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Abstract

Learning on text-attributed graphs (TAGs), in
which nodes are associated with one or more
texts, has been the subject of much recent work.
However, most approaches tend to make strong
assumptions about the downstream task of in-
terest, are reliant on hand-labeled data, or fail
to equally balance the importance of both text
and graph representations. In this work, we
propose Contrastive Graph-Text pretraining
(ConGraT), a general, self-supervised approach
for jointly learning separate representations of
texts and nodes in a TAG. Our method trains a
language model (LM) and a graph neural net-
work (GNN) to align their representations in a
common latent space using a batch-wise con-
trastive learning objective inspired by CLIP. We
further propose an extension to the CLIP ob-
jective that leverages graph structure to incor-
porate information about inter-node similarity.
Extensive experiments demonstrate that Con-
GraT outperforms baselines on various down-
stream tasks, including node and text category
classification, link prediction, and language
modeling. Finally, we present an application
of our method to community detection in so-
cial graphs, which enables finding more fextu-
ally grounded communities, rather than purely
graph-based ones.

1 Introduction

Recent advances in multimodal representation
learning have shown the benefits of simultaneously
modeling language with other modalities, which
allows for more efficient training and improved
downstream performance of both sets of learned
representations. These benefits have been espe-
cially clear in text/vision or text/audio applications,
which often see large improvements in predictive
performance or generative modeling ability (Rad-
ford et al., 2021; Li et al., 2022; Mu et al., 2022;
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Elizalde et al., 2023). In this work, we address an-
other modality that frequently co-occurs with text:
network- or graph-structured data.

We consider in particular the scenario of a text-
attributed graph (TAG); that is, a graph over entities
(i.e., nodes) associated with one or more texts. Such
graphs occur frequently in the real world; exam-
ples include social media graphs of users and their
posts, link graphs over web pages and their con-
tent, and citation networks of articles or authors
and the texts of academic articles. In this setting,
rather than modeling each source of data separately,
graph information may be used to improve perfor-
mance on language tasks and text information may
be leveraged for graph tasks such as link prediction
or node classification.

Prior work has approached the problem of com-
bining these two modalities in several ways. Some
approaches have used textual data to inform or su-
pervise training of graph neural networks (GNNs)
(Yang et al., 2015; Zhang et al., 2017; Liu et al.,
2018; Zhang and Zhang, 2020), but these meth-
ods do not produce graph-informed text represen-
tations. This is more parameter-efficient for graph-
only tasks, but means that separate modeling is
needed to solve text-based tasks while leverag-
ing graph data. Other works have considered the
converse case of employing a TAG structure to
fine-tune pretrained language models (PLMs) (Co-
han et al., 2020; Yasunaga et al., 2022; Ostendorff
et al., 2022). Although these approaches allow
for the extraction of graph-informed text embed-
dings, they have the opposite limitation to the above
of not learning node representations. While there
have been attempts to learn joint representations
of nodes and texts, they all have certain limita-
tions, such as requiring a supervised objective and
labeled data (Li and Goldwasser, 2019; Chandra
et al., 2020), freezing either the text or graph em-
beddings/encoders (Gourru et al., 2020; Karpov
and Kartashev, 2022), or relying on the particu-
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Figure 1: Embeddings of graph nodes in red (e.g., Twit-
ter users), and their associated texts in blue (e.g., tweets).
They are placed into a common embedding space, with
nodes near their associated texts. Node-text pairs are
labeled N1 to N5. Note that not every node must have
an associated text (here, N5 does not).

lar structure of one application (Li et al., 2017).
Several recent works have leveraged joint training
of PLMs with GNNs to integrate both text and
graph information for representation learning in
each modality (Yang et al., 2021; Chien et al., 2022;
Zhao et al., 2023). These methods, however, make
specific modeling assumptions based on the tasks
that they aim to solve, employ complex training
procedures that alternately optimize the PLM and
GNN modules, or need human-annotated knowl-
edge distillation, which in general go against the
goal of self-supervised learning.

In this work, we propose ConGraT (Contrastive
Graph-Text pretraining), a general approach to
self-supervised joint graph-text learning based on a
batch-wise contrastive learning objective inspired
by CLIP (Radford et al., 2021). The idea is to have
separate encoders for texts and graph nodes (more
specifically, a PLM and a GNN, respectively) that
are trained to align their representations within a
common latent space, as shown in Figure 1. Tak-
ing advantage of the fact that graphs have greater
structure than images, we propose an extension to
the CLIP objective that incorporates information
about plausible “next guesses” based on graph sim-
ilarity. Our objective also admits an interpretation
as a continuous relaxation of the contrastive CLIP
objective over each node’s two-hop neighborhood.

ConGraT provides flexibility in the choice of text
and graph encoders and does not make assumptions
on the structure of the TAG or any downstream task.
As illustrated in our experiments, it is also induc-
tive (Hamilton et al., 2017), with the encoders be-
ing able to generalize to previously unseen graphs
as well as previously unseen texts. Experiments on
various datasets show that ConGraT models con-
sistently outperform strong baselines on various
downstream tasks such as node and text category
classification and link prediction. Additionally, we
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analyze how joint training affects language model-
ing performance, finding that ConGraT also results
in improvements on this task on all datasets.

The contributions of this work are threefold: 1)
We propose ConGraT, a general self-supervised
pretraining method for jointly learning graph node
and text representations on TAGs, such as cita-
tion, link, or social graphs. 2) We demonstrate that
our joint pretraining method improves performance
over strong unimodal and cross-modal baselines
on various downstream tasks. 3) We release our
code and datasets, including in particular a ver-
sion of the Pubmed (Sen et al., 2008) graph learn-
ing dataset fully rebuilt from ground-truth Pubmed
APIs, which includes the text of titles and abstracts
as well as network data.

2 Related Work
2.1 Text-Augmented GNNs

Text data can be incorporated into the learning of
GNN representations in various ways. For example,
Yang et al. (2015) extend the DeepWalk algorithm
to incorporate text features into node representa-
tions. Liu et al. (2018) develop a seq2seq frame-
work which learns node embeddings with inputs
based on texts associated with the nodes. Tu et al.
(2017) use a selective attention mechanism to gen-
erate text-informed node embeddings for particular
social contexts. Zhang et al. (2017) leverage ker-
nel methods to construct node representations from
user profile information in a way that incorporates
network structure. Other methods include extract-
ing graphs from entity co-occurrence in texts and
modeling them (Zhang and Zhang, 2020; Waller
and Anderson, 2021). However, these approaches
are limited in that, while they learn to represent
nodes, they do not also learn graph-informed text
representations.

2.2 Graph-Augmented PLMs

Another line of work uses information from graph
structures to inform finetuning or further training
of PLMs. SPECTER (Cohan et al., 2020) con-
trastively finetunes a language model by augment-
ing it with a measure of inter-node relatedness,
with positive and negative examples for a triplet
loss selected according to citation graph edges.
LinkBERT (Yasunaga et al., 2022) uses a graph
structure to assemble training samples for a masked
language model, pairing anchor texts with texts
from contiguous, linked, or random documents,



and uses an auxiliary document relation prediction
(DRP) objective. SciNCL (Ostendorff et al., 2022)
relaxes a discrete citation graph into a continuous
domain with nearest-neighbor sampling. Social-
BERT (Karpov and Kartashev, 2022) and LMSOC
(Kulkarni et al., 2021) condition or augment the
inputs to PLMs with frozen node representations
that the model can attend over. The models these
methods learn produce text embeddings for docu-
ments, but do not also generate text-informed node
representations.

