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Abstract

This paper presents a set of experiments on fine-tuning LLMs to produce high-precision semantic representations

for the NLU component of a dialog system front-end. The aim of this research is threefold. First, we want to explore

the capabilities of LLMs on real, industry-based use cases that involve complex data and strict requirements on

results. Since the LLM output should usable by the application backend, the produced semantic representation must

satisfy strict format and consistency requirements. Second, we also want to assess the language scalability of the

LLMs in this kind of applications; specifically, whether a multilingual model is able to cast patterns learnt from one

language to other ones –with special attention to underresourced languages–, thus reducing required training data

and computation costs. Finally, we want to evaluate the cost-benefit of open-source LLMs, that is, the feasibility

of running this kind of models in machines affordable to small-medium enterprises (SMEs), in order to assess how

far this organizations can go without depending on the large players controlling the market, and with a moderate use

of computation resources. This work was carried out within an R&D context of assisting a real company in defining

its NLU model strategy, and thus the results have a practical, industry-level focus.

Keywords:Large Language Models, Natural Language Understanding, Fine Tuning, NL assistants, Goal-Driven

Dialog Systems, LLMs carbon footprint, Underresourced languages

1. Introduction

Many NLP applications demand a Natural Lan-

guage Understanding (NLU) component able to

transform language utterances into structured rep-

resentations satisfying the requirements of the ap-

plication backend. Some examples are database

natural language interfaces, domotic assistants,

voice-activated computer desktop assistants, and,

in general, any goal-oriented dialog system be-

yond mere Q&A or recreational chatbots, aiming

at helping the user to accomplish complex goals

such as booking a flight or paying taxes. All these

applications do not require a plausible textual re-

sponse, but a highy precise set of complex ar-

guments for the user intent (which taxes should

be paid, from which bank account, which light at

home should be turned off and when, which file

should be moved to what folder and under what

name, etc.)

In this study, we delve into a series of experiments

on tuning Large Language Models (LLMs) for gen-

erating precise semantic representations within a

dialog system. The research is structured around

three primary objectives:

First, we investigate the potential of LLMs to han-

dle complex, real-world scenarios in the industry.

The aim is to ensure that the semantic outputs

from the LLMs meet strict standards of format and

consistency for seamless integration into applica-

tion backends.

Secondly, we explore the scalability of LLMs

across diverse linguistic landscapes, particularly

their ability to support low-resourced languages.

We aim to ascertain whether a multilingual model

can transfer knowledge from well-resourced lan-

guages to those with fewer resources, thereby re-

ducing the need for extensive training data and

computational resources, favoring environmental

and economic sustainability.

Lastly, a significant portion of our research is ded-

icated to evaluate the viability of leveraging open-

source LLMs in a way that is economically and

environmentally sustainable for small to medium-

sized enterprises (SMEs). This involves exploring

how these companies can use advanced language

models without exacerbating environmental im-

pacts or depending on large market-dominating

corporations.

Conducted within a R&D framework aimed at as-

sisting a start-up company in formulating its Nat-

ural Language Understanding (NLU) model strat-

egy, this investigation offers insights with a practi-

cal, industry-oriented focus, highlighting the envi-

ronmental impact and the challenge of inclusivity

for low-resourced languages.

2. Background

Dialog systems, personal assistants, and other ap-

plications requiring precise understanding of user

commands or queries have become ubiquitous in
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various sectors, including healthcare, customer

service, and business, among others. NLU is

a crucial component in these systems, responsi-

ble for transforming unstructured human language

into a format that can be understood and pro-

cessed by the application backend.

The recent launch of Large Language Models

(LLMs) such as OpenAI GPT (OpenAI, 2023),

Llama (Touvron et al., 2023), Falcon (Almazrouei

et al., 2023), GPT-j (Wang and Komatsuzaki,

2021), GPT-neo (Black et al., 2021), Bloom (Big-

Science Workshop, 2022), or Mistral (Jiang et al.,

2023), among others, has opened a large range

of possibilities for all NLP applications. LLMs have

shown to have powerful language “understanding”

capabilities (Goldstein et al., 2023; Olney, 2023;

Tsoutsanis and Tsoutsanis, 2024), being able to

perform tasks such as entity recognition and clas-

sification (NERC), sentiment analysis, paraphras-

ing, summarization, or translation, with a quality

close to human performance. Moreover, these

models are able to generate syntactically (and of-

ten semantically) correct code in a variety of pro-

gramming languages.

