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Abstract

Symbolic sentence meaning representations,
such as AMR (Abstract Meaning Representa-
tion) provide expressive and structured seman-
tic graphs that act as intermediates that sim-
plify downstream NLP tasks. However, the
instruction-following capability of large lan-
guage models (LLMs) offers a shortcut to effec-
tively solve NLP tasks, questioning the utility
of semantic graphs. Meanwhile, recent work
has also shown the difficulty of using meaning
representations merely as a helpful auxiliary
for LLMs. We revisit the position of semantic
graphs in syntactic simplification, the task of
simplifying sentence structures while preserv-
ing their meaning, which requires semantic un-
derstanding, and evaluate it on a new complex
and natural dataset. The AMR-based method
that we propose, AMRS®, demonstrates that state-
of-the-art meaning representations can lead to
easy-to-implement simplification methods with
competitive performance and unique advan-
tages in cost, interpretability, and generaliza-
tion. With AMRS? as an anchor, we discover
that syntactic simplification is a task where se-
mantic graphs are helpful in LLM prompting.
We propose AMRCoC prompting that guides
LLMs to emulate graph algorithms for explicit
symbolic reasoning on AMR graphs, and show
its potential for improving LLM on semantic-
centered tasks like syntactic simplification.

1 Introduction

Frameworks for symbolic sentence meaning repre-
sentations, exemplified by UCCA (Abend and Rap-
poport, 2013), Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), and UMR (Gysel
et al., 2021), provide varying levels of abstraction
away from the lexical and syntactical structures of
natural language sentences, commonly in the form
of semantic graphs (Oepen et al., 2020). Com-
pared to dense representations such as semantically

Code, models, and data are available at https://github.
com/U-Alberta/AMRS3.

meaningful embeddings (Reimers and Gurevych,
2019), representing the meaning of a sentence as
a graph allows for the use of classical (and ex-
plainable) algorithms (e.g. traversal and partition)
to ease the development of more controllable and
interpretable methods for semantic-focused NLP
applications, including but not limited to text sim-
plification (Sulem et al., 2018), question answering
from knowledge bases (Kapanipathi et al., 2021),
and text-style transfer (Shi et al., 2023).

Meanwhile, large language models (LLMs), rep-
resentatively the ChatGPT (Ouyang et al., 2022;
OpenAl, 2023) and Llama (Al@Meta, 2024) fami-
lies, have demonstrated prevailing performance in
the aforementioned applications. Their instruction
following capability (Ouyang et al., 2022) enables
training-free adaptation to specific tasks, which, in
terms of the burden for implementation, is at a sim-
ilar level to that of writing graph algorithms on top
of semantic graphs. This prompts researchers to re-
think the role of symbolic meaning representations
in the era of LLMs, and to explore the potential of
combining the two paradigms, with the negative
findings that directly appending AMR to the input
of LLMs is not beneficial, if not harmful, in many
tasks (Jin et al., 2024).

Along these lines, we study the task of syntactic
simplification and aim to answer two research ques-
tions: RQ1 (§4): Can state-of-the-art meaning rep-
resenting semantic graphs provide a light-weight,
easy-to-implement, and interpretable alternative to
LLMs for this task? RQ2 (§5): Can it be helpful to
supply semantic graphs as auxiliaries to LLMs to
improve their performance on this task?

Syntactic simplification, including variants like
Split and Rephrase (Narayan et al., 2017), sentence
splitting (Niklaus et al., 2019) and Gao et al. (2021),
is a type of text simplification task that aims to
rewrite sentences to reduce the syntactic complex-
ity while preserving its meaning, typically oper-
ationalized by converting a complex text into a
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set of atomic sentences with simpler structures. It
has practical applications in improving text acces-
sibility for less-proficient readers (Watanabe et al.,
2009), improving weaker NLP pipelines (Niklaus
et al., 2023), and detecting hallucination in com-
plex statements (Hou et al., 2024). Despite modi-
fying syntactic structures as the outcome, the task
is inherently semantic-focused, as sentences are
expected to be atomic in meaning and semanti-
cally equivalent to the original complex sentence,
making semantic graphs a natural choice as an in-
termediate.

