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Abstract

Fact verification on tabular evidence incen-
tivizes the use of symbolic reasoning models
where a logical form is constructed (e.g.,
a LISP-style program), providing greater
verifiability than fully neural approaches.
However, these logical forms typically rely
on well-formed tables, restricting their use in
many scenarios. An emerging symbolic rea-
soning paradigm for textual evidence focuses
on natural logic inference, which constructs
proofs by modeling set-theoretic relations be-
tween a claim and its evidence in natural
language. This approach provides flexibil-
ity and transparency but is less compatible
with tabular evidence since the relations do
not extend to arithmetic functions. We pro-
pose a set-theoretic interpretation of numerals
and arithmetic functions in the context of
natural logic, enabling the integration of arith-
metic expressions in deterministic proofs. We
leverage large language models to generate
arithmetic expressions by generating questions
about salient parts of a claim which are an-
swered by executing appropriate functions on
tables. In a few-shot setting on FEVEROUS,
we achieve an accuracy of 71.4, outperform-
ing both fully neural and symbolic reasoning
models by 3.4 points. When evaluated on Tab-
Fact without any further training, our method
remains competitive with an accuracy lead of
0.5 points.

1 Introduction

Fact verification systems assess the veracity of
claims based on evidence and provide an expla-
nation for the prediction. In the case of tabular
evidence, verification frequently relies on sym-
bolic reasoning steps, such as the execution of
arithmetic functions, to accurately predict whether
a claim is supported by evidence (Herzig et al.,
2020, inter alia). This incentivizes symbolic rea-
soning systems, where a logical representation of
a claim and its tabular evidence (e.g., a LISP-style

program) is executed to produce the veracity pre-
diction (Chen et al., 2020; Cheng et al., 2023).
Since the execution of these logical forms is de-
terministic, they serve as faithful explanations
of the model’s reasoning (Jacovi and Goldberg,
2021). However, these systems typically rely on
well-formed tables, constraining their use in many
scenarios, such as reasoning over diverse tabu-
lar structures as typically found on Wikipedia.
Consequently, the majority of recently proposed
verification models focus on neural entailment
models that latently execute arithmetic functions
(Liu et al., 2022b; Gu et al., 2022) or generate a
natural language explanation alongside its predic-
tion (Wei et al., 2022, inter alia). While systems
that produce natural language explanations are
more flexible regarding the evidence format, they
do not necessarily generate faithful explanations
(Atanasova et al., 2023).

An emergent symbolic reasoning paradigm for
textual evidence focuses on logical inference by
directly comparing claim and textual evidence
via natural logic inference (Angeli and Manning,
2014), achieving high prediction accuracy while
maintaining faithful explanations (Krishna et al.,
2022; Aly et al., 2023). However, current nat-
ural logic systems are unable to handle tabular
evidence since the semantic relationship captured
between aligned claim-evidence spans via natural
logic’s set-theoretic operators does not extend to
arithmetic functions (MacCartney and Manning,
2009). For instance, in Figure 1, no evidence in the
table directly corresponds to the part of the claim
that states three municipalities. Instead, arithmetic
computation on the table beyond the expressive-
ness of natural logic’s set-theoretic operators is
required (i.e., counting relevant cells).

To this end, we propose TabVer: Tabular Fact
Verification, a natural logic inference system that
adds arithmetic reasoning capabilities to reason
over tabular evidence directly in natural lan-
guage. We define a set-theoretic interpretation of
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Figure 1: TabVer proposes a set-theoretic view on numerals and arithmetic functions, which is integrated into
natural logic proofs as arithmetic comparisons between claim and answers to questions (ArithExps), resulting
in deterministic inference (left). To generate ArithExps, TabVer asks questions about salient parts ci of a claim
(middle), which are answered using tabular evidence E following the generation of a rationale and a set-theoretic
compatible representation of the computation (right), serving as the answer ai aligned to ci.