LLMs have been used as components in tra-

ditional NLP pipelines, proving able to perform

NERC and relation extraction (Paolini et al., 2021;

Ren et al., 2021), Semantic Role Labeling (Paolini

et al., 2021), Coreference Resolution (Paolini

et al., 2021), Event Extraction (Paolini et al., 2021;

Du et al., 2021; Lu et al., 2021; Li et al., 2021),

aspect-based sentiment analysis, or slot filling

(Athiwaratkun et al., 2020; Rongali et al., 2020;

Zhang et al., 2021). See (Min et al., 2023) for a

detailed survey on the use of LLMs for NLP tasks.

However, using LLMs to perform partial NLP

analysis has the same problems than traditional

pipelines. On the one hand, the output is usu-

ally produced as annotated text, which requires a

postprocessing step to integrate the relevant infor-

mation. On the other, integrating the results from

different stages into a unique semantic represen-

tation may lead to inconsistencies when outputs of

different models are merged together.

LLMs’ natural environment is end-to-end tasks in-

volving natural language in both the input and

the output: machine translation, summarization,

sentiment analysis, question answering, and, ob-

viously, chatbots. However, the completion-like

chatbots that LLMs can successfully produce are

far from being able to satisfy the strict formatting

and semantic constraints needed by the backend

of goal-oriented dialog systems.

Existing research on LLMs has focused either on

performing low-level NLP tasks (NERC, corefer-

ence resolution, parsing, slot-filling), or on high-

level user-oriented language tasks (translation,

summarization, information extraction, question

answering, etc.), but fewer efforts have been de-

voted to making LLMs produce actionable output.

Noteworthy approaches in this direction include

the elaboration of plans to achieve a goal (Huang

et al., 2022) or the translation of commands into

API calls (Patil et al., 2023). In a line similar to the

latter, we aim to use LLMs to produce structured

complex semantic representations from text that

are suitable to the requirements of an application

backend in a real-world industrial scenario.

Although LLMs are able to generate code, and

thus they can provide a well-formatted semantic

structure for a sentence when requested to do so,

the resulting structure will not necessarily match

the constraints of the backend, neither the pro-

duced representation will be consistent between

different requests. Yet, LLMs can be fine-tuned

with a reasonable effort to produce, with high pre-

cision, a semantic structure matching the spec-

ifications of a dialog system or assistant back-

end. The tuned models (even “light” versions

–with about 6B parameters) are able to create cor-

rect structures even for very complex utterances

where any classical NLU pipeline would fail at

some point.

3. Target Application

In this paper, we approach the usability of LLMs at

the core of a user interface NLU component for an

office assistant in charge of automating admin-

istrative and management tasks of different com-

plexity degrees, like sending messages via vari-

ous means (email, SMS, telegram, etc.), schedul-

ing meetings, or managing files.

We focused on the 7 basic intents presented in Ta-

ble 1 (intents i01 to i07). Most of them are instruc-

tions for actions for the system to perform (e.g.,

send an email), except for intents i01 and i04,

which can only be events that the system must be

sensitive to (e.g. in intent i01 the user cannot com-

mand the system to receive a message, but only

to be aware of whether a message is received, i.e.

as a trigger for some other action). On the other

hand, intents i02 and i03 can be both actions for

the system to perform and events to be sensitive

to (e.g. the system can be instructed either to send

an email message or to monitor whether the user

does it herself).

We also experimented with composite intents (in-

tents i08 and i09) and included also a set of ran-

dom sentences to train the system to disregard un-

related content (intent i00).

4. Data

4.1. Semantic Representation

The JSON schema for the target semantic repre-

sentation specifies: (a) the appropriate class for
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ID Intent Process type Example

Basic Intents

i00 Intent non-related content N/A
They went looking for you several times.

His brother came looking for us.

i01 Receiving a message
Event

An email message from pepe@gmail.com

arrives to my outlook account with subject

”invoice” and a PDF attachment.

i02 Sending messages

Action

Forward to my personal account any

email from Lola arriving to my

corporate account.

Event

When anybody from my company replies

with an attachment a message

from a BSC employee

i03 Creating calendar events

Action

Invite Lola from BSC to a meeting called

“weekly catchup” for every Wednesday at

9am, in office M3.