To answer RQ1, we propose AMRS? (shorthand
for Abstract Meaning Representation for Syntactic
Sentence Simplification), a simple yet effective
graph-based algorithm that breaks down the AMR
graph of a complex sentence into a set of subgraphs,
each corresponding to a semantic unit. The sub-
graphs then guide the generation of simpler sen-
tences which form the final output. AMR is chosen
as it is the meaning representation that receives
more attention in recent developments of treebanks
(Knight et al., 2020), parsing (Xu et al., 2023),
text generation (Bai et al., 2022), and cross-lingual
adaptation (Wein and Schneider, 2024), and it re-
flects the state-of-the-art of graph-based meaning
representation. We demonstrate that with a well-
developed semantic graph like AMR, a syntactic
simplification system can be derived from simple
rules as a lightweight alternative to LLMs. Eval-
uations on the synthetic WebSplit (Narayan et al.,
2017) dataset and real-world complex sentences
from a Humanities corpus (Brown et al., 2022)
show that AMRS? yields simplifications that are com-
parable to those of complex existing systems and
LLMs in terms of both syntactic simplicity and
meaning preservation, while enjoying, in princi-
ple, the merits of simplicity, interpretability, and
language-neutrality.

It is unsurprising that LL.M outperforms sym-
bolic methods in syntactic simplification (Ponce
et al., 2023). We aim to answer RQ2 and see
whether AMR still has merits as an auxiliary to
LLMs (namely GPT-3.5 and Llama-3-8B) in this
task. Contrary to Jin et al.’s (2024) report that di-
rectly adding AMR to the input is harmful in many
tasks, we find syntactic simplification slightly bene-
fits from the auxiliary AMR inputs. We investigate
what elements of AMR are helpful to LLMs in our
case, and find that prompting in Chain-of-Code
(Li et al., 2023) style allows LLMs to emulate the
execution process of AMRS? and perform reasoning

over AMR graphs, providing insights on how AMR
can be made a useful auxiliary for LLMs in this
and other semantic-centered tasks.

We contribute a LLM-era’s perspective on graph-
ical approaches toward the long-standing task of
syntactic simplification: the task is benchmarked
on a hard and natural complex sentence dataset that
we construct; we offer a reference point of the latest
developments in symbolic meaning representations
for the task; and finally, we provide insights on the
role of symbolic meaning representations in the era
of LLMs that complement recent work.

2 Related Work

Text Simplification. Syntactic simplification is
a subtask of automated text simplification, the
problem of improving text readability and under-
standability while retaining information, that has a
wide spectrum of forms (Al-Thanyyan and Azmi,
2022): complementing syntactic simplification, lex-
ical simplification focuses on replacing complex
words with simpler synonyms (Paetzold and Spe-
cia, 2017). Meanwhile, summarization is another
form of simplification that removes superfluous in-
formation or unnecessary details (Nenkova et al.,
2011). Given the difference in focuses, general text
simplification benchmarks and evaluations such as
those of Maddela et al. (2023) and Alva-Manchego
et al. (2021) do not directly apply to syntactic sim-
plification in isolation.

Syntactic Simplification. Prior to LLMs, syn-
tactic simplification was commonly modeled as
a sequence-to-sequence task where systems are
trained on parallel corpora synthesized from knowl-
edge graphs (Narayan et al., 2017), mined from
Wikipedia (Botha et al., 2018) and translations
(Kim et al., 2021), or crowd-sourced (Gao et al.,
2021). These specialized models struggle to gen-
eralize to unseen data, which our work demon-
strates is solvable with simple rule-based methods
combined with a powerful semantic representation
(AMR). This combination is admittedly not a new
idea: DisSim (Niklaus et al., 2023) is a performa-
tive simplification system, yet it relies on a larger
set of expert-crafted lexical rules that is not as
simple and transferrable as our approach. DSS
(Sulem et al., 2018) uses UCCA as the semantic
representation, and we inherit its idea and build on
AMR which is more powerful. Ponce et al. (2023)
evaluates fine-tuning LLMs on a split-and-rephrase
dataset, while our analysis on LLM focuses on the
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zero-shot instruction-following setting.