comparisons between numerals in claim-evidence
pairs, and extend that definition to executions
of arithmetic functions via arithmetic expressions
(ArithExps) to enable their integration into natural
logic proofs. The proofs are executed determin-
istically on a finite state automaton (DFA) as
defined in natural logic inference. ArithExps are
produced by leveraging large language models
(Brown et al., 2020, inter alia), generating ques-
tions about salient parts of the claim ci, which
are answered via a rationale that produces an an-
swer ai. As illustrated in Figure 1, TabVer will
generate a question such as ‘‘What is the total
population of Ortegal in 2018’’ to verify the part
larger than 12000 in the claim c. Answering this
question on the evidence table produces a ration-
ale with the expression SUM 12,238 as the final
answer ai, indicating the execution of the function
sump3945, 1126, 1363, 5804q “ 12238 over rele-
vant evidence in E. The aligned pair (larger than
12000, SUM 12, 238) is then assigned a natural
logic operator as part of a natural logic proof, with
the predicted operator being consistent with our
set-theoretic definitions (cf. Figure 3).

In a few-shot setting with 64 training instances
on the tabular subset of the FEVEROUS dataset
(Aly et al., 2021), TabVer outperforms previ-
ous symbolic reasoning systems, including LPA
(Chen et al., 2020), SASP (Ou and Liu, 2022),

Binder (Cheng et al., 2023), and a state-of-the-art
natural logic system (Aly et al., 2023) by 10.5 ac-
curacy points. Moreover, TabVer outperforms the
highest-scoring neural entailment model by 3.4 ac-
curacy points, including baselines such as TAPAS
(Herzig et al., 2020), TAPEX (Liu et al., 2022b),
PASTA (Gu et al., 2022), and large language
models of similar size as TabVer. We confirm
the tabular reasoning capabilities of TabVer in a
domain transfer setting to Tabfact (Chen et al.,
2020) without further training annotations. Our
system performs competitively, leading over the
strongest baseline by 0.5 accuracy points. Our
analysis reveals that TabVer’s reading of numer-
als is more sensitive to numerical inaccuracies and
the pragmatic context of a claim (i.e., quantifiers
and rounding) than a same-sized LLM baseline,
reflecting the annotator guidelines of FEVEROUS
more accurately. Finally, the arithmetic functions
invoked in TabVer’s proofs are more accurate
than the ones called in the logical form of our
symbolic reasoning baselines.1

2 Related Work

Symbolic reasoning systems for fact verification
convert text into a logical form or executable

1Code at https://github.com/Raldir/TabVer.
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program (SQL/LISP-style). They typically in-
volve a neural component, either to rank viable
candidate programs consisting of hand-crafted
functions (Chen et al., 2020) or via neural-
symbolic models that generate programs directly
(Liang et al., 2017; Ou and Liu, 2022). These
programs are faithful explanations since the pro-
gram’s execution is the verdict. With the improved
capabilities of large language models to generate
code (Chen et al., 2021), Cheng et al. (2023) and
Glenn et al. (2024) explore the use of SQL, Python,
and FOL to faithfully fact-check tabular claims,
however, they only use proprietary models con-
sisting of hundreds of billions of parameters. We
show that TabVer outperforms these approaches
(when controlled for the language model), which
we attribute to the suitability of natural logic to
natural language in contrast to query languages
like SQL.

The aforementioned symbolic executioners
stand in contrast to the more prominent ap-
proach of using programs as features to neural
systems, typically complemented by the original
claim and table. For instance, LISP-style pro-
grams are used as a latent signal for a graph
neural network (Shi et al., 2020; Zhong et al.,
2020; Yang et al., 2020; Gong et al., 2023), and
SQL queries and their executions are used as fea-
tures to an LLM serving as a verdict classifier
(Kong et al., 2024; Zhang et al., 2024c; Wu and
Feng, 2024). Wang et al. (2024) incrementally up-
date an evidence table with LISP-style operations.
Alternatively to symbolic integration into neural
systems, Chen (2023) produce natural language
explanations using chain-of-thought prompting
(Wei et al., 2022). Chen (2023) show that a 175B
parameter GPT-3 model competes with fully su-
pervised systems on tabular claims, yet its 6.7B
variant performed only slightly above chance.
This observation has been further confirmed by
Zhang et al. (2024a) with Llama2-Chat-7B. Fi-
nally, large-scale instruction-tuning on tabular
tasks has been explored (Zhuang et al., 2024;
Zhang et al., 2024b; Liu et al., 2023), however
they do not produce explanations. Conclusively,
previous systems either rely on large proprietary
models to achieve competitive performance or
they sacrifice prediction explainability.