Event
If I’m invited to a meeting on weekdays

at 6pm on my Google Calendar

i04 Scheduling a system action

Event Wait for 2 hours.

Event Every day at 3:30pm.

Event One week later.

i05 Generating web forms Action

Create a form called “Personal information”

asking for basic demographic and contact

data, and email its URL to Lola.

i06 Storing files Action
Store the new file in my cloud unit to

folder MyDocs/customers/

i07 Adding data to a spreadsheet Action

Add the values from the form fields “Name”,

“DOB” and “Email” as the last row in

spreadsheet users-data.xslx

Composite Intents

i08 Combination of Intents i04 & i02 Event + Action
Every Friday at 3pm, send a message to

Lola with the file ”summary.xls” attached

and subject ”weekly report”

i09 Combination of Intents i03 & i02 Event + Action

If Lola invites me to a meeting on Monday,

morning, send her a message via Teams

with text ”Sorry, I can not make it”.

Table 1: Intents targeted by the NLU model

each intent, together with its relevant parameters;

(b) the appropriate type for each of these param-

eters (string, integer, array, object); (c) any con-

straint on the possible values for these parame-

ters (e.g., an integer value must be within a given

range, an object value can only be of a certain

class); and (d) the optionality for each parameter.

The job of the NLU model is to identify the in-

tent in the user utterance and convert it into a

JSON structure compliant with the schema used

by the assistant backend. For instance, Figure 1

shows the representation for the following sen-

tence, which belongs to intent i09:

If Lola invites me to a meeting on Mon-

day morning in room S1.207, send her a

message via Teams with text ”Sorry, I’m

booked”

The semantic representation for this sentence

must be an object of class CalendarEventAdded,
followed by an object of class Send. The former

requires slots process-type and event-object.
The latter is in turn instantiated by an object of

class CalendarEvent with parameters organizer,
attendees, subject, location, start-time (and

optionally end-time and duration). Event param-

eters organizer and attendees are instantiated

by objects of class User, and parameter start-
time is instantiated by an object of class TxSet.
The second Send object also has its own require-

ments on the expected parameters. Note how the

coreference between her and Lola is resolved set-

ting Lola as the recipient of the TeamsMessage.

Our schema manages 8 classes for modeling

actions/events and 19 for entities of different

sorts: messages, calendar events, users, forms,

files, spreadsheet data, time expressions, etc.

Some of those classes have also subclasses

(e.g., class Message can be further specified into

EmailMessage, SMSMessage, TelegramMessage,
TeamsMessage, etc.). Finally, there are also a few

classes that represent grammatical aspects of the
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[ { ” c lass ” : ” CalendarEventAdded ” ,

” process−type ” : ” Event ” ,

” event −ob jec t ” : {

” c lass ” : ” CalendarEvent ” ,

” l o ca t i o n ” : ” room S1.207 ” ,

” sub jec t ” : ” _unknown ” ,

” at tendees ” : [

{ ” c lass ” : ” User ” ,

” lemma” : ”me” ,

” org−name” : ” _mine ” ,

” user − i d ” : ” _unknown ” ,

” user −name” : ”_me”

}

] ,

” o rgan izer ” : {

” c lass ” : ” User ” ,

” lemma” : ” l o l a ” ,

” org−name” : ” _unknown ” ,

” user − i d ” : ” _unknown ” ,

” user −name” : ” Lola ”

} ,

” s t a r t − t ime ” : {

” c lass ” : ” TxDateTime ” ,

”when ” : {

” par to fday ” : ”MORNING” ,

” weekday ” : ”MONDAY”

}

}

}

} ,

{

” c lass ” : ”Send ” ,

” process−type ” : ” Act ion ” ,

” sent −ob jec t ” : [ {

” c lass ” : ”TeamsMessage ” ,

” sub jec t ” : ” Sorry ,  I 'm booked ”

” r e c i p i e n t ” : [

{ ” c lass ” : ” TeamsUser ” ,

” lemma” : ” l o l a ” ,

” org−name” : ” _unknown ” ,

” user − i d ” : ” _unknown ” ,

” user −name” : ” Lola ”

}

] ,

” sender ” : {

” c lass ” : ” TeamsUser ” ,

” lemma” : ” . i m p l i c i t . ” ,

” org−name” : ” _mine ” ,

” user − i d ” : ” _unknown ” ,

” user −name” : ”_me”