Symbolic Reasoning for LLM. Jin et al. (2024)
suggest that adding serialized AMR graphs to the
input of LLM in a direct manner is not effective
in prompting LLM to perform implicit reasoning
over the AMR graph. This is consistent with the
observation that LLM needs guidance on task de-
composition to perform complex reasoning (Wei
et al., 2022) such as manipulating AMR. However,
symbolic data, such as code and AMR, likely has
the potential to benefit LLM (Yang et al., 2024).
Our work investigates whether methods prompting
LLM to perform explicit symbolic reasoning, such
as Chain-of-Code (Li et al., 2023), can be more
helpful than direct prompting as in Jin et al. (2024).
An alternative to prompting, which is beyond the
scope of this work, is to fine-tune the LLM across
symbolic reasoning tasks including AMR to im-
prove its reasoning ability Xu et al. (2023).

3 Task Setting

In our studies, we consider only the hard cases
of syntactic simplification (Niklaus et al., 2019)
where a complex sentence needs to be simplified
into multiple ones (typically more than two). To
the best of our knowledge, there is a lack of high-
quality benchmarking datasets for this task. Syn-
thetic and mined datasets such as WikiSplit (Botha
et al., 2018) and BiSECT (Kim et al., 2021) come
with reference simplifications, but they only focus
on binary splits, with WebSplit (Narayan et al.,
2017) being an exception. The manually labeled
DeSSE dataset (Gao et al., 2021) is in the domain
of student essays where the sentences are relatively
simple. The usefulness of the provided reference
simplifications is limited, as they are often not of
high quality and the granularity of the splits is pre-
defined by the dataset generation process. This
motivates us to use reference-less evaluation met-
rics to assess the quality of the generated splits
from the aspects of simplicity and meaning preser-
vation separately (Cripwell et al., 2024), and create
a natural and realistic dataset of complex sentences.

Datasets. As an instance of traditionally used
benchmark datasets, we use WebSplit’s test set
(WEBSPLIT), with the caveat that it is unnatural.
Meanwhile, we mine for sentences with high word
and entity mention counts from the Orlando bibli-
ography corpus (Brown et al., 2022), which results
in a set of structurally-complex realistic sentences

expressing rich relations, written by digital human-
ists (ORLANDO). Table 1 provides a summary of
the size and nature of the two datasets.

Assessing Simplicity. We measure the opposite
of simplicity, the syntactic complexity of sentences,
by L2SCA (Lu, 2010), a widely adopted set of fea-
tures that highly correlate with human judgments
of syntactic complexity. It measures 14 features
from five syntactic aspects. For the clarity of pre-
sentation, from each aspect, we choose one feature
with the highest correlation with human judgments.

Assessing Meaning Preservation. Following re-
cent work (Ponce et al., 2023; Cripwell et al., 2024),
we use BERTScore Recall (Zhang et al., 2020)
computed with DeBERTa-NLI! (He et al., 2021) to
assess whether the meaning of the original sentence
is preserved in the simplification. We do not fol-
low previous work relying on BLEU as its lack of
semantic understanding is criticized for being par-
ticularly unsuitable for simplification tasks (Sulem
et al., 2018; Alva-Manchego et al., 2021).

4 AMR for Rule-based Simplification

We argue that Abstract Meaning Representation
(AMR) is suitable for syntactic simplification, as
its abstraction away from surface strings and syn-
tactic structures (Oepen et al., 2020) allows us to
define concise and interpretable rules for simplifi-
cation, and its well-developed resources for parsing
and generation provide a guarantee for high-quality
conversions between text and graphs. This leads
to the development of AMRS® , an AMR-based sys-
tem for syntactic simplification that is driven by a
handful of simple and interpretable rules.

4.1 Rule Set

As illustrated in Figure 1, AMRS® at a high-level
projects a complex sentence to the space of AMR
graphs using a semantic parser, and then breaks
down the AMR graph of a complex sentence into a
set of subgraphs, each corresponding to a semantic
unit, which are then realized into simpler sentences
using an AMR-to-text model.

An AMR graph (as in Fig. 1) is a rooted directed
acyclic graph where nodes represent concepts and
edges represent relations between concepts (Ba-
narescu et al., 2013). Non-leaf nodes in AMR are
usually core concepts (highlighted nodes in Fig. 1)

'microsoft/deberta-xlarge-mnli as suggested by lat-
est BERTScore guidelines.
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Dataset Size Example

WEBSPLIT 938 Addiction journal is about addiction and is published by Wiley-Blackwell which
has John Wiley & Sons as the parent company .