In contrast to these explicit meaning representa-
tions, Angeli and Manning (2014) propose to use
NatLog (MacCartney and Manning, 2007, 2009)
for textual inference, operating directly on natural

language by comparing texts in a premise with an
associated hypothesis using set-theoretic relations.
Thus, as a framework of flexible compositional in-
ference, it circumvents the requirement to convert
statements into rigid logical forms, and typically
independently from one another. These favor-
able properties of natural logic inference have
subsequently recently been explored for fact ver-
ification, resulting in accurate predictions while
maintaining transparency with plausible explana-
tions (Krishna et al., 2022; Aly et al., 2023). Aly
et al. (2023) exploit natural logic’s operations on
natural language by casting the operators into a
question-answering framework to leverage recent
advances of instruction-tuned language models.
This paper is the first attempt to extend nat-
ural logic inference for fact verification to the
tabular domain.

Finally, tabular question answering (Jin et al.,
2022) is a common component to decompose a
claim and reasoning processes. Yang and Zhu
(2021) supplement the evidence with answers
to questions generated via decomposition tem-
plates while Suadaa et al. (2021) supplement the
evidence with information from a table-to-text
model. More recently, Ye et al. (2023) use LLMs
to decompose tables and questions. However, all
three methods feed these modified tables into a
pre-trained neural model (Herzig et al., 2020),
ultimately producing veracity predictions without
explanations. Finally, even for textual evidence,
most previous work that generates questions con-
ditioned on the claim does not construct proofs
from the answers (Rani et al., 2023; Fan et al.,
2020; Jobanputra, 2019).

3 Method

Given a claim c and a set of evidence ta-
bles E, the task is to predict a veracity label
ŷ P {Supports, Refutes, Not Enough Informa-
tion (NEI)}, and to accompany the prediction
with an explanation. Since evidence might require
arithmetic reasoning beyond the expressiveness
of natural logic, as shown in Figure 1 with
three municipalities, TabVer’s explanation is a
proof P “ m1, . . . ,ml, consisting of quintuples
mi “ pci, ei, qi, ai, oiq, where oi describes the
set-theoretic relation (NatOp) between a claim
span ci and the result ai of arithmetic com-
putations executed over relevant evidence ei.
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Figure 2: The finite state automaton (DFA), following
natural logic inference (Angeli and Manning, 2014).
The transitions in the DFA denote NatOps and the
states the veracity labels. The final state on which the
the proof terminates determines the overall veracity.

TabVer performs arithmetic reasoning steps in
a question-answering framework, producing an
arithmetic expression (ArithExp) with ai being
the answer to a question qi for a claim span ci
answered over evidence ei. The sequence of op-
erators O “ o1, . . . , ol is then the input to a finite
state automaton that specifies the claim’s veracity
label ŷ “ DFApOq. We follow the DFA for tex-
tual entailment described in Angeli and Manning
(2014), shown in Figure 2.

To enable the assignment of NatOps o to
ArithExps, we need to expand the set-theoretic
definition of these operators. To this end, we first
discuss the set-theoretic relationship for numerals
that occur in claim and evidence without the need
for further computation (Section 3.1). We subse-
quently expand this definition to ArithExps where
arithmetic functions are applied to evidence, by
mapping function executions on relevant evidence
to numerical representations (Section 3.2). Tab-
Ver produces its quintuples pci, ei, qi, ai, oiq by
first generating a question qi about a claim span
ci that contains salient information (Section 3.3).
This question is answered using the evidence E
by producing a rationale, consisting of extracted
evidence ei, the execution of appropriate arith-
metic functions on ei, and the final answer ai
(Section 3.4). Finally, a proof generation model
MP , trained on proofs containing ArithExps and
associated NatOps following our set-theoretic def-
initions, assigns a NatOp oi to the claim-answer
pair. TabVer follows QA-NatVer (Aly et al.,
2023) for the proof generation process by selecting
over multiple proof candidates.