}

}

]

}

]

Figure 1: JSON representation for instruction: If Lola

invites me to a meeting on Monday morning in room

S1.207, send her a message via Teams with text ”Sorry,

I’m booked”

Process Classes

None 663 ScheduledEvent 3758

ProcessCalEvent 3862 SendMessage 3971

ProcessSpreadsheet 579 SendForm 781

ReceiveMessage 1279 StoreFile 942

Entity Classes

Attachment (ms) 1969 Form (fo) 781

CalendarEvent (ev) 3862 Message (ms) 6031

DatumField (sp) 300 DateTime (tx) 4195

DatumFrame (sp) 579 Duration (tx) 838

DatumLocation (sp) 579 DurationLen (tx) 838

DatumPosition (sp) 710 Set (tx) 3280

Field (fo) 1143 SetRepeat (tx) 3280

FieldValidation (fo) 1143 TxWhen (tx) 6807

File (fi) 4432 User (us) 19459

FileLocation (fi) 1316

Classes for grammatical information

CorefLocat (co) 926 CorefStep (co) 926

CorefObj (co) 1041 Cardinality (ca) 707

Table 2: Parent classes, their frequencies and the kind
of information they encode. Legend: (ca) entity cardi-

nality, (co) coreference, (ev) events, (fi) files, (fo) forms,

(ms) messages, (sp) spreadsheet data, (tx) time expres-

sions, (us) users.

utterance, namely coreference and entity cardinal-

ity. Table 2 presents the frequencies in the dataset

of the top classes in the hierarchy.

Note that many intent parameters require a value

that is an object, which, in turn, may also have

parameters requiring other objects. Thus, the re-

sulting semantic structures can be quite complex,

with several nesting levels. As a result, the needed

NLU model is multi-level: it not only must discern

among the 8 types of basic intents –which would

be a simple task for a classical ML classifier– but

also to identify the relevant language fragments

expressing their parameters, and properly com-

bine the detected objects in compliance with the

representation schema constraints.

4.2. Datasets

To train and test our models, we used sets of utter-

ances expressing instructions for the intents pre-

sented above, together with their representation

in JSON. That data is developed and owned by a

startup company dedicated to build NLU-based of-

fice assistants. The dataset was created following

a semi-automatic process that combines steps of

manual curation and AI-based synthetic data aug-

mentation, completed with a final phase for a fully

manual check to ensure optimum data quality.

We used data in 3 different languages: Catalan,

English, and Spanish. The number of total sen-

tences used for each intent (train and test) is pro-

vided in Table 3. In addition, for evaluating the

benefits of multilingual vs. monolingual models we

also used a smaller subset with only English and

Spanish data for intents i01 and i02. See Section
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Basic Composite

intents intents

Language Task i00 i01 i02 i03 i04 i05 i06 i07 i08 i09 Total

Catalan
Train 0 56 71 58 704 37 33 112 46 56 1173

Test 0 23 36 30 80 12 16 38 31 30 296

English
Train 270 529 597 625 829 308 397 252 507 481 4795

Test 61 90 87 108 101 70 54 52 102 73 798

Spanish
Train 256 502 542 584 682 305 393 99 484 480 4327

Test 76 79 107 107 90 49 49 26 99 107 789

Table 3: Number of sentences used for each intent and language (alphabetically sorted).

5.2 for a more detailed explanation.

5. Experiments and Results

We used the dataset described above to carry out

different experiments aiming to shed light on three

main questions: (1) whether LLMs are able to

transform complex user instructions into a JSON

semantic representation satisfying strict syntactic

and semantic constraints required by the appli-

cation backend, (2) whether a single multilingual

model is better than tuning language-specialized

models, (3) whether this multilingual model is able

to process new languages with none or small data,

and thus easing the support to under-resourced

languages, and (4) whether existing open access

LLMs are an effective alternative to existing propri-

etary LLM services, reducing the dependence on

large models with large carbon footprint.

In all cases, JSON structures produced by the

model where compared to a gold standard and

evaluated both at the slot and sentence levels:

• For slots, we compute precision, recall, and

F1. A slot is considered to be rightly extracted

if it has the right value and it is in the right

location inside the JSON structure.

• At sentence level, we compute the percent-

age of sentences with 100% accuracy (ex-

tracted JSON identical to the gold standard)

and the percentage of sentences with an un-

usable output (non-parseable JSON).