ORLANDO 1,104 She covers several British trials on sexual matters and on what might be de-

scribed as trumped-up evidence: the prosecution of Penguin Books for publish-
ing Lawrence’s Lady Chatterley’s Lover, 1960, the trial of ex- Liberal Party
leader Jeremy Thorpe for conspiracy to murder, and the trial of Stephen Ward
(described by the Oxford Dictionary of National Biography both as osteopath
and scapegoat and as the British Dreyfus) for living on immoral earnings in the
wake of the resignation of Minister John Profumo on 4 June 1963.

Table 1: Summary the two datasets of complex sentences, where WEBSPLIT is synthesized and unnatural while
ORLANDO contains natural sentences of absurd complexity similar to the examples.

“In 1935 they moved back to .
Chaldon, to live in a primitive fMR Parsing
stone cottage known as 24 Subgraph Extraction

“In 1935 they
moved back to
Chaldon to live.”

“They lived in a

primitive stone m
cottage.” ‘ARG2

“The primitive stone location

cottage was known ‘name

as 24 West Chaldon.” “24 West Chaldon”

Figure 1: Three stages of AMRS® : (1) Complex input sen-
tence (top) is parsed into an AMR graph. In the AMR
graph, core concepts are highlighted. (2) Subgraphs
(three encircled graphs) that correspond to simpler sen-
tences are identified using the subgraph extraction al-
gorithm. (3) The subgraphs are realized into text (three
boxes at the bottom) using an AMR-to-text model.

that map to predicates in OntoNotes (Pradhan et al.,
2007) semantic roles, and the remaining nodes are
arguments of the core concepts such as (named)
entities. AMR concepts are not anchored to words,
and a core concept captures an event even if the
word that realizes it is a noun, adjective, or is of
another part-of-speech. This allows us to simplify
the sentence by focusing on and only on the core
concepts and their arguments:

Rule 1 (Core Concept): If a node is a core concept
and has more than o arguments, it is considered a

Algorithm 1 Extract subgraphs from an AMR
graph G by performing DFS and applying the rules
defined in §4.1.

1: procedure SUBGRAPHS(G)

2 r <+ &5 q < {G.root}

3 for all e € G.edges, e is inverse do

4 q < qU{e.from} > Rule 3
5: e.from,e.to < e.to,e.from

6 while |¢| > 0 do > Extract from roots
7 g <+ DFSCoPY(q.pop(), q)

8

9

r+<ru{Jd}

return r
10: procedure DFSCOPY(n, q)
11: if n is leaf return n
12: if n is core concept, |n.edges| > o then
13: g+ qU{n} > Rule 1
14: return n
15: if n was visited then > Rule 2
16: for all e € n.edges, e is non-core do
17: n.addEdge(DFSCOPY (e.to, q))
18: else for all ¢ € n.edges do
19: n.addEdge(DFSCOPY (e.to, q))
20: return n

semantic unit, and the subgraph rooted at this node
is extracted as a subgraph.

A single concept (e.g. they in Fig. 1) can be the
argument of multiple core concepts. To avoid re-
dundancy, we only extract all relations of a concept
on the first occurrence and only keep non-core re-
lations (names, values, etc. as opposed to subjects
and objects) on subsequent occurrences.

Rule 2 (Reyvisit): If a node has been visited before,
only extract non-core relations.

AMR by default is rooted at a single predicate
(e.g. move-01) as its focus. Non-focused predicates,
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except for the arguments of the focused predicate,
are connected by inverse relations (e.g. know-02
:ARG1-of cottage in Fig. 1) that are often realized
as relative clauses. Depending on the granularity
of simplification, we may choose to extract unfo-
cused concepts as their own subgraphs as well by
reversing the direction of the inverse relations and
creating a new root.

Rule 3 (Inverse Relations): (Optional) If a node
is connected by an inverse relation, reverse the
direction of the inverse relation and extract the
subgraph rooted at the node.