2.3 Joint Learning of PLMs and GNNs on
TAGs

More recently, representation learning on TAGs
that jointly leverages graph and text information
has been growing in popularity. Prefix tuning (Li
and Liang, 2021) is a lightweight way of learning
node-specific linguistic information and generates
dense node representations in the process; however,
it takes no advantage of the graph structure over
the nodes. For fixed text and graph encoders, one
can learn mappings from their separate embedding
spaces to a common one, such as by canonical cor-
relation analysis (Gupta and Varma, 2017). Other
methods jointly train text and graph encoders using
an externally supervised objective (Chandra et al.,
2020) or tailored for certain tasks (Li and Gold-
wasser, 2019; Gourru et al., 2020). However, these
methods all address specific settings that are not
generalizable to more diverse tasks.

GraphFormers (Yang et al., 2021) jointly train a
GNN with a PLM so as to learn text-informed node
representations. However, they require a complex
progressive learning strategy that iteratively utilizes
manipulated and raw data. GIANT (Chien et al.,
2022) predicts graph structure using PLMs to pro-
vide better initial embeddings for GNNs. However,
the language model embeddings cannot be jointly
optimized during the GNN training phase. GLEM
(Zhao et al., 2023) uses a variational expectation-
maximization (EM) framework that alternately up-
dates a PLM and GNN separately using pseudo-
labels predicted by the other module. While it en-
ables improved scalability, the training procedure
is complex and relies on the availability of task-
specific target labels. In contrast, ConGraT is a
general representation learning method for both
graph nodes and texts, applicable to any inductive
or transductive setting without such assumptions
or complex training paradigms.
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3 Methodology

We consider a directed or undirected TAG, each
node of which is associated with a set of one or
more texts. The goal is to learn a shared latent space
that allows us to place the embeddings of nodes and
texts in semantically meaningful locations within
that space. Formally, let G = (V| E) be a graph,
with V the set of nodes and £ C V x V the set of
edges. Also, let T = {tgv)}fv:”l, forv € V, be
the set of node v’s texts, with INV,, the number of
texts corresponding to node v. We model tz(v), the
i-th text of node v, as a finite sequence of tokens
over a vocabulary W, where Ll(-v) is the length of
tz@): tgv) = (S0, S1, 52, ... Spo ). The first and last
tokens are always special start and end tokens.

Our training framework involves a fext encoder,
a function Frp : U2, ®; W — R? from the set of
all token sequences to a d-dimensional Euclidean
embedding space. Similarly, we have a node en-
coder, a function F; : V. — R? from nodes to
an embedding space of the same dimension. (Note
that while its domain is nodes, not edges, Fiz also
depends on the edge set £'.) We aim to train the two
encoders such that they learn a joint latent space
between the text and graph node embeddings. This
will allow us to use geometric properties of a com-
mon space to relate nodes and texts to each other
for downstream inferential purposes.

3.1 Approach

The text and node encoders in ConGraT (a PLM
and GNN, respectively) are connected at the output
layers by a batch-wise contrastive training objec-
tive inspired by CLIP (Radford et al., 2021). The
encoders are trained to align their representations
in a joint latent embedding space. As in CLIP, each
encoder is set behind an adapter module which gen-
erates embeddings of the same dimension. Each
adapter consists of two fully connected layers with
a GeLU activation (Hendrycks and Gimpel, 2020)
in between, followed by layer normalization (Ba
et al., 2016), and dropout (Srivastava et al., 2014).
This approach is flexible and allows use of many
different kinds of both text and node encoders. On
the text side, we illustrate this flexibility with exper-
iments employing both causal and masked PLMs.

Training objective. We augment the standard
InfoNCE loss (Oord et al., 2019) in CLIP with ad-
ditional graph-specific elements. Unlike the vision-
language case, in graphs, there are easily com-
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Figure 2: The overall architecture of our model. Given a minibatch of (text, origin node) pairs, node and text
embeddings are generated by their respective encoders, then used to compute pairwise cosine similarities. The final
loss is the average of cross entropies along each row and column of the similarity matrix, with each row ¢’s target

probabilities (labeled ]D)gpi) and ]D(é)) a mixture of the true targets (on the diagonal) and a (row- or column-specific)
distribution proportional to a graph-based similarity measure.

putable measures of how similar pairs of nodes are,
such as their SimRank (Jeh and Widom, 2002) or
their number of mutual in- and out-edges. We use
these measures to incorporate information about
the most likely second, third, and further choices
for the nodes a text may originate from as well as
the texts that may be associated with a node. The
method is visualized in Figure 2. "
|7

More formally, let X = Uvev{(v,tl@))}i:l
be a dataset of (node, text) pairs, and let B =
{(vi,t(vi))} 5 C X be a minibatch of size Np

i i=1
sampled from X. Now, fix an ordering of nodes,
with v; the j-th node. Then, in terms of the text and

node encoders Fr and Fg, the matrix C' given by

Fr(t") - Fo(v))
1Fr (8 )] - (1 Fa (o)

is the Ng x Np matrix of cosine similarities be-
tween texts and nodes in the batch. (Note that C
is square but not symmetric: rows are texts and
columns are nodes.) The matrix is multiplied by a
scalar factor e”, where T is a log-temperature pa-
rameter that allowing some learnable control over
the learning rate, reducing sensitivity to the choice
of learning rate. We empirically initialize 7 = 3.5
based on our experiments (see Appendix F).

A
Cij =e’
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Further, let S7(-, -) and S¢(+, -) be graph-based
similarity functions for texts and nodes, respec-
tively, assigning non-negative continuous simi-
larity scores. Then, we define graph-based sim-
ilarity distributions for texts and nodes. Where
Kr(i) = 3% Sr(t™, ) and Ko(i)
ijfl Sc(vi, vg), then Vi, j, we have

t(vl) t(vj)

=TT ) - Solv)
Kr(i) Kea(i)
The target distributions are mixtures of these distri-

butions and indicator variables for the true source
node of a text and matching text of a node. For

(4)

i (i

G

)

each example X; = (vj, tg»vj )) in the minibatch,
fixing some hyperparameter o € [0, 1], we de-
fine the target distribution in the text case by
]D)gﬂ)(oz) = (1 — o)1;{v; = vj} + asr(j), where
st(4) is the vector of sgf) (7) values for all i. In
the graph case, where s () is defined analogously,
we have Dg)(a) =(1—-a)li{t;i =t;} + asq(j).
Then where H is the cross-entropy and C ., C' ;
are the ¢-th row and i-th column of C, our loss is

Np )
1 H(CZaD : (Oé))
L(Bia) = — S
(B;a) 9Ng + H(C.;, DY (a))



With a = 0, this loss is equivalent to the average
of cross-entropies for predictions of which node in
the minibatch goes with which text and which text
goes with which node. With higher values of «, the
target distributions are mixtures of indicators for
the true source node and text and the distribution of
other nodes and texts by graph similarity. If similar
nodes produce similar texts, as suggested by the
homophily principle (De Choudhury et al., 2010),
positive « values should allow the model to learn
more efficiently. Even if not all graph nodes are
closely related to their texts, this objective should
be able to learn from those that are.

Similarity function. For undirected graphs, we
base our similarity function on a node pair’s num-
ber of mutual neighbors. If A is the graph adjacency
matrix, we compute AA7 to find the number of mu-
tual in- or out-neighbors of each node pair, and find
the cosine similarity of each row ¢ and column j
of AAT to measure the similarity of nodes i and
J. A benefit of this function over alternatives like
SimRank (Jeh and Widom, 2002) is its lower com-
putational cost and faster runtime for large graphs.
On the text side, because we are interested in lever-
aging graph information, we approximate the sim-
ilarity of a pair of texts as that of the associated
nodes. The digraph case is more complicated, as it
requires a directed similarity function that can dis-
tinguish between edges (i, j) and (7, 7). We defer
choosing and validating such a function to future
work; thus, all experiments with o > 0 in Section 4
discard edge directions.