The pre-trained LLMs that we analyzed include,

on the one hand, five proprietary models owned

by OpenAI: Ada (350M parameters), Babbage

(1.3M parameters), Curie (6.7B), Davinci (175B)

and gpt-3.5-turbo (20B)1, and on the other hand,

four open access LLMs: GPT-j (Wang and Komat-

suzaki, 2021), Falcon (Almazrouei et al., 2023),

Mistral (Jiang et al., 2023), and Flor (BSC,

2023)2. For all open access models, the version

around 6-7 billion parameters was used.

1The size of gpt-3.5-turbo is not officially disclosed by

OpenAI but it is assumed to be around 20B parameters.
2Flor is a Bloom version reinforced with additional

Spanish and Catalan data.

5.1. Preliminary explorations

First trials involved using zero-shot and few-shot

via prompting, where the model was asked to pro-

duce a JSON structure for a sentence after being

given a few examples of the expected output.

As can be expected, the complexity of the required

output structures and the variety of targeted in-

tents is too wide for the models to grasp with only

a few examples, and they behaved creatively with

respect to which slots the JSON structure must

contain and where to locate them, producing re-

sults unusable by the backend component.

Thus, fine-tuning was selected as the strategy to

follow, since it allows to provide a larger number of

examples and to adjust the model to the specific

needs of the application.

Also, initial fine-tuning experiments with OpenAI

proprietary models showed that Ada and Babbage

had a performance under the minimum usability

(under 70% F1 at slot level, under 50% sentences

with perfect structure, over 10% sentences with

invalid JSON output). Davinci had the best re-

sults, followed by Curie. Since the performance

difference between them was under two percent

points and Curie’s economic cost was 10 times

smaller, we chose Curie as our reference propri-

etary model. This allowed us to perform more

thorough experimentation and to use larger tuning

datasets. Later replacement of Curie and Davinci

with gpt-3.5-turbo allowed as to include this newer

model in the study.

5.2. Language Scalability

Firstly, we explored whether a multilingual model

would be able to cast the patterns learnt from one

language to another, or if instead a monolingual

model for each target language was better. Table

4 shows the results of tuning different models for

each target language versus tuning a single mul-

tilingual model. We ran that on the subset of En-

glish and Spanish data for intents i01 and i02.3 We

used Curie with 4 epochs, LR multiplier of 0.1, and

default batch size (8).

3Since this piece of work was part of defining a lan-

guage model strategy for the company, those were the

only datasets available at that point.
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Secondly, we explored if the inclusion of new lan-

guages into the system would benefit from the

datasets for the already available languages, or

would require extending the dataset. We spec-

ulated on such a feasibility due to the proximity

of 2 of the languages involved: Spanish (already

present in the multilingual model) and Catalan (the

new language to be incorporated). We ran an ex-

periment in which the new Catalan dataset was

used only for testing, and a second one in which

we split that dataset into 75% for training and 25%

for testing. Results are presented in Table 5.

P R F1 Perf Fail

English

Mono 88.0 88.1 88.1 38.4 0.0

Multi 92.4 92.6 92.5 42.0 0.0

Spanish

Mono 91.6 91.2 91.4 37.9 0.7

Multi 92.3 93.0 92.6 38.6 0.0

Table 4: Results for fine-tuning with monolingual vs.

multilingual models. Using English and Spanish data

for intents 01 and 02.

P R F1 Perf Fail

No Catalan training data

Catalan 88.0 87.2 87.6 28.0 0.4

English 94.8 94.7 94.8 61.6 0.0

Spanish 97.7 97.7 97.7 78.0 0.0

Some Catalan training data

Catalan 96.5 96.8 96.6 61.2 0.0

English 95.2 95.4 95.3 63.4 0.1

Spanish 98.3 98.4 98.3 82.8 0.0

Table 5: Results of the multilingual model when fine-

tuned only with English and Spanish data (top) or also

including Catalan data – 11.4% of the total training

dataset (bottom). Data for intents 01 and 02 is used.

5.3. Fine-tuning experiments

To compare proprietary and open access models,

we tuned all of them with the same dataset and

compared the results. Different combinations of

learning rate, epoch number, and batch size were

tried to select the best for each model.

Best overall results for each model are shown

in Table 6. For each language, slot-wise preci-

sion/recall/F1 is reported, as well as percentage

of perfect sentences and unusable JSON cases.