4.2 Implementation

Using depth-first search (DFS) with the rules above,
we extract a set of subgraphs from the AMR graph
(Algorithm 1), where o is heuristically set at 2. We
use AMRBART? (Bai et al., 2022), a unified model
with strong performance in both AMR parsing and
AMR-to-text, to parse the complex sentence into
AMR graphs and realize the subgraphs into text.
During AMR-to-text generation, we adopt the com-
mon practice of anonymizing named entities (Kon-
stas et al., 2017).

As suggested by Bai et al. (2022), text-AMR
pairs generated by semantic parsers (silver data)
can benefit the training of AMR-to-text models. To
adapt AMRBART to simple sentences, we leverage
this property and finetune AMRBART on silver
text-AMR pairs by parsing sentences from Simple
English Wikipedia® using AMRBART. After fine-
tuning, AMRBART realizations on the held-out set
achieve a BLEU of 46.23, compared to the base
model’s BLEU of 39.53.

4.3 Baselines

We perform a comparison between AMRS® and the
following existing systems for syntactic simplifica-
tion using the evaluation methods outlined in §3.
The results are reported in Table 2.

DisSim. DisSim (Niklaus et al., 2023) performs
a recursive transformation of a sentence based on
a set of 35 hand-crafted syntactic and lexical rules
related to the sentence’s phrase structure.

ABCD. ABCD (Gao et al., 2021) represents a
sentence as a graph where edges are dependency
and neighboring relations, and trains a neural net-

2AMRBART-large-v2 (AMR3.0)
3Sentences extracted from simplewiki-20230101 dump,
with 5,000 held out as test set.

work to predict actions on the edges. We use its
MinWiki-MLP release.

DSS. DSS (Sulem et al., 2018) uses UCCA as
the semantic representation, splits the UCCA graph
based on parallel and elaborator scenes, and con-
verts the subgraphs into text using a neural model.

LLM. We directly instruct GPT-3.5 (turbo-0125;
Ouyang et al., 2022) and Llama-3 (8B-Instruct;
Al@Meta, 2024) with Prompt 1.

[Prompt 1: Direct Prompting

[System] You are a helpful assistant that simplifies syntac-
tic structures.

[User] Rewrite the following paragraph using simple sen-
tence structures and no clauses or conjunctions: {complex
sentence}

4.4 Discussion

AMRS? achieves competitive performance without
specialized supervised training. Overall, sim-
plifications generated by AMRS® are on par with
or better than the baselines in terms of meaning
preservation on both datasets, as shown by the com-
parisons in Table 2, despite not being trained on
task-specific supervised data. The performance is
close to Llama-3, a state-of-the-art LLM. The syn-
tactic simplicity of the generated sentences, mea-
sured by L2SCA, is at the same level as the best-
performing baselines on WEBSPLIT and better on
ORLANDO, suggesting that the good performance
of meaning preservation is not achieved by sacri-
ficing syntactic simplicity. The interpretable rule
set of AMRS® makes the method easily customizable.
The comparison between AMRS® with and without
Rule 3 exemplifies how a compromise between
simplicity and meaning preservation can be made
by simple adjustments of the rules.

AMRS?® enjoys unique merits beyond empirical
performance. Specially trained models such as
ABCD suffer from the lack of generalizability to
new domains, as seen in its drastic performance
drop on ORLANDO texts. In contrast, AMR mod-
els that AMRS? relies on are trained on a diverse set
of data and can be easily improved for new domains
by finetuning on silver data. LLMs are powerful
and training-free, while AMRS? is lightweight and
performs similarly well to open-weight LLMs. Ad-
mittedly, rule-based DisSim is lightweight and is
performant in the evaluation. Compared to models
based on semantic representation, DisSim requires
a complex set of 35 lexical and syntactic rules,
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BERTScore 1 L2SCA |
Method Mean Median MLT C/S CT T/S CNT
on ORLANDO
AMRS? 0.73 0.72 1200 1.02 1.07 096 1.22
AMRS® (w/o Rule 3) 0.79 0.79 18.17 1.30 1.32 098 1.89
ABCD 0.50 0.51 1499 094 1.19 080 1.98
DisSim 0.74 0.74 11.15 1.18 1.16 1.02 1.24
DSST - - - - - - -
GPT-3.5 0.80 0.82 1265 1.14 1.13 1.01 1.26
Llama-3-8B 0.74 0.74 7.89 1.07 1.07 1.00 0.70
Exact Copy 1.00 1.00 157.25 2.66 2.18 122 4.69
on WEBSPLIT