3.2 Theoretical View

From a theoretical perspective, the above similarity
function allows our training objective to be viewed
as a continuous relaxation of the contrastive CLIP
objective across a node’s two-hop neighborhood.
(Only nodes with shared neighbors, which are in
each other’s two-hop neighborhoods, will have pos-
itive similarity.) Different choices of similarity cor-
respond to different choices of how to relax the
contrastive objective across the graph; in particular,
restricting to the one-hop neighborhood amounts to
using a coarse, binary indicator of similarity, with
S (u, v) the indicator function for edge (u, v).
This view indicates a connection to label smooth-
ing (Szegedy et al., 2015), but with the smoothing
distribution based on graph similarity rather than
being uniformly random. It also casts our model
as an extension to a graph setting of prior work on
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similarity-based smoothing in non-graph contexts
(Liu and JaJa, 2021). Note that this is a different
sense of “smoothing” than the aggregation over
neighbor representations that the term refers to in
the context of message-passing GNNs.

4 Experimental Setup

We evaluate our approach on three tasks: node cat-
egory classification, link prediction, and language
modeling. Link prediction and language modeling
are fundamental modality-specific metrics that mea-
sure how well our node and text encoders retain
the ability to model their individual modalities. We
perform node classification using each encoder’s
embeddings in order to measure how effective the
learned representations are for downstream tasks.
Further details are provided in Appendix F.

4.1 Datasets

We evaluate on three datasets, comprising one
each of citation, link, and social graphs: (1) the
Pubmed dataset (Sen et al., 2008), (2) a dataset
of Wikipedia articles represented by their intro-
ductory paragraphs and the hyperlinks between
the articles in those paragraphs, selected from the
broader T-REx Corpus (Elsahar et al., 2018), and
(3) a novel Twitter dataset comprising high-profile
public figures, which includes the tweets, the fol-
low graph over the associated users, and some de-
mographic information about them (age, gender,
United States political party, etc.). We include the
last Twitter dataset to demonstrate the performance
of our method on social network TAGs, which is a
setting that has been less explored in prior work on
joint graph and language learning. Table 1 shows
descriptive statistics of the datasets. Because we
use entirely separate train, validation, and test splits,
without shared graph structure, our results below
are in an inductive (rather than transductive) set-
ting. More information about the datasets and our
collection procedures for Twitter data and the other
datasets’ raw text are provided in Appendix E.

4.2 Models

For each dataset, we train two ConGraT
variants with masked and causal PLMs, ini-
tializing with weights from MPNet (Song
et al., 2020) and DistilGPT-2 (Sanh et al.,,
2019), respectively. Specifically, we use the
pretrained all-mpnet-base-v2 and distilgpt2
models from the sentence-transformers toolkit
(Reimers and Gurevych, 2019). For the graph node



Pubmed T-REx Twitter
# Nodes 19,716 9,214 8,721
# Edges 61,110 22,689 2,373,956
# Texts 59,381 18,422 167,558
# Classes 3 5 13 (5 tasks)

Table 1: Statistics for the Pubmed, T-REx, and Twitter
datasets used in our experiments.

encoder, we use a graph attention network (GAT)
(Velickovic et al., 2018) with 3 layers of 2 attention
heads each, randomly initialized and trained from
scratch. All text and graph embeddings have dimen-
sion 768, and we obtain text-level representations
from the PLM text encoder by mean pooling.

We examine models with (o« = 0.1) and without
(a = 0.0) graph similarity information included in
the loss. We also examine models which consider
edge directions (and thus have o = 0.0).! In all,
between these three factors (masked or causal PLM,
a = 0.0 or = 0.1, directed or undirected edges),
and without experiments with o = 0.1 for directed
edges, there are 6 possible model combinations on
each dataset, for a total of 18 combinations.

4.3 Baselines

For node representations, we compare against em-
beddings from a GNN-only baseline: a unimodal
GAT autoencoder with the same architecture as the
ConGraT node encoder, trained as usual to recon-
struct the adjacency matrix without added similar-
ity information. For text representations, in addi-
tion to unimodal masked and causal PLM baselines
finetuned on each dataset, we also compare against
two models leveraging both modalities: LinkBERT
(Yasunaga et al., 2022) and Social-LM, a modified
implementation of Social BERT (Karpov and Kar-
tashev, 2022) and LMSOC (Kulkarni et al., 2021).
Because LinkBERT uses a masked language mod-
eling objective, it is used as a baseline only for the
masked versions of ConGraT. Initial node repre-
sentations for all GNN models are sentence em-
beddings of text associated with each node: for
Pubmed, the concatenated text of the title and ab-
stract sections; for Twitter, user bios; for T-REx,
the Wikipedia article text. Further implementation
details are given in Appendix F.

'Recall that because we defined a similarity function with
a > 0 only for undirected graphs, there are no experiments
with directed edges where oo = 0.1.
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Pubmed T-REx
C M C M
= ConGraT (a« =0) 0967 0.964 0.951 0.937
§ ConGraT (a = 0.1) 0.973 0963 0.949 0.946
&)
GAT 0.956 0.956 0.939 0.939
ConGraT (¢« =0) 0962 0.958 0.920 0.911
_ ConGraT (o =0.1) 0.969 0.966 0.931 0.928
K
£ LinkBERT - 0954 - 0.906
Social-LM 0.858 0.878 0.890 0.851
Unimodal LM 0.931 0.943 0.908 0.892

Table 2: Node classification performance (test-set AUC)
on article labels of the Pubmed and T-REx datasets. For
T-REx, we show the average AUC over the category
labels because the dataset is multilabel rather than mul-
ticlass. Bold values mark best-performing models. C =
causal, M = masked.

5 Results

5.1 Node Classification

We train logistic regression models to perform node
classification on the Pubmed, Twitter, and T-REx
datasets using the embeddings generated from each
ConGraT model or baseline. Overall, ConGraT
models achieve high performance on this set of
tasks relative to baselines on all three datasets.

Table 2 shows AUCs for article label classifi-
cation on Pubmed and T-REx, and Table 3 shows
AUC:s for demographic classification tasks on age,
gender, occupation, party, and region on users in
our Twitter dataset. (At the text level, the depen-
dent variable is that of the corresponding node.)
The best ConGraT model achieves the highest node
classification performance on all datasets, and the
differences from the nearest baseline are statisti-
cally significant by a bootstrap test (p < 10~%) in
all cases. Even the less performant ConGraT model
outperforms all baselines in 26 of 28 experiments.

Notably, we see some of ConGraT’s largest im-
provements when one modality has less signal than
the other. For example, tweet text is less useful
than graph data in predicting users’ geographic
region. Many Twitter edges are geographically
nearby (Takhteyev et al., 2012), and our method
is more effective than baselines at infusing this in-
formation into an encoder which at inference time
sees only text.