3.1 A Set-theoretic Perspective on Numerals

We first define a set-theoretic interpretation of the
relationship between numerals in claim spans and
evidence (or answers calculated on the evidence
with ArithExps), within the context of natural
logic. Specifically, we consider five set-theoretic
relationships (NatOps) o P t”,Ď,Ě,N,ë, u.2

Figure 3 shows examples of numerical expres-
sions as evidence ei with the associated claim
span ci for each NatOp. For instance, a claim
span about a hundred goals would generally fol-
low from the evidence 99 goals since the explicit
adverbial modifier about widens the scope of the
numeral a hundred to a larger set, including, e.g.,
99 and 101. However, even bare numerals can
carry implicit meaning beyond the utterance it-
self, referred to as scalar implicature (Grice, 1975,
inter alia), and are subject to both semantics
and pragmatics.

Linguistic approaches to numerals typically
consider an upper-bounded (exact) and a
lower-bounded (at least) reading, depending on
several factors such as whether an environment is
upward- or downward-entailing3 (Panizza et al.,
2009). Suitably, the effect of these environments
on the entailment relationship between claim and
evidence is modelled explicitly in natural logic
(MacCartney, 2009), enabling these different
readings of numerals into a model of natural
logic. Since the majority of claims appear in
an upward-entailing environment, we focus
here on the set-theoretic reading of numerals
in an upper-bounded definition. We discuss a
downward-entailing projection of numerals when
following an at least reading in Appendix A. In
an upper-bounded reading, the terminology of
natural logic can be extended such that evidence
spans like 5 goals aligned to claim spans with
a strictly smaller number like two goals are
assigned the alternation NatOp (ë) since an
upper-bounded reading assumes that 2 goals and
5 goals are mutually exclusive without covering

2We do not define a mapping to the independence NatOp
(#) since it is applied when none of the other operators
are predicted. Similarly to Krishna et al. (2022) for textual
relations, we observe that the cover NatOp occurs only very
rarely, thus replacing it with the independence NatOp (#).

3Downward-entailing environments are, for instance,
negative environments, antecedent clauses of conditional
constructions, restrictors of universal quantifiers (Spector,
2013). Example for upward (downward) entailment: Messi
(has not) scored 50 goals in a season.
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Figure 3: A set-theoretic view on the relationship between claim spans ci and numerical expressions in the
evidence ei when following an upper-bounded (i.e., exact) interpretation of numerals.

the entire universe, i.e., all natural numbers (cf.
Appendix A).

Another component of a numeral’s reading to
consider is its pragmatic halo (Lasersohn, 1999),
where a number can represent a range of values
due to the intended degree of approximation to
the truth in a specific context. As seen earlier,
a halo can be indicated explicitly with modifiers
(cf. about), yet it is also often defined implic-
itly. For instance, a claim like ‘‘Messi scored a
hundred goals in the 2010 season.’’ might be con-
sidered supported by evidence that states he scored
101 goals in the context of an environment with
low requirements of numerical precision, e.g.,
on social media, since the communicated con-
tent ({100}) is weaker than the asserted content
(101 P t100u Y H100), with H100 being the prag-
matic halo of 100 as a set of (integer) numbers.4

However, the evidence would lead to the claim’s
refutation in an environment where exactness is
required, i.e., when H100 “ ∅5, e.g., statements in
scientific articles. The size of the pragmatic halo
typically increases with larger numbers, thus it be-
comes less necessary pragmatically to be precise.
Therefore, Vlachos and Riedel (2015) consider a
fixed threshold on the absolute percentage error
between numbers in a claim and evidence. Yet, in
reality, the halo of a number is more dynamic: In
decimal number systems, such as English, mul-
tiples of ten and five generally have a larger

4Note that this phenomenon is distinct from
truth-conditional vagueness where modifiers are hidden.
While a sentence like ‘‘Messi scored about 100 goals, he
scored 102.’’ is semantically valid, ‘‘Messi scored 100 goals,
he scored 102.’’ is not without explicitly correcting the pre-
vious statement with a modifier like actually; e.g., ‘‘Messi
scored 100 goals, actually he scored 102.’’ (Lauer, 2012).