AMRS? 0.81 0.81 8.92 1.00 1.02 099 0.68
AMRS® (w/o Rule 3) 0.86 0.86 12.26 1.16 1.16 1.00 1.16
ABCD 0.90 091 9.53 1.00 1.10 091 094
DisSim 0.87 0.87 8.54 1.05 1.05 099 0.67
DSSf 0.74 0.74 10.69 097 1.19 0.81 1.05
GPT-3.5 0.90 0.90 7.79 1.02 1.02 1.00 0.52
Llama-3-8B 0.84 0.85 6.69 1.01 1.01 1.00 0.38
Exact Copy 1.00 1.00 16.57 1.64 150 1.10 1.72

Table 2: Evaluation results of AMRS® and baselines on ORLANDO and WEBSPLIT. BERTScore measures meaning
preservation (1 the higher the better), and L2SCA measures syntactic complexity (] the lower the better). T We
use the output provided by Sulem et al. (2018) on WebSplit only, as no code is available. Five L2ZSCA metrics
correspond to production unit length, overall complexity, subordination, coordination, and phrasal complexity. See

Lu (2010) for the exact definition of L2SCA metrics.

while AMRS® only needs three simple rules. The
rules of DisSim are crafted for English only and are
hard to transfer to other languages, while despite
AMR not being an interlingua (Banarescu et al.,
2013) the rules of AMRS® are language-agnostic and
can be easily adapted to other languages with AMR
parsers. Methods based on other semantic represen-
tations, such as UCCA-based DSS, perform worse
despite having a similar workflow to AMRS® , show-
casing the "free upgrades" that advances in seman-
tic representation tools can bring.

Takeaways. As AMRS® demonstrates, semantic
graphs like AMR are mature enough to support the
easy development of lightweight and interpretable
systems, that still have certain advantages in LLM’s
age, for tasks like syntactic simplification.

5 AMR for LLM-based Simplification

Given the position of AMR as an expressive and
suitable intermediate for syntactic simplification
and LLM’s strong performance in the task, a natu-
ral question arises as to whether AMR can be used
as an auxiliary to LLMs to improve their perfor-
mance in syntactic simplification in the scenario of

[ Prompt 2: Direct Full AMR Prompting (Jin et al., 2024)

[User] You are given a paragraph and its abstract meaning
representation (AMR).

# Paragraph

{complex sentence}

# AMR

{amr}

Rewrite the paragraph using simple sentence structures and
no clauses or conjunctions. You can refer to the provided
AMR if it helps you in the rewriting.

The rewritten paragraph:

zero-shot prompting. We investigate this question
by designing a set of controlled prompting strate-
gies to examine how the elements of AMR affect
LLM. This is an addition to Jin et al. (2024) which
tested directly appending AMR to the prompt in a
variety of tasks, while syntactic simplification was
not included in their study. Extending their work,
we explore a new prompting strategy (named AMR
Chain-of-Code or AMRCoC) that guides LLMs
to perform explicit symbolic reasoning over AMR
graphs instead of making implicit inferences as in
Jin et al. (2024).
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BERTScore 1

BERTScore 1

Prompting \yoan  Median MLT | Prompting  \yean Median MLT |
on ORLANDO
GPT-3.5 vanilla 0.80  0.82 12.65 Llama-3  vanilla 074 074 7.89
direct AMR  0.81 0.82 12.79 direct AMR  0.78 0.78 11.74
subgraphs  0.80 0.81 11.65 subgraphs  0.78 0.78 12.45
entities 0.79 0.80 10.99 entities 0.70 0.71 7.75
predicates  0.73 0.74 7.34 predicates  0.70 0.70 7.55
AMRCoC  0.79  0.81 17.29 AMRCoC  0.76  0.77 14.03
on WEBSPLIT
GPT-3.5 vanilla 0.90  0.90 7.79 Llama-3  vanilla 0.84  0.85 6.69
direct AMR 0.88 0.89 8.59 direct AMR 0.83 0.85 8.15
subgraphs  0.87 0.88 8.35 subgraphs  0.82 0.84 7.41
entities 0.78 0.79 6.63
predicates  0.76 0.77 7.12
AMRCoC  0.89  0.90 9.15 AMRCoC  0.84  0.85 8.27

Table 3: Evaluation results of GPT-3.5 and Llama-3 on ORLANDO and WEBSPLIT with different prompting
strategies. Notations are consistent with Table 2. Due to space limit, we only show one L2SCA metric, MLT, that

has the highest variance across prompts.