The more discriminative nature of representa-
tions learned by ConGraT can also be seen visu-
ally; Figure 3 shows a 2D UMAP plot comparing
ConGraT and GAT embeddings on the Twitter data



Age Gender Occupation Party Region
C M C M C M C M C M

<  ConGraT (a = 0) 0.646  0.665 0811 0.802 0993 0989 0966 0959 0.755 0.780
3 ConGraT (. =0.1) 0.650 0.682 0.803 0.801 0992 0993 0960 098 0.742 0.774
G]

GAT 0.631 0.631 0713 0.713 0967 0967 0.757 0.757 0.678 0.678

ConGraT (a = 0) 0.622 0.628 0.663 0.668 0.961 0959 0.771 0.787 0.693  0.679
.~  ConGraT (« =0.1) 0.620 0.624 0.668 0.661 0960 0958 0.771 0.796 0.686  0.680
=
&  LinkBERT - 0.617 - 0.661 - 0.954 - 0.762 - 0.606

Social-LM 0.566 0.567 0.602 0.608 0921 0909 0.628 0.676 0.582  0.572

Unimodal LM 0.610 0.613 0.649 0.655 0948 0945 0.742 0.769 0.587 0.598

Table 3: Node classification performance (test-set AUC) on user traits from the Twitter dataset. Bold values mark

best-performing models. C = causal, M = masked.

(a) GAT (b) ConGraT

Figure 3: 2D UMAP visualizations of GAT and Con-
GraT (o = 0.0) embeddings on the Twitter data subset
with U.S. political party labels (blue = Democrat, or-
ange = Republican).

subset with U.S. political party labels, which vali-
dates that ConGraT embeddings have a much more
clearly separated class boundary.

5.2 Link Prediction

We evaluate link prediction performance using in-
ner product decoding (Kipf and Welling, 2016) to
derive edge existence probabilities from embed-
dings. As a baseline, we use the same GAT archi-
tecture as in our jointly trained ConGraT models
and train it directly on link prediction using the
same inner product decoding.

Results are shown in Table 4. All ConGraT
models outperform the baselines, despite those
baselines being specifically trained for link pre-
diction. In some cases, these improvements are
quite large, with the best-performing model on
the Twitter dataset recording an AUC of 0.806 vs.
0.723 for the best-performing baseline, a relative
increase of 11.5%. Training with graph-based sim-
ilarity information (o« = 0.1) often also leads to
further improvements. Performance is similar for
directed and undirected models, demonstrating our
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Pubmed T-REx Twitter
3 S U 0953 0.899 0.791
é - D 0952 0902 0.797
= a=01 U 0980 0951 0.802
3 a—0 U 095 0.908 0.806
é - D 0950 0.897 0.799
“ 4=01 U 0979 0957 0.799
<Ft ~ U 0943 0927 0.713
@) D 0940 0.925 0.723

Table 4: Link prediction performance (test-set AUC) by
dataset. Bold values mark best-performing models. U =
undirected edges, D = directed.

approach’s adaptability to different types of graphs.
Notably, our model’s high performance is zero-shot,
with no additional training on link prediction.

5.3 Language Modeling

Previous works that jointly trained LMs with GNNs
on TAGs (Yang et al., 2021; Chien et al., 2022;
Zhao et al., 2023) evaluated on node classifica-
tion tasks using the representations learned by each
module, but did not study in depth how joint train-
ing affected the LM component’s capabilities. We
perform this analysis, evaluating joint pretraining’s
impact on downstream language-modeling perfor-
mance. To do this, we attach a randomly initialized
LM head to the ConGraT text encoder and further
train both the encoder and head on causal language
modeling. We evaluate with perplexity, and thus
limit evaluation to causal-LM variants of our model
(those initialized from DistilGPT-2). As a baseline,
we finetune the baseline DistilGPT-2 LM on each
dataset’s texts.



Pubmed T-REx Twitter
a=0 6.95 15.99 16.08
a=0.1 6.94 16.07 16.07
LM 6.98 16.84 16.44

Table 5: Language modeling performance (mean per-
plexity) of the causal ConGraT models vs. a unimodal
LM baseline. Bold marks each dataset’s best model.

Table 5 shows the mean perplexity of causal
LMs trained using ConGraT with « = 0 and o =
0.1 compared against the causal LM baseline. For
all datasets, LMs trained using ConGraT achieve
consistently lower average perplexity, and these
differences are statistically significant by a paired
t-test at the 5o level (p < 5.7 X 1077).

5.4 Application: Community Detection

To illustrate ConGraT’s broad usability in applica-
tions, we compare it to other methods of detecting
communities in the Twitter data. As baselines, we
use Louvain community detection (Blondel et al.,
2008) on the follow graph, and a clustering-based
approach on the GAT baseline’s embeddings us-
ing UMAP (Mclnnes et al., 2020) and HDBSCAN
(Mclnnes et al., 2017). For ConGraT, we use the
same clustering approach with embeddings from
the a = 0.0 variant. We expect these methods will
find different kinds of communities: while Lou-
vain communities are entirely determined by graph
structure, and the GAT baseline can take some ad-
vantage of text via use of sentence embeddings
as initial node vectors, we expect ConGraT to be
most able to infuse textual information into net-
work communities.

Because we want to determine how informed
each set of communities is by the text associated
with the graph, we evaluate by predicting commu-
nity labels from text embeddings. For each of the
above community detection methods, we first com-
pute the centroid of each node’s text embeddings
and label it with the user’s community. Then, we
fit a logistic regression model on the training split
and predict the test set community label from these
centroid text features.

The results, in Figure 4, demonstrate exactly the
expected pattern: graph-based Louvain communi-
ties are poorly predictable from text, while com-
munities clustered from baseline GAT embeddings
are more predictable. The closest relationship to
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Figure 4: Test-set AUCs for predictions of community
labels from text embeddings on the Twitter dataset.
“Louvain” denotes Louvain communities detected in
the follow graph, “Baseline” the GAT baseline model,
and “ConGraT” our model with o = 0.0.

textual content occurs for communities detected
with ConGraT embeddings. This pattern highlights
a potential application of our method: detecting
more discursively or textually grounded communi-
ties in social graphs, rather than ones based only
on graph information (e.g., communities informed
by discussion among political figures on Twitter).

6 Conclusion

We propose ConGraT (Contrastive Graph-Text
pretraining), a self-supervised pretraining frame-
work for jointly learning text and graph node
representations using pretrained language models
(PLMs) and graph neural networks (GNNs) on a
text-attributed graph (TAG). ConGraT uses a batch-
wise contrastive learning objective to train text and
graph encoders to align their representations within
a common latent space. The framework is induc-
tive, generalizable to any text or graph encoder
architecture, and does not depend on the structure
of the TAG or a particular downstream task. In ex-
periments on citation, link, and social graphs, our
method outperforms baselines on various down-
stream tasks, including node classification, link pre-
diction, and language modeling. Our results also
highlight the value of incorporating graph struc-
ture into our contrastive learning objective, with
nonzero values of the o parameter often improving
performance. Finally, an application to community
detection, in which our method finds more textually
grounded communities than alternative methods,
highlights the broad applicability of this form of
representation learning to many domains.
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A Sensitivity Analysis on «

To examine the hyperparameter a’s impact on
downstream performance, we conduct a sensitiv-
ity analysis on all three evaluation tasks, using the
Pubmed dataset, with « = 0,0.1,0.5, and 1.0. We
use only the causal model variant for the LM task.

NCG NCT LP LM
a=00 0967 0962 0.956 6.95
a=0.1 0973 0969 0.979 6.94
a=05 0962 0958 0977 6.98
a=1.0 0941 0900 0.897 6.88
Baseline 0.956 0.931 0.943 6.98

Table 6: Results of sensitivity analysis. NCG = node
classification, graph; NCT = node classification, text;
LP = link prediction; LM = language modeling. Values
are AUC for the first three columns and perplexity for
language modeling.