Best parameterization for Curie is 4 epochs, 0.2

learning rate multiplier, and batch size 8. For the

open accessmodels, 2 epochs, 10−5 learning rate,

and batch size 4 (for GPU memory limitations).

As shown in Table 6, Curie and Mistral obtain the

best results. Curie is slightly better in English, and

Mistral wins by a narrow margin in Catalan and

Spanish. However, the difference is not statisti-

cally significant. The other open access models

do not achieve the same performance and are all

in a similar range of results.

It is noteworthy that despite being much larger

than Curie and Davinci –and thus supposed to be

a better model– gpt-3.5-turbo obtains results simi-

lar to those of the worst open access models. The

reason seems to be that gpt-3.5-turbo is too ori-

ented to chat and it tends to get too creative in

the produced JSON structures and often fails to

respect the output requirements. An second pos-

sibility could be that it has a stronger resilience to

fine-tuning.

These results prove the ability of fine-tuned LLMs

to produce strict constraint-compliant semantic

representations of complex user utterances, there-

fore allowing to be used in an application backend

such that for an advanced office assistant.

With regard to the usability of open accessmodels,

Table 7 shows performance results of the two best

models (Curie and Mistral) detailed at intent level.

Intent-wise, the differences are small in most in-

tents, but in some cases (such as intents i03 and

i04), there is a significant difference in either one

or the other direction. Results for Spanish are bet-

ter than for the two other languages because the

Spanish dataset sentences are less complex.

6. Discussion

Given the results above, we can evaluate our initial

questions: What are the capabilities of LLMs on

real industry-based use cases requiring high pre-

cision NLU (Section 6.1); what is the model scal-

ability to new languages (Section 6.2); and finally,

what is the cost-benefit relation of comercial vs.

open-source LLMs for SMEs (Section 6.3).

6.1. Usability of LLMs for high-precision
NLU

As seen in Table 6, the average percentage of un-

usable output sentences (%Fail) per language is

at most 0.3% for both Curie and Mistral; in fact, it

is 0% for most intents in both cases. These are

remarkably positive results considering the strict

format required by the office assistant backend.

Moreover, the percentage of perfect sentences

(%Perf) is reasonably acceptable, as it is around

65% for Catalan and English, and even in a much

higher rate for Spanish: 79%. The fact that a sen-

tence is not classified as perfect does not preclude

the dialog system to process it. It just means that

the JSON structure contains extra slots or misses

some expected ones, which can often be man-

aged by the backend or by the users interacting

through the system’s GUI. The difference between

Spanish (79%) and Catalan and English (65-68%)

has to do with the nature of the user sentences

in our Spanish dataset, which are in general syn-

tactically simpler andmore homogeneous than the
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Catalan English Spanish

model P R F1 Perf Fail P R F1 Perf Fail P R F1 Perf Fail

curie 96.3 95.7 96.0 65.2 0.0 95.8 95.7 95.7 62.5 0.3 97.5 97.2 97.3 78.6 0.0

gpt-3.5 90.4 88.0 89.2 58.4 7.8 93.6 90.4 92.0 51.3 4.6 95.5 94.0 94.7 71.2 3.7

Mistral 96.7 96.7 96.7 67.9 0.0 95.7 95.3 95.5 65.2 0.4 97.6 97.7 97.7 79.3 0.3

Falcon 89.6 89.5 89.5 39.5 0.3 92.5 92.3 92.4 48.7 0.8 95.4 95.2 95.3 67.3 0.4

GPT-j 90.6 89.9 90.2 42.6 0.3 92.5 92.6 92.6 51.5 0.8 95.2 94.7 94.9 66.5 0.6

Flor 95.6 94.5 95.1 61.8 1.4 94.1 89.3 91.6 53.6 3.5 96.4 90.1 93.1 70.5 4.3

Table 6: Results for different LLMs fine-tuned and evaluated on our target dataset. Curie and gpt-3.5-turbo are

openAI proprietary models, and the rest are open access models. Columns P, R, F1 show slot-wise precision, recall

and F1. Column Perf shows the percentage of senteces with perfect JSON. Column Fail shows the percentage of

sentences with unusable ill-formed json.