5.1 Direct AMR Prompting

Jin et al.’s (2024) evaluation framework simply
supplies linearized AMR in PENMAN format
(Matthiessen and Bateman, 1991) in parallel with
text, providing only vague instructions to the LLM
on how to use the AMR, and requiring the LLM
to directly produce the output without * explicitly
producing reasoning steps. To add to their tests, we
adapt their framework to the syntactic simplifica-
tion task as in Prompt 2.

Performance. Interestingly, our evaluations (Ta-
ble 3) show that the direct AMR prompting does
not harm the performance of LLMs in syntactic
simplification, and in some cases, it provides im-
provements especially for more complex inputs.
This adds syntactic simplification as a counterex-
ample to the findings of Jin et al. (2024).

Effect of Elements. To isolate the effects of dif-
ferent elements (subgraphs, entities, and predi-
cates) of AMR, we further design a set of controlled
prompts following the same format of Prompt 2,
where the linearization of complete AMR is re-
placed by specific parts of the AMR:

(1) Instead of the sole AMR corresponding to the
whole complex sentence, we provide a list of AMR
graphs extracted with Algorithm 1 for each seman-
tic unit in the sentence (subgrpahs);

(2) We provide only a list of predicates in the AMR
(predicates), e.g. "move, live, know" as in Figure 1;

“Despite having an imprecise name "AMR for Chain-of-
Thought" prompting in the original paper.
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(3) We provide only a list of entities as reflected
by the non-core concepts in the AMR (entities),
e.g. "date (1935), they, city (Chaldon), location (24
West Chaldon)" as in Figure 1.

Both predicates and entities provide incomplete
information about the events of a sentence, while
not requiring LLM’s capability to reason over a
symbolic graph. However, we find that for the
tasks and LLMs in question, LLMs are capable
of directly and implicitly using information in the
AMR as appropriate, while trading information
completeness for the ease of symbolic graph pro-
cessing offers more harms than benefits (Table 3).

Takeaways. Directly supplying AMR to LLMs
is not monochromatically harmful across tasks.
Growing the list of tasks benefited and harmed
by direct AMR prompting is needed to draw con-
clusions on the role of meaning representations in
the LLM era.

5.2 AMRCoC Prompting

Despite the evidence that LLMs can benefit from
direct AMR prompting, it is widely accepted (Wei
et al., 2022; Saparov and He, 2023, inter alia) that
LLM’s reasoning capability over complex tasks
(e.g. processing AMR) can be improved by explic-
itly decomposing them into reasoning steps. To
remedy the lack of explicit reasoning, we build on
Chain-of-Code (CoC) prompting (Li et al., 2023),
where pseudocode execution is shown helpful for
the LLM to perform explicit algorithmic reasoning
in general tasks, and design AMRCoC prompting



f Prompt 3: AMR-Chain-of-Code Prompting (with simpliﬁ-‘
cation and an example)

[User]

You are given a paragraph and its abstract meaning
representation (AMR). AMR captures “who is doing what
to whom” in a sentence. Begin your steps with # Steps.

# Functions to process AMR

EXTRACT_SUBGRAPH(root: Node) -> AMR

extracts the subgraph rooted at ‘root*.
AMR_TO_TEXT(graph: AMR) -> str

converts an AMR graph back to text.

# Example program

for predicate in amr:

g = EXTRACT_SUBGRAPH(predicate)

print (AMR_TO_TEXT(g))

[Assistant]

# Steps

g = EXTRACT_SUBGRAPH(flow-01) => (z1 / flow-01
SARGT(...) ...

print (AMR_TO_TEXT(g))

=> It flows through the town of Yeovil.

g = EXTRACT_SUBGRAPH(join-01) => (z5 / join-01
:ARGT (22 / it) ...)