We find that o’s impact varies by task. For link
prediction and node classification, we see an intu-
itive pattern: Performance is best for o between 0
and 1, especially compared to o = 1. That is, both
components of our objective—matching nodes to
texts, and matching nodes and texts to similar nodes
and texts—add value. This pattern is not universal,
however; while o > 0, particularly o = 0.1, con-
sistently outperforms o = 0, LM performance is
best with a = 1.0. We conjecture this pattern may
be due to inter-document similarity in language
use, which @ = 1.0 more effectively trains into
the PLM. Overall, our results suggest both that
a = 0.1 is a reasonable default and that it may be
worth tuning this parameter in practice.

B Embedding Space Geometry Analysis

To complement evaluation on downstream applica-
tions like node classification, link prediction and
language modeling, this section pursues certain
analyses of the geometry of the joint embedding
space. We compare these jointly learned embed-
ding spaces to the null model of separate spaces, as
learned by the unimodal LM and GAT baselines.
We expect in particular that ConGraT’s joint pre-
training should align the two embedding spaces
with each other, as well as with non-embedded
distance metrics based entirely on the graph. We
focus on examining how these distances (in the em-
bedding spaces and the graph) relate to each other,
because the geometric properties of a metric space
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are chiefly determined by the underlying metric.
A finding of significantly increased alignment be-
tween distance metrics would indicate the models
are effectively integrating information across lan-
guage and graph modalities. As discussed below
and shown in Table 7, this is in fact exactly what
we do see.

Inter-Embedding Distance Correlation. First,
we examine the correlation of the distance between
pairs of texts with the distance between the corre-
sponding pairs of nodes. That is, we sample text
pairs (tgu), tgv)) from nodes u and v, and exam-
ine over many such samples the correlation be-
tween the text-embedding distance dp(t\"), ")
and the graph-embedding distance d¢(u,v). We
operationalize both in practice as the cosine dis-
tance.

With ConGraT pretraining, the cosine distance
between text embeddings is substantially more cor-
related than in the separately trained case with the
distance between the parent nodes. We see this
effect for all model variants against the separate-
spaces baseline on all datasets, and the increases
are significant by a bootstrap test (p < 107%). Sup-
porting our hypothesis, the two spaces have become
systematically more aligned geometrically.

Embedding-Graph Distance Correlation.
Next, we relate the cosine distance in the text
embedding space to a purely graph-based distance
— SimRank (Jeh and Widom, 2002) in our case.
This extends the previous analysis by grounding
the text-embedding distance more directly in
the graph. In 34 out of 36 cases, we observe
a significant increase over the separate-spaces
baseline in the correlation between the text
embedding distance and graph SimRank (at the
p = 1076 level, using a similar bootstrap test).

B.1 Retrieval

Finally, as an additional test of geometric align-
ment and cross-modal data integration, we consider
a simple retrieval task: identifying the node associ-
ated with a given text. For each text, we select the
node whose embedding has the highest cosine sim-
ilarity to the text’s embedding, and report the top-%
accuracy for k from 1 to 10. This task might itself
be an important downstream measure in a retrieval
setting, but for purposes of geometric analysis we
consider only the comparison to separate embed-
ding spaces here. Note that as with CLIP, this use



Inter-Embedding  Text Emb.-Graph

Dataset  Directed LM Type Sim.
Joint  Separate Joint Separate
Direcieq  Causal  @=00 0682 0100 0118 0019
Masked o =00 0.604 0248  0.120  0.059
Pubmed Cosal @ =00 0670 0109 0157 0026
Undirected 4 a=01 0.679 0109 0171  0.026
Maskeq @ =00 0603 0260 0.5  0.080
R =01 0647 0260 0173 0.080
Direcieq  Causal =00 0.650 0038  0.I31 0022
Masked a =00 0564 0248 0179 0078
TRex Casal @00 0647 0040 0215 0027
Undirected ausa a=0.1 0704 0040 0302  0.027
Masked @ =00 0600 0248 0220  0.142
a=01 0.666 0248 0272  0.142
Diecieq  Causal  a=00 0319 0035  0.048 0019
Masked o =00 0270 0084  0.049f  0.047
Twitter Cawsal @ =00 0317 0036 0041 0018
Undisected a=01 0301 0036 0048  0.018
Masked @ =00 0300 0083 0037  0.0447
a=01 0226 0083 0052 0.044

Table 7: Correlations between pairs of distances as discussed in Appendix B: those of the text and graph embedding
spaces (“Inter-Embedding”), on the one hand, and the text embedding space and the graph-based SimRank distance
(“Text Emb.-Graph™), on the other. The “Joint* column indicates the jointly trained embedding spaces from our
ConGraT models, and the “Separate” column indicates the separately trained embedding spaces of the GAT and
LM baselines. The most closely aligned pair of distances in each comparison, joint or baseline, is shown in bold.
Differences marked with a § are not significant at the p = 1075 level by a bootstrap test.

of our representations can be thought of as zero
shot transfer for text or node classification (where
objects in the other modality are the classes).

Results are shown in Figure 5. Top-k accuracy
is substantially higher than the separately-trained
baseline for all models at all values of k. All dif-
ferences are significant at the p = 1076 level ac-
cording to a bootstrap test. Moreover, the top-k
accuracies achieved are often high relative to the
size of the datasets. With 1,996 articles (i.e., nodes)
in the Pubmed test set, the best-performing model
includes the correct article for a text snippet in its
top 10 most similar articles (0.5% of the test set)
94.3% of the time.

C Robustness Check: SVD-Based Initial
Vectors

In this section, we replicate the analysis described
in Section 4, with a twist: instead of the sentence
embeddings used there as initial node representa-
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tions for those models which rely on them, we use
vectors from the truncated SVD of the graph adja-
cency matrix. We train and evaluate entirely new
models, in which all other properties of training,
inference and datasets besides the choice of initial
node vectors are the same as in the main text. Doing
so provides an additional check on the soundness of
our approach and gives evidence of its adaptability
to various kinds of attributed graphs.

We truncate the SVD embeddings produced
by scikit-learn’s implementation (Pedregosa et al.,
2011) to 768 dimensions, so that the embedding
dimensionality is the same as for the sentence em-
beddings. To avoid leakage between train and test,
we use the V* matrix from the train set to generate
test-set embeddings (thus relying only on test-set
nodes’ connections to nodes in the training set).

C.1 Node Classification

Node classification performance is similar to that
reported in the main text, with the best-performing



Age Gender Occupation Region
C M C M C M C M
ConGraT (a«=0) 0.769 0.782 0.803 0.832 0.993 0.994 0.765 0.769
Graph ConGraT (o« =0.1) 0.776 0.801 0.811 0.826 0.993 0.993 0.773 0.774
GAT 0.767 0.767 0.791 0.791 0.991 0.991 0.706 0.706
ConGraT (a«=0) 0.620 0.631 0.658 0.667 0.961 0.962 0.692 0.689
ConGraT (o =0.1) 0.619 0.635 0.661 0.666 0.959 0.960 0.684 0.684
Text | inkBERT — 0617 - 0661 - 095 - 0606
Social-LM 0.566 0.567 0.602 0.608 0.921 0.909 0.582 0.572
Unimodal LM 0.610 0.613 0.649 0.655 0.948 0.945 0.587 0.598

Table 8: Node classification performance on user traits from the Twitter dataset. (C = causal, M = masked.) Values
are test-set AUCs. Bold values denote the best models in each experiment. All differences between the best ConGraT
model and the closest baseline are statistically significant (p < 10~*) by a bootstrap test. These results are from
models which use initial node representations (where applicable) based on the truncated SVD of the graph adjacency

matrix rather than sentence embeddings.

ConGraT model outperforming all of our baseline
models in all tested cases.