5Lasersohn (1999) argues that the term exact also leaves
room for pragmatic slack at times, e.g., in a statement such
as Mary arrives exactly at 5 o’clock, where deviations by
milliseconds are permissible in most situations. We ignore
this notion for simplicity.

pragmatic halo than others due to the communica-
tive tool of rounding (Woodin et al., 2024). For
instance, the claim that Messi scored 100 goals
while evidence states he scored 101 is more likely
to be accepted than the reverse since 101 is not
expected to be a rounded number, hence |H100| >
|H101|. Conveniently, the pragmatic halo can be
expressed by natural logic via a projection to
the entailment NatOps (e.g., Frwd. Entailment in
Figure 3) and is learned on annotated proof data
(cf. Section 4.3).

3.2 Arithmetic Expressions

Since evidence ei is often stated in terms different
than those needed to verify a textual claim, e.g., as
seen in Figure 1, we introduce ArithExps, which
map tabular evidence to numerals by executing
arithmetic functions. ArithExps are function exe-
cutions that produce an answer ai for a question
qi to an associated claim span ci over relevant evi-
dence ei from the table E. For the computation of
ai we consider functions F : Rn Ñ R that take as
input evidence ei and output a single numeral. The
answer of the ArithExp is represented as the result
of the computation prepended by the function’s
name: NamepFq ‘ Fpeiq, with ei Ď E.6 Figure 1
shows the ArithExp SUM 12,238 (for the sum of
the cells 3,945, 1,126, 1,363, and 5,804) as answer
ai aligned to the claim span ci larger than 12,000.
To extend ArithExps to cover more complicated
computations, we enable function composition,
i.e., a function G as an input argument to F. The
ArithExp for function composition is the final
computation, i.e., F for FpGpEiq,GpEjq, ¨ ¨ ¨ q.

6Despite the ArithExp’s treatment as a numeral, the func-
tion name as part of ai is important since the semantics of a
numeral varies between arithmetic functions (e.g., COUNT
5 versus COMP 5) and thus affect the comparison against
claim span ci.
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Figure 4: Tabular question answering via a rationale
that produces the answer ai via an ArithExp. An LLM
jointly extracts relevant information from table cells
and executes appropriate functions. The generation is
constrained to permissible functions and to numbers
that appear in the evidence to alleviate hallucinations.

The full list of permissible functions F we con-
sider is shown in Figure 4. In addition to the
functions count, sum, diff, average, min, and max,
we consider comparative functions as a separate
function class. Comparatives could be modeled
by the diff function, thus subtracting quantities
between relevant arguments. However, we repre-
sent them as a unique ArithExp since they serve a
different semantic function in relation to a claim
span ci. The comparative ArithExp can be used
for both implicit (e.g., Person X had more votes
than Person Y) as well as explicit comparisons
(e.g., Person X had 5000 votes more than Person
Y) since the difference in quantity is indicative of
both polarity and magnitude. Finally, to cover the
base case where all relevant information is already
contained in ei (i.e., no computation is required,
cf. Section 3.1), we consider a copy function.

3.3 Question Generation

We generate questions that can directly be linked
to salient parts of a claim ci, as seen in Figure 1.
For instance, the question What is the total pop-
ulation of Ortegal in 2018 directly corresponds
to the claim span larger than 12,000. We use
a fine-tuned large language model MQGpc, T q,
which takes a claim c and a prompt template T as

input and autoregressively generates a collection
of questions q1 . . . ql along with their correspond-
ing targeted claim spans. The output is formatted
as a list of questions and claim spans 1. [q1] [c1]
2. [q2] [c2]¨ ¨ ¨ . To ensure that the generated claim
span occurs verbatim in the claim, we employ
constrained decoding to restrict the sampling of
ci to spans of the claim c (including c itself).
Thereby we prevent the model from introducing
words or phrases that are not present in the claim, a
behavior we observed even after fine-tuning. Ad-
ditionally, we use constrained decoding to enforce
the enumeration format defined in the prompt
above for generating multiple questions jointly.
By conditioning the generation of questions on
previously generated ones, we can improve cover-
age of salient information in the claim and reduce
the likelihood of redundant or repetitive questions
(Fan et al., 2020).