Catalan

Curie Mistral

intent P R F1 Perf Fail P R F1 Perf Fail

intent 01 94.9 94.9 94.9 73.9 0.0 94.9 94.9 94.9 73.9 0.0

intent 02 95.4 95.4 95.4 66.7 0.0 96.6 97.3 96.9 75.0 0.0

intent 03 98.0 97.0 97.5 80.0 0.0 96.2 96.0 96.1 66.7 0.0

intent 04 93.5 94.2 93.9 70.0 0.0 96.5 97.4 96.9 83.8 0.0

intent 05 96.7 95.3 96.0 58.1 0.0 97.7 97.3 97.5 54.8 0.0

intent 06 97.1 96.3 96.7 43.3 0.0 97.9 97.6 97.7 53.3 0.0

intent 07 99.6 99.6 99.6 91.7 0.0 97.9 97.9 97.9 75.0 0.0

intent 08 98.0 98.0 98.0 68.8 0.0 98.7 96.3 97.5 81.2 0.0

intent 09 94.4 94.6 94.5 50.0 0.0 93.6 94.1 93.9 39.5 0.0

TOTAL 96.3 95.7 96.0 65.2 0.0 96.7 96.7 96.7 67.9 0.0

English

Curie Mistral

intent P R F1 Perf Fail P R F1 Perf Fail

intent 00 88.2 98.4 93.0 98.4 1.6 100.0 100.0 100.0 100.0 0.0

intent 01 95.3 95.3 95.3 68.9 0.0 91.1 91.1 91.1 58.9 0.0

intent 02 96.2 95.2 95.7 63.2 1.1 97.7 97.7 97.7 70.1 0.0

intent 03 91.9 92.5 92.2 47.2 0.0 92.7 93.5 93.1 49.1 0.0

intent 04 96.2 96.1 96.2 78.2 0.0 98.2 98.7 98.4 89.1 0.0

intent 05 96.2 95.8 96.0 46.1 0.0 95.5 94.2 94.9 42.2 2.0

intent 06 97.9 97.7 97.8 52.1 0.0 97.9 97.6 97.7 58.9 0.0

intent 07 98.3 97.9 98.1 72.9 0.0 98.1 96.8 97.5 71.4 1.4

intent 08 93.8 93.6 93.7 50.0 0.0 94.3 94.0 94.1 57.4 0.0

intent 09 96.3 95.8 96.1 55.8 0.0 97.0 97.0 97.0 67.3 0.0

TOTAL 95.8 95.7 95.7 62.5 0.3 95.7 95.3 95.5 65.2 0.4

Spanish

Curie Mistral

intent P R F1 Perf Fail P R F1 Perf Fail

intent i00 97.4 99.1 98.3 98.7 0.0 90.7 97.8 94.1 97.4 1.3

intent i01 97.9 97.8 97.8 82.3 0.0 98.7 98.7 98.7 84.8 0.0

intent i02 96.3 96.5 96.4 72.0 0.0 96.4 97.2 96.8 75.7 0.9

intent i03 98.0 98.0 98.0 84.1 0.0 98.1 97.9 98.0 84.1 0.0

intent i04 98.7 98.5 98.6 90.0 0.0 98.7 98.5 98.6 91.1 0.0

intent i05 97.4 96.9 97.1 72.7 0.0 97.5 97.4 97.5 70.7 0.0

intent i06 97.6 96.9 97.2 65.4 0.0 98.0 97.5 97.8 62.6 0.0

intent i07 98.9 99.0 98.9 87.8 0.0 99.0 99.0 99.0 87.8 0.0

intent i08 97.7 97.7 97.7 77.6 0.0 98.3 98.3 98.3 77.6 0.0

intent i09 92.0 94.5 93.2 34.6 0.0 92.9 95.0 93.9 53.8 0.0

TOTAL 97.5 97.2 97.3 78.6 0.0 97.6 97.7 97.7 79.3 0.3

Table 7: Results for Curie and Mistral on different languages. Columns P, R, F1 show slot-wise precision, recall

and F1. Column Perf shows the percentage of senteces with perfect JSON. Column Fail shows the percentage of

sentences with unusable ill-formed json.

sentences for the other two languages.

A qualitative analysis of the results shows that

many of the errors concentrate in slots related

to grammatical properties of the input sentences,
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such as properly identifying entity cardinality (e.g.,

sending all the emails vs. 3 emails vs. an email)

or representing coreference information (e.g. the

meeting that Pepa set up in the previous step or

the email that I just sent) so that the backend can

retrieve the refered entity.