Twitter. Table 8 shows AUCs for the demo-
graphic classification tasks. Results are similar to
what we observe with sentence embeddings as ini-
tial node representations: the best-performing Con-
GraT model beats all baselines in evaluation with
both graph and text embeddings.

Unlike in the maint text, however, we do not
present results for the political-party outcome vari-
able. This is because the SVD-based embeddings
are too predictive: all graph models (and thus also
all joint models) are able to perfectly separate the
two classes. This phenomenon is a good example
of the Twitter follow graph’s powerful organizing
principle of homophily: Users tend to be connected
to other users who are similar to them (Barbera,
2015), in this case politically.

Pubmed and T-REx. AUC:s for article category
classification are shown in Table 9. As with the
models using sentence embeddings, the best Con-
GraT model outperforms our baselines in all exper-
iments, using both graph and text embeddings.

C.2 Link Prediction

Link prediction results, given in Table 10, are
broadly similar to those in the main text and its
Table 4. On all three datasets, we see ConGraT
node encoders deliver much better than chance per-
formance as zero-shot link predictors.
Performance is often very similar to the lev-
els achieved with sentence embeddings, as on the
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Pubmed T-Rex
C M C M
<= ConGraT (o = 0) 0.877 0.870 0.835 0.799
§ ConGraT (a =0.1) 0.868 0.878 0.854 0.833
G
GAT 0.600 0.600 0.720 0.720
ConGraT (¢ = 0) 0955 0954 0.926 0.902
_  ConGraT (a = 0.1) 0.961 0955 0.923 0.910
K
£  LinkBERT - 0954 - 0.906
Social-LM 0.858 0.878 0.890 0.851
Unimodal LM 0.931 0.943 0908 0.892

Table 9: Node classification performance on article la-
bels of the Pubmed and T-REx datasets. Values are test-
set AUCs. (C = causal, M = masked.) For T-REx, we
show the average AUC over the category labels because
the dataset is multilabel rather than multiclass. Bold val-
ues denote the best model in each experiment. All differ-
ences between the best ConGraT model and the closest
baseline are statistically significant (p < 107%) by a
bootstrap test. These results are from models which use
initial node representations (where applicable) based on
the truncated SVD of the graph adjacency matrix rather
than sentence embeddings.

Pubmed and undirected T-REx datasets. The most
notable difference in relative performance vs base-
line is on the Twitter dataset, where in fact Con-
GraT performance is quite close to that in Table 4 —
the GAT baseline, however, performs much better
with SVD-based embeddings.

C.3 Language Modeling

Results here are similar to those presented in the
main text, though ConGraT model performance



Pubmed TRex Twitter

0 Undir. 0985 0.816 0.805

Masked Dir. 0.955 0.663 0.826
a=0.1 Undir. 0990 0.882 0.790

0 Undir. 0976 0.886 0.793

Causal Dir. 0952 0.758 0.819
a=0.1 Undir. 0984 0.925 0.785

. Undir. 0.866 0.839 0.875
Baseline  GAT "o ™ 0864 0719 0.838

Table 10: Link prediction performance on each dataset.
Values are test-set AUCs. Bold values denote the best
model in each experiment. These results are from mod-
els which use initial node representations (where appli-
cable) based on the truncated SVD of the graph adja-
cency matrix rather than sentence embeddings.

declines slightly on the Pubmed dataset.

Pubmed T-REx Twitter
ConGraT (Causal, a = 0) 7.03 1742 16.05
ConGraT (Causal, « = 0.1)  7.03 15.62 16.05
Unimodal LM (Baseline) 6.98 16.84 16.44

Table 11: Language modeling performance of the Con-
GraT models with causal text encoders, vs. a unimodal
LM baseline. Values are mean perplexity (lower is bet-
ter). Bold values are the best models on each dataset.
All differences from the unimodal baseline are signifi-
cant by a paired ¢-test at the 50 level (p < 5.7 x 1077).
These results are from models which use initial node
representations (where applicable) based on the trun-
cated SVD of the graph adjacency matrix rather than
sentence embeddings.

D Additional Related Work

Many traditional NLP tasks focus on learning graph
structures that exist within a text, such as depen-
dency parsing (Kiibler et al., 2009) or grammar
induction (Klein and Manning, 2001; Kim et al.,
2019). More recent lines of work have extended
this focus on graph structures to knowledge graphs,
where the graph structure is over knowledge-base
entities which may appear in the text, and cita-
tion or social networks, where the relevant graph
is the one between the entities which write or con-
tain the texts. Social science applications have also
frequently motivated approaches to learning from
joint graph/text data.

Knowledge graphs. Work on knowledge graphs
(KGs) uses graph representations to encode facts
about the world (Hogan et al., 2022), with real-
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world entities as nodes and edges used to encode
inter-entity relationships. Previous works have pre-
sented models for jointly representing texts and KG
entities, or entire graphs associated with each text
(Toutanova et al., 2015), often focusing on ques-
tion answering or reasoning (Zhang et al., 2021;
Sun et al., 2020; Yasunaga et al., 2021) or text
generation (Ke et al., 2021). Our work differs in
the architecture employed (a contrastive text/graph
matching objective) and in the setting it is special-
ized for: text-attributed graphs, where the graph
is over entities which produce (e.g., Twitter users)
or contain (e.g., academic articles) their associated
texts.

Applications. Many studies in the joint
graph/text domain have focused on social-science
questions in addition to machine-learning ones.
Learning the community structure of social
networks is a common application (Martin, 2017;
Waller and Anderson, 2021), as is detecting hate
speech, misinformation or fake news (Vijayaragha-
van et al., 2019; Chandra et al., 2020). Some
work has also focused on understanding political
polarization or ideological differences between
groups (Milbauer et al., 2021; Lyu and Luo, 2022).

E Dataset Details

Twitter. We created a Twitter dataset of 167,558
tweets posted by a set of 8,721 influential users
in media, politics, and entertainment, and the fol-
low graph among these users, which consists of
2,373,956 edges. We included up to 20 tweets per
user in the dataset, sampled from each user’s most
recent 3,200 tweets as of May 9, 2021. We also col-
lected certain demographic data about these users
(region of residence, age, gender, politician vs. en-
tertainer occupation, and political party) by match-
ing them to Wikipedia and Ballotpedia?.

To obtain the age and gender of Twitter users,
we connected the accounts to their corresponding
Wikipedia pages and used Wikidata to infer those
two features. Users also self-report locations in
their Twitter bios; from these locations, we created
four regional categories. Finally, we used data from
Ballotpedia to label whether a user is a politician
or not and to identify their political party. Note
that politician status and party are derived in differ-
ent ways, from different data fields, with politician
status being defined more strictly. These variables,

2https://ballotpedia.org/


https://ballotpedia.org/

used as targets in node classification tasks, are bro-
ken down in Table 12.

Pubmed. We built from scratch a version of the
popular Pubmed graph learning benchmark (Sen
et al., 2008) that includes the titles and abstracts
of each article; widely available versions of the
dataset do not include any text. We began with the
standard list of PMIDs for the articles in the dataset
and fetched the title, abstract, and list of references
using the Pubmed API. We kept directed citation
edges only to other articles in the dataset. One
PMID was not found in the Pubmed database and
was thus left out. The final dataset includes 19,716
nodes, 61,110 edges, and 59,381 texts, including
both titles and abstracts. The included articles are
about diabetes and the standard node categories are
from the Pubmed database: type-1 diabetes, type-2
diabetes, or experimental evidence.

