidence that the transformer model does
there are not available grammars, lexicons, or just ~ some reasoning which ensures a tree-like structure
for experiments appropriate sets of arcs could be se-  of the output graph. Our intuition is that this rea-
lected randomly from the treebank itself. In these ~ soning happens in the last layers of the encoder,
cases we could have sets such as: Tp(BTB)!°, just before the head selection layer, since the head
Tp(BTB)?, Tp(BTB)3® containing 10 %, 20  selection layer predicts the head of each word inde-
%, 30 % and so on of the arcs in the treebank. Sim-  pendently. Thus no information sharing can happen
ilarly, Tp(GUM)'¥, Tp(GUM)?°, Tp(GUM)?  there. This motivates the decision to incorporate
for the English treebank. In some cases we alsouse  outside information about the tree in these layers.
Tp(BT B)? for the treebank without any prompt- . .
ing arcs selected. Also we use Tp(BTB)*+40 o 4.1 Training and testing set-up
denote the shuffled union of two copies of the tree-  We considered 3 training and testing set-ups:
bank: one without any prompting arcs and one with
40 % of prompting arcs.

These sets of arcs could be used during the train-
ing, validation and testing of the corresponding
parsers. Obviously, the analyses of the new texts
will require shallovfz grammars and/or l.exicons of « Training and testing with predefined arcs pro-
MWES. If not avallat.)le, the parser will be used duced by a shallow grammar parser and a lex-
without the predetermined sure arcs. icon (Tp(BT B)CMMWE) __ only for Bulgar-

When the predefined sets of arcs are used to influ- :
ence only the final decisions of the head selection
algorithms (as opposed to injecting data into the * Training with predefined arcs produced by ar-
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* Training and testing with predefined arcs pro-
duced by arbitrary fixed size subsets of all arcs
in the treebanks - (I'p(BT B)'°, Tp(BT B)*°
and so on).

1an.



bitrary subsets (Tp( BT B)*) and testing with
predefined arcs produced by a shallow gram-
mar parser and a lexicon (Tp( BT B) MW E)
— again only for Bulgarian.

Using an arbitrary predefined subset of arcs as
prompts is sufficient to train the model to recog-
nize the prompts and produce good results when
testing with both — arbitrary or custom predefined
arcs. The ability to train with an arbitrary subset of
prompts is important in case of insufficient linguis-
tic resources.

The fine-tuning training is done for 10 epochs
with a learning rate of 5e-5 with linear decay and
batch size of 384. The fine-tuning takes around
5 minutes on 8 Nvidia A100s. The best perform-
ing model checkpoint over the 10 epochs on the
validation set is selected.

4.2 Results

In this subsection we present some results from the
experiments. In Table 1 the evaluation of Bulgarian
parsers is given. The best performing Prompted
model for Bulgarian on UAS was trained on a shuf-
fled union of the BTB train set with no predefined
arcs and the BTB train set with 40% predefined
arcs (Tp(BT B)+4Y), which enables the model to
’see’ sentences without any predefined arcs during
training. A paired t-test over 10 training sessions
with different random seeds for weight initializa-
tion was done and it shows that the improvement
in accuracy of the Prompted models in comparison
to the Corrected MST is statistically significant and
thus not a product of lucky weights initialization.
Different experiments were made regarding the
size of the set of predefined arcs during training
and the number of modified encoder layers: We
found that the size of the predefined subset should
be neither very large nor very small: if too small
(under 5% of all arcs) — the model cannot learn the
meaning of the prompts and does not use the pre-
defined information. If too large (more than 50%)
— the model cannot learn to do parsing on its own.
We found that 20% of predefined arcs is an optimal
overall size. In addition to the size, it is important
to be mentioned that when the prompts are selected
randomly, they also belong to different kinds of
arcs representing different phenomena within the
dependency trees. Having different types of prompt
arcs enables the model to better generalize over the
meaning of the prompts. This is one explanation
why the set of arcs, produced by the shallow gram-
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mars and the lexicons (Tp (BT B)¢"MWFE) is not
so good for fine-tuning of the dependency graphs
comparing to the set with 20 % randomly selected
arcs (Tp(BT B)?). This is a consequence of the
nature of the shallow grammars and most of the
MWEs in our lexicon.

The number of the modified layers also matters.
We made experiments with adding the prompt at-
tention to half or even all layers, but doing so in-
troduces too many new parameters thus making
the training require more examples. In our case
the models with modified 2 to 4 of the last layers
performed best. The results reported in this paper
were produced by models with attention modifica-
tion considered only for the last 4 out of the 24
layers of BERT (layers 21-24).

The quality of the pre-trained encoder model
is also important. Our previous experiments for
Bulgarian were done with a BERT model pre-
trained on a significantly smaller dataset (4B to-
kens). While the improvement by adding the modi-
fication was still present, the general scores were
lower.

In Table 2 the evaluation of the English parsers is
given. The results show that not only the improve-
ment with the proposed modification is maintained
but there is even some improvement in the case
when there are no predefined arcs.