Another source of error involves time expressions

(e.g., within 2 hours, every Monday, or Wednes-

day at 15:30h). Here, the most challenging lan-

guage for both LLMs is Catalan, which suggests

a scarce presence of Catalan time expressions in

the pretraining data for both models.

Finally, a further area of error has to do with iden-

tifying named entities, both prototypical (people

and organization names) and expressions such as

names for Teams/Slack channel (e.g. #dev-team),

folders (e.g., MyDocuments/Invoices) and drives

(e.g., the C unit, our cloud drive, etc.).

6.2. Cross-language generalization

A second conclusion from our exploration is that

the multilingual model takes advantage of cross-

linguistic information, obtaining better results than

the models tuned on single languages. Results in

Table 4 show that the multilingual model yields an

F1 between 1 and 4 points higher than separated

monolingual models.

With regard to the extension to new languages,

Table 5 (top) shows that the multilingual model

delivers quite acceptable results for Catalan data

when it is unseen in the fine-tuning data. How-

ever, these results for Catalan are still far from

the great performance for English (around 94.7%)

and especially from Spanish (around 97.7%), from

which it should supposedly benefit the most, not to

mention the poor score of only 28%Perfect parsed

sentences for Catalan, as opposed to scores over

60% for the other two languages.

While it is obvious that the multilingual model is

capable to generalize over a third unseen lan-

guage, the advantage of the multilingual model

over monolingual ones seems to be mainly due

to the fact that it is fine-tuned with twice as much

data. The benefit of larger datasets for fine-tuning

can be also attested in the bottom half of Table 5.

Note that the results for English and Spanish also

slightly improve when an additional small dataset

of Catalan training data is incorporated (containing

1173 datapoints, which amounts to only 11.4% of

the multilingual training dataset).

6.3. Open-source LLMs as an alternative

Although the performance of Mistral in terms of

output quality is comparable, or even slightly bet-

ter than that of Curie, processing speed is another

key issue to be considered when planning to de-

velop an open access LLM-based app or service.

Inference on Curie via OpenAI API runs at about

400 tokens/second, and processes one average

utterance in 2.5 seconds, including network la-

tency. By contrast, Mistral inference runs locally

on a Nvidia RTX-3090 GPU (24Gb) at 17 tokens

per second, with an average of 15 seconds per ut-

terance, which is not suitable for real-time applica-

tions. However, the same Mistral model quantized

to 4-bits, runs on the same RTX-3090 at a speed

similar to that offered by OpenAI models, with a

very small loss in performance, which definitely

opens the door to in-house usage of open access

LLMs in applications developed by start-ups and

SMEs, enabling not only an economic cost reduc-

tion, but also a lighter carbon footprint.

7. Conclusions & Further Work

Our experiments point out that fine-tuned LLMs

are a good choice for the NLU component of goal-

driven dialog systems. Also, evaluated open ac-

cess models are able to compete with proprietary

models in output quality and speed. However, if

a multi-user app or a SaaS application attending

many customers simultaneously are envisioned,

the cost of dedicated hardware may rise very fast

and pay-per-use may be a cheaper option. Tech-

nological independence must also be taken into

account. Big companies such as openAI not only

have a larger carbon footprint, but also take strate-

gic decisions that may negatively impact the per-

formance of applications based on their models4.

Finally, multilingual models can deal with unseen

languages to an acceptable degree, although

adding even a small amount of data for the new

language contributes to an overall improvement.

Future lines of research include a wider explo-

ration on quantization to increase speed and re-

duce carbon footprint, while maintaining as much

quality as possible, as well as exploring new lighter

open accessmodels that may run locally or even in

a phone or tablet (Google, 2023; Microsoft, 2023).

On the dataset front, we want to improve the de-

gree of sentence heterogeneity, in particular con-

cerning Spanish. A second line of data improve-

ment has to do with incorporating more sentences

displaying those features for which the models

tended to performed the worst; in particular, entity

cardinality, coreferences, and time expressions of

different kinds. Last but not least, we plan to widen

the range of supported intents by incorporating

more office-related tasks, as well as to integrate

a larger variety of languages.

4OpenAI recently deprecated Curie leaving gpt-3.5-

turbo as the only available alternative, which in our case

yields significantly worse results at a higher cost.
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