T-REx. We used the articles in the T-REx cor-
pus (Elsahar et al., 2018) of Wikipedia articles that
were labeled with the “Robots” category or any of
its descendant categories. From these categories,
we constructed several binary target label sets for
the T-REx prediction task. However, since the most
commonly occurring category was only associated
with 526 (roughly 5.7%) of the articles, we ex-
panded each article’s labels to include both first
and second level ancestors in the category hierar-
chy to obtain better class label balance. From the
initial set of 1,433 unique categories, this expansion
yielded a total of 6,643 unique categories, with the
most frequent (“Spacecraft”) occurring on 1,342
articles. We then selected five categories to use as
labels for separate binary prediction tasks, choos-
ing frequent categories that generally had small
overlap with each other (i.e. were associated with
mostly disjoint document sets.) Note that not ev-
ery data point in the dataset, then, received a label.
The resultant categories we selected are listed in
Table 12.

Splitting. We divide the datasets into a 70% train
set, 10% validation set, and 20% test set, splitting
at the node level so that every text associated with
a given node is in the same split. Because evalua-
tion is inductive, any graph edges which cross split
boundaries are dropped.
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Dataset Feature Category # Nodes
Midwest 64
Region Northeast 1207
ceto South 1411
West 1100
19-39 575
. Age 40-49 2216
Twitter S=65 844
Female 1586
Gender Male 2495
. Non-politician 8271
Oceupation b1 cian 434
Democrat 241
Party Republican 193
Experimental 4103
Pubmed  Article Type Type I 7875
Type II 7738
Robots 666
Rockets 843
T-REx Wiki Category  Sci-Fi 712
Spacecraft 1342
Space Telescopes 701

Table 12: Breakdowns of the dependent variables for
node classification experiments on the three datasets.

F Model Architectures and Training
Details

We estimate that training all of our joint and base-
line models together used 263 hours of GPU time.
Because the assumptions made for this value are
conservative, the actual value is likely slightly less.

F.1 ConGraT Models

We trained all ConGraT models on either a single
NVIDIA RTX A6000 GPU or a single NVIDIA
A100 GPU. For masked LM experiments, we used
the pretrained all-mpnet-base-v2 model (Song
et al., 2020) from the sentence-transformers toolkit
(Reimers and Gurevych, 2019), which has 12 lay-
ers of 12 heads each, producing 768-dimensional
embeddings. It was pretrained constrastively on
several corpora from similar domains to those we
consider here,> making it a good match for our
work. Our causal LM experiments used the pre-
trained distilgpt2 model (Sanh et al., 2019), dis-
tilled from the larger GPT-2 model (Radford et al.,
2019), with 6 layers of 12 heads each, producing
768-dimensional embeddings.* For the graph node
encoder, all models used a graph attention network

3See the model card for details: https://huggingface.
co/sentence-transformers/all-mpnet-base-v2.

*Again see the model card for more details: https://
huggingface.co/distilgpt2.


https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/distilgpt2
https://huggingface.co/distilgpt2

(GAT) (Velickovi€ et al., 2018) with 3 layers and 2
attention heads in each layer. As in a standard trans-
former, each graph convolutional layer is separated
from the next by a linear layer, with layer normal-
ization (Ba et al., 2016) applied afterwards. Hidden
representations are 64-dimensional, and the final
output vectors are 768-dimensional so that baseline
model outputs have the same shape as language
model outputs.

Parameter counts are as follows: distilgpt2,
81.9 million; all-mpnet-base-v2, 109.4 million;
our GAT encoder, 199.7 thousand. The jointly
trained models, including the adapter layers after
the text and graph encoders, have 83.9 million pa-
rameters (causal / distilgpt2) and 110.9 million
parameters (masked / all-mpnet-base-v2).

Training is sensitive to the learning rate; we
found that a good compromise between speed of
training and instability was a value of Te-4. At
a variety of learning rates, there were also inter-
mittent large spikes in the norm of the gradient,
which derailed training unless the gradients were
clipped. We clipped the gradient at each step to a
norm of 1. In order to reduce memory consumption
and fit larger batches onto a single GPU, we used
16-bit mixed precision training (Micikevicius et al.,
2018). We encountered numerical overflow prob-
lems with FP16, however, related to large gradient
values at certain layers, and found it necessary to re-
duce the init-scale parameter of the gradient scaler
from its default value of 2'6 to 256 in order to
avoid overflow. We initialized the log-temperature
parameter 7 to 3.5 and constrained it to be within
(—log 100, 4 log 100) in order to avoid training
instability. We trained all models with PyTorch
(Paszke et al., 2019) and pytorch-lightning (Falcon
et al., 2020), also using pytorch-geometric (Fey
and Lenssen, 2019) for graph encoders and GAT
baselines, and Huggingface Transformers (Raffel
et al., 2020) for textual baselines and text encoders.

We also found that performance suffers if each
batch is not unique on nodes (i.e., if each node
has multiple texts, only one text per node can be
in any given batch). We experimented with sim-
ply dropping duplicates from uniformly sampled
batches, but this discarded too much data. Instead,
we randomly sorted the texts on each epoch so
as to minimize the number of within-batch dupli-
cates (assuming minibatches are taken consecu-
tively from the sorted dataset), and dropped any
remaining duplicates.

Finally, because the objective is batch-wise con-
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trastive, the problem becomes quadratically more
difficult as the batch size increases. We used the
largest batch size we could consistently fit into
available hardware, but future work should explore
the question of returns to scale.

All models used the AdamW optimizer
(Loshchilov and Hutter, 2019) with § values of
(0.9, 0.999) and without weight decay. All joint
models used a probability of 0.3 for dropout ap-
plied to text and node embeddings. Learning rates
and batch sizes for our various models are shown
in Table 13.

F.2 Unimodal Baselines

To better understand the effects of multi-modal pre-
training, we also trained unimodal models, either
language models or graph attention transformers,
and evaluated these unimodal models on the down-
stream tasks. For textual models, we fine-tuned pre-
trained all-mpnet-base-v2 and distilgpt2 on
the training splits of the evaluation datasets. Lan-
guage models were fine-tuned for 3 epochs. For
graph models, we trained graph attention network
(GAT) models to do non-variational graph autoen-
coding (Kipf and Welling, 2016), also known as
link prediction, on the network structure of the eval-
uation datasets. GAT models were trained from
between 30 to 100 epochs with early stopping
based on validation AUC, with patience of 3 epochs
and minimum delta of 0.01. We compare these
unimodal baselines against ConGraT. Parameter
counts for the text and graph baselines are the same
as reported for the appropriate modality’s joint en-
coder in Subsection F.1. Batch sizes and learning
rates, as for joint models, are reported in Table 13.
Our unimodal baselines were trained on NVIDIA
RTX A6000 GPUs, or on up to four NVIDIA GTX
1080 Ti GPUs.

F.3 Social-LM

We implemented a baseline Social-LM, as a mod-
ified version of SocialBERT’ (Karpov and Kar-
tashev, 2022) (also very closely related to LM-
SOC (Kulkarni et al., 2021)), which uses pretrained,
frozen node embeddings to prime language model
pretraining. Specifically, we added a special node
token [G] at the beginning of texts and used the
pretrained GAT model to obtain the corresponding
node embedding paired with each tweet or article,
which was used to replace the token embedding

>The SocialBERT authors did not publish their code.