5 Manual Evaluation and Discussion

We performed some manual comparison of the re-
sult from the baseline model Corrected MST and
the best model Prompted-0-40 for Bulgarian. The
two models are correct with respect to the fixed
expressions. Thus, the influence of adding some
preliminary syntactic knowledge seems to affect
the overall analyses and help in cases of correct
head identification and direction as well as other
phenomena like the PP attachment, apposition rela-
tions, etc.

Here two cases are considered: a) the baseline
makes errors while the best model is correct, and
b) in the opposite direction - the best model makes
errors while the baseline is correct.

The baseline makes errors. When inspecting
the errors of the baseline where the best model has
taken correct decisions, the following main cases
have been identified:

* wrong head direction: for example, the sub-
ject of a copula should be dependant on the



Model Training set  Tp(GUM)?° Tp(GUM)?
UAS LAS UAS LAS
Corrected Argmax  Tp(GUM?)  0.9436 0.9246 0.9299 0.9125
Corrected MST Tp(GUMP®)  0.9447 0.9256 0.9308 0.9133
Prompted-10 Tp(GUM)Y™ 0.9467 0.9273 0.9321 09143
Prompted-20 Tp(GUM)* 0.9471 0.9280 0.9310 0.9138

Table 2: The accuracy of UAS and LAS of the models on the UD_English-GUM test set with different subsets of
pre-defined arcs. The experiments reported here only demonstrate that the behaviour of the models follows the same
pattern. The models trained on treebanks augmented with prompting arcs achieve better results even on treebank

data without prompting arcs.

content word of the copula predicative but it
erroneously was analyzed as depending on the
copula

wrong head selection: for example, in Bul-
garian NN construction with the first noun
indicating quantity, the head is the first noun,
while in the baseline the second one was cho-
sen.

wrong head assignment: for example, the sub-
ject should be related to the main verb of a
sentence but it was assigned to the modal verb
instead; in an appositive structure the modifier
of the head noun in the dependant structure is
wrongly attached to the head of this dependant
structure

wrong root assignment: for example, in com-
plex sentences, the baseline assigns the root
relation to both verbs — in the main sentence
as well as in the clause

wrong PP attachment: for example, instead of
depending on the noun, the head of the PP is
made dependant on the verb.

The best model makes errors. When inspecting
the errors of the best model where the baseline had
taken correct decisions, the following main cases
have been identified:

* wrong head direction: the same error as in the
baseline error list

* wrong head assignment: for example, in more
embedded clauses, the last verb is wrongly
attached to the very initial one instead of the
nearest governor

* wrong PP attachment: the same error as in the
baseline error list
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* wrong non-PP attachment: for example, the
adverb is adjacent to the preceding noun but
has to be attached to the following verb. How-
ever, it was wrongly attached to the noun;
when the complementizer ‘che’ (that) is used
in non-typical for it structures like after the
negative particle ‘ne’ (not), the complemen-
tizer is wrongly attached to the negative parti-
cle instead of to the verb

As it can be seen from the observations above,
both models generally make identical types of er-
rors. At the same time it seems that the best one has
more attachment-related issues while the baseline —
more head-related ones. From the statistics over the
errors it can be seen that the baseline makes more
errors per category than the best one. Both models
have almost the same difficulties with the follow-
ing labels: obl and advmod. Thus, all adverbials
— despite being expressed by adverbs or nominals,
cause problems towards the proper analyses. Also,
it seems that the processing of the relation obj is
easy for the best model while not for the baseline;
the processing of the relation discourse is easy for
the baseline while not for the best model.

The manual validation of the results from the two
models shows that the extension of the transformer
architecture with the new prompt attention layer
improves the general performance of the head selec-
tion model. But it also shows that the improvement
is not an extension of the baseline model. Instead,
the extended model covers a different part of the
search space. Thus we plan to address this discrep-
ancy in several ways: (1) through the improvement
of the prompt attention layer by including more
linguistic information such as higher order arc in-
formation, grammatical features, shallow semantic
information — ontological information for NEs,
terms and key words, where this information is reli-
able; (2) through the extension of the treebank with



new sentences selected using some active learning
procedure. (3) through the improvement of the shal-
low grammar and the coverage of the MWE lexicon
as well as the related algorithms for their better pre-
diction and consequent recognition in text.

6 Conclusion and Future Work

In this work we extended the standard transformer
block architecture with a new prompt attention
layer which incorporates the information from
some external knowledge sources like shallow
grammars and MWE lexicons. In this way the
BERT-based dependency parsing model was inter-
nally modified to produce a better dependency pars-
ing model. Here some experimental settings were
described where the inclusion of shallow syntactic
knowledge and knowledge from MWE lexicons
improves the parsing model for Bulgarian. Our
assumption is that this architecture would be appli-
cable to any other language. To initially prove this,
we also performed experiments with the English
UD treebank — GUM.

In our future work we plan to use deeper syn-
tactic knowledge as well as improved shallow syn-
tactic knowledge and semantic information — not
only during the fine-tuning stage but also during
the pre-training. We plan to make experiments with
some variant of the multilingual dependency pars-
ing where the models are simultaneously trained
on more than one UD treebank.
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