# Output
It flows through the town of Yeovil. It joins River Parrett.

\ J

(Prompt 3): LLM is guided to produce explicit rea-
soning steps over AMR graphs by using functions
to process AMR, and an example program that
demonstrates the use of these functions. The func-
tions and programs are not formally defined but in
the form of function signatures or pseudocode, as
we expect LLM to emulate the execution (Li et al.,
2023; Chae et al., 2024).

Performance. AMRCoC offers the same level
of meaning preservation (last rows of Table 3)
compared to direct AMR prompting, although the
simplicity of generations degrades to the level of
AMRS? , which is perhaps unsurprising as we prompt
the LLM to follow a similar algorithm. The exam-
ple program in the prompt may not be optimal, but
it is possible to synthesize or improve the program
using LLM (Chae et al., 2024).

Emulated Execution. More importantly, the
breakdown of AMRCoC execution (Table 4) veri-
fies that LLMs can be prompted to perform explicit
algorithmic reasoning over AMR graphs, which
is a promising direction for future research. LLM
almost always emulates the execution of the exam-
ple pseudocode program ("Following algorithm" in
Table 4). The extracted AMR graphs, although not
always grammatically correct especially for com-
plex inputs ("Grammatical AMR"), are not hallu-
cinated and are based on existing nodes and edges

Property Orlando Websplit
Following algorithm 99.8% 92.8%
Grammatical AMR 31.3% 67.8%
Node and edge existence 98.6% 99.7%
Node coverage 72.3% 90.0%
Matching algorithm output  52.1% 66.0%

Table 4: Success rates of Llama-3’s Chain-of-Code exe-
cution at different stages. Numbers are macro-averaged
across all input complex sentences. For the first four
rows, higher values are always favored.

in the input AMR ("Node and edge existence"),
and mostly match the real execution results of Al-
gorithm 1 ("Matching algorithm output"). When
combined, AMR graphs extracted by LLM cover
most of the semantic information in the input AMR
("Node coverage"), providing a guarantee for mean-
ing preservation.

Takeaways. Chain-of-Code prompting provides
a way for LLM to perform symbolic reasoning over
semantic graphs via algorithm emulation. This pro-
vides a way to bring algorithmic graph processing
to LLMs for semantic-centered NLP applications,
to enjoy the benefits of both worlds.

6 Conclusion

In light of recent developments in semantic rep-
resentations and LLMs, we presented a retrospec-
tive view of using semantic representation graphs
for syntactic simplification, with refreshed datasets
and up-to-date semantic representation models. In
prospect, we added to the case studies of the bene-
ficial and harmful effects of using AMR for LLM,
and proposed a new AMRCoC prompting strategy
with the potential of bridging symbolic and graphi-
cal algorithms to LLMs.

Limitations

The proposed AMRS® is not the best performing
syntactic simplification system in terms of having
the highest absolute numbers of BERTScore and
L2SCA metrics across the datasets, as is particu-
larly overshadowed by LLMs. The main conclu-
sion is more about the current state of semantic
representations: they are still handy in building
solutions for semantic tasks, and that solution can
have merits that make it a good fit in certain sce-
narios. Despite that, the design of AMR has some
disadvantages that make it less effective to be used
out-of-the-box for text simplification, namely the
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absence of inflectional morphology for tense and
number. Banarescu et al. (2013) suggested that this
can be remedied by adding these notions to AMR
as an extension, which is a direction for future
work.

Our evaluation of syntactic simplification is lim-
ited to automated methods. Although previous
work has shown high correlations between the
metrics we use and human judgments on mean-
ing preservation, syntactic complexity, and reading
difficulty, we acknowledge that those conclusions
might not hold for domains out of their respec-
tive evaluations. A systematic evaluation method,
tailored to the specific task of syntactic simplifica-
tion and aligned with human judgments, similar to
Alva-Manchego et al. (2021); Maddela et al. (2023),
would be beneficial for similar studies but is out of
the scope of this work.

Finally, the applicability of AMRCoC prompt-
ing is only tested on the single task of syntactic
simplification. Although the properties it demon-
strates are promising, we have yet to test it on other
tasks such as the ones in Jin et al. (2024).
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