Model or Model Family Batch Size | Base LR LR Schedule
ConGraT 36 1.0e-4 Constant LR

LM Baseline 36 5.0e-5 | Linear 10% warmup

SocialLM 36 5.0e-5 | Linear 10% warmup

LinkBERT 36 5.0e-5 | Linear 10% warmup
GNN AE (Baseline), Twitter, Dir. n/a 1.0e-2 Constant LR
GNN AE (Baseline), Twitter, Undir. n/a 1.0e-2 Constant LR
GNN AE (Baseline), T-REx, Dir. n/a 1.0e-2 Constant LR
GNN AE (Baseline), T-REx, Undir. n/a 1.0e-2 Constant LR
GNN AE (Baseline), Pubmed, Dir. n/a 1.0e-2 Constant LR
GNN AE (Baseline), Pubmed, Undir. n/a 1.0e-2 Constant LR
GNN AE (SVD), Twitter, Dir. n/a 1.0e-2 Constant LR
GNN AE (SVD), Twitter, Undir. n/a 1.0e-2 Constant LR
GNN AE (SVD), T-REx, Dir. n/a 1.0e-3 Constant LR
GNN AE (SVD), T-REx, Undir. n/a 1.0e-3 Constant LR
GNN AE (SVD), Pubmed, Dir. n/a 1.0e-3 Constant LR
GNN AE (SVD), Pubmed, Undir. n/a 1.0e-3 Constant LR

Table 13: Batch sizes and learning rates for all models. (AE = autoencoder.) Except for the GNN baseline’s learning
rate, where we tried both 1.0e-2 and 1.0e-3 and found large dataset-specific effects on performance, all models
listed in the same model family use the same parameter settings for all datasets. In particular, all ConGraT models,
whether directed or undirected, with & = 0 or « = 0.1, and causal or masked encoders, used the same batch size
and learning rate. GNN baselines do not list a batch size because the entire graph is processed at once.

for [G]. During the language model pretraining,
we froze the node embeddings and only fine-tuned
the language model to generate texts conditioned
on the node embeddings. Our Social-LM imple-
mentation has some key differences from Social-
BERT and LMSOC: (1) for masked LM exper-
iments, we used all-mpnet-base-v2 to replace
BERT, to be consistent with other experiments
for a fair comparison; (2) we also experimented
with a causal language model distilgpt2 under
the Social-LM baseline, whereas LMSOC and So-
cialBERT only used the masked language model
BERT; (3) we injected the node embedding as the
zero token embedding of texts as Social BERT sug-
gests, whereas LMSOC appends the node embed-
ding at the end. We adopted the zero token injection
approach because the same strategy is adaptable for
both causal and masked language modeling, while
last token injection does not work for causal LMs
like distilgpt2; (4) we used our unimodal GAT
model trained on the graph autoencoding task to
generate node embeddings for each tweet or article,
whereas LMSOC uses node2vec and Social BERT
uses vectors from SVD and Deep Walk. We used
the GAT in order to be consistent with ConGraT
and the unimodal baseline, to ensure that the com-

parisons were fair, and because it was likely to be
a stronger baseline than using SVD. Social-LM
models were fine-tuned for 3 epochs with the same
hyperparameters used for the language modeling
baseline, and have the same number of parameters
as all-mpnet-base-v2, our masked LM baselines
and the joint masked text encoders.

F.4 LinkBERT

We implemented and trained LinkBERT (Ya-
sunaga et al., 2022) as described in the origi-
nal paper, with the only difference being that we
used the same all-mpnet-base-v2 architecture
as the other baseline models (instead of BERT-
Base) in order to maintain consistency across ex-
periments. We initialized weights from the pre-
trained all-mpnet-base-v2 model from sentence-
transformers, and fine-tuned it on the masked lan-
guage modeling (MLM) and document relation
prediction (DRP) tasks for 3 epochs. Hyperparam-
eters used for training are listed in Table 13. Note
that because of its MLM training objective, we
used LinkBERT as a baseline for masked language
model variants of ConGraT only. All LinkBERT
models have the same number of parameters as
all-mpnet-base-v2, as the DRP head is dropped
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at inference time.

We created training instances for LinkBERT by
sampling contiguous, linked, or random text seg-
ment pairs for the DRP training objective from each
dataset, with the three options appearing uniformly
(1/3, 1/3, 1/3). For the Pubmed and Twitter datasets,
we sampled 100,000 text pairs for each category,
for a total of 300,000 pairs. For T-REx, which is a
substantially smaller dataset, we sampled 10,000
text pairs for each category, for a total of 30,000
pairs. Text pairs consisted of anchor text segment
X 4 and paired text segment X : (X4, Xp). The
specific methods we used to sample pairs for each
dataset were as follows:

Pubmed. Text segments in each pair consisted of
individual sentences from the abstracts of each arti-
cle in the dataset. Anchor segments X 4 were taken
by sampling a random abstract, then sampling a
random sentence from that abstract. For contiguous
pairs, X p was chosen as the sentence immediately
following X 4 in the abstract (X 4 could not be the
last sentence of the abstract). For linked pairs, X g
was chosen as a random sentence from the abstract
of one of the articles that was connected to X 4’s
corresponding article in the citation graph. For ran-
dom pairs, Xp was chosen as a random sentence
from an abstract whose article was not connected
to X 4’s corresponding article in the citation graph.

T-REx. Text segments in each pair consisted of
individual sentences from the introductory para-
graphs of each article in the dataset. Anchor seg-
ments X 4 were taken by sampling a random article,
then sampling a random sentence from that article’s
introductory paragraphs. For continuous pairs, X p
was chosen as the sentence immediately follow-
ing X 4, with the same restriction as in Pubmed
that X 4 could not be the last sentence. For linked
pairs, X g was chosen as a random sentence from
the introductory paragraphs of one of the articles
connected to X 4’s corresponding article in the
link graph. For random pairs, X p was chosen as a
random sentence from an article not connected to
X 4’s corresponding article in the link graph.

Twitter. Twitter has a different graph-text struc-
ture than Pubmed and T-REX; rather than the nodes
consisting of texts themselves, the nodes are users
who can each produce multiple tweets. Therefore,
the notion of what constitutes continuous or linked
text segments (tweets) is less clearly defined. We
defined these relationships as follows. For contigu-
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ous pairs, we sampled a random tweet as X 4, and
chose X g as a different tweet from the same user
as X 4. For linked pairs, we sampled X 4 from the
set of tweets that mentioned other users that were
present in our dataset. Then, X 5 was chosen as a
random tweet from the mentioned user. Random
pairs were taken by randomly sampling two tweets
from different users to use as X4 and Xp.

F.5 Node Classification Methodology

We use the standard scikit-learn (Pedregosa et al.,
2011) implementation of logistic/softmax regres-
sion with the default L2 regularization, balancing
our sometimes very imbalanced classification prob-
lems by downsampling before fitting. For perfor-
mance reasons we use the liblinear solver for
problems with no more than 5000 training data
points and the saga solver otherwise. To ensure
convergence, we increase the maximum iterations
for the solvers from the default of 100 to 10000.

G Licenses and Terms of Use

All software and pretrained models we used were
available under open-source licenses which per-
mit our use for research purposes. Our non-Twitter
datasets were available under Creative Commons
or other licenses allowing research use. We have
access to Twitter data pursuant to an agreement
with Twitter permitting use of data for research and
publication. The agreement permits releasing the
tweet IDs, which can be used to get the correspond-
ing tweets from the public Twitter API. Along with
the tweet IDs, we plan to release the demographic
data collected from Wikipedia and Ballotpedia. Our
code and datasets, when released upon publication,
will be subject to an open-source license allowing
use for research purposes.



Top-k Accuracy: Predicting Origin Node for Text, Text Initial Vectors
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Figure 5: Top-k accuracy on selection of the node which produced a text, for various values of k, as discussed in
Subsection B.1. “Baseline” indicates the use of separately pretrained embeddings, and other results are for models
with various combinations of edge-direction use and graph-similarity information.
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