3.4 Tabular QA with ArithExps
The next step is to answer a generated question
qi using information from the evidence tables E
whilst using only permissible functions F to ob-
tain the answer ai and the ArithExp. We use a
fine-tuned language model MQA that takes as in-
put a question qi, associated with claim span ci,
and evidence tables E and it generates a rationale
J consisting of three parts: table-to-text conver-
sion to extract relevant evidence ei from table
cells in E, the execution of relevant arithmetic
functions on ei, and the answer representation ai.
The components of the rationale J are generated
jointly in an autoregressively fashion:

MQApJ | qi, Eq “

U
ź

u“1

pθpsu|său, qi, Eq

looooooooooomooooooooooon

pθpei|qi,Eq

¨

M
ź

m“1

pθpfm|făm, qi, ei, Eq

looooooooooooooomooooooooooooooon

pθpF|qi,E,eiq

with su and fm being decoded tokens over the ex-
tracted evidence ei from cells in E and arithmetic
functions F, respectively, and θ being the param-
eterization of MQA. The components of J are
generated using a different decoding scheme, il-
lustrated in Figure 4. To avoid hallucinations in the
extracted evidence ei, the probability pθpei|qi, Eq

is set to 0 for sequences where numbers in the
generated sequence do not occur in any table cells
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of E. The generation of pθpF|qi, E, eiq is con-
strained such that the first generated word needs
to be a trigger word for one of the permissible
functions F (such as Adding for sum), followed
by the function itself. Finally, the answer ai is
constructed deterministically from the rationale
to align with the representation of ArithExps as
described in Section 3.2. As shown in the example
Figure 4, the extraction of the population numbers
is constrained to numbers occurring in the evi-
dence table, such as 2018; 3,945; 1,126; 1,363;
and 5,804 (blue colour), the arithmetic computa-
tion is constrained to start with the trigger word
Adding (red color), followed by the execution of
the associated function, with the final answer ai
being SUM 12,238.

If no function is considered relevant to fur-
ther process the evidence ei, the model MQA

outputs N/A after the extraction of evidence and
subsequently does not return an ArithExp. If the
evidence tables do not contain any relevant infor-
mation to answer q, then the model returns N/A
as the relevant evidence ei, which is mapped
to an independence NatOp (#), leading to an
NEI verdict prediction according to the DFA (cf.
Figure 2). Parts of a claim that do not require sep-
arate questioning (such as In 2018 in Figure 1) are
assumed to be contained in extracted evidence for
answering questions about claim c. QA-NatVer’s
span alignment algorithm aligns these claim spans
to extracted evidence ei from all the questions
q1 . . . ql to the claim c.

4 Evaluation

4.1 Data

FEVEROUS We train and evaluate models on
the tabular subset of FEVEROUS (Aly et al.,
2021), i.e., the claims where all evidence elements
across all evidence sets are cells from tables.
FEVEROUS consists of complex claims and ta-
bles with irregular structures. To focus on the
natural logic-based tabular fact verification com-
ponent of fact-checking, we use gold evidence
tables (i.e., not ones selected via a retrieval system
from a knowledge source) throughout our exper-
iments. The resulting dataset consists of 2,011
claims, with 35%, 61.7%, and 3.2% being sup-
ported, refuted, and NEI claims, respectively (cf.
Appendix Table 8). Out of the 2,011 claims, 521
are labelled as requiring numerical reasoning.

Models are trained on 64 FEVEROUS in-
stances, selected uniformly from its training data.
The veracity labels in the resulting training data are
thus similarly imbalanced as the FEVEROUS de-
velopment data. To train TabVer we additionally
manually annotated these training instances with
rationales and natural logic proofs. These proofs
contain ArithExps as defined in Section 3.1. The
training distribution of arithmetic functions is also
imbalanced. For details see Appendix B.

TabFact We further evaluate models trained
on FEVEROUS in a domain transfer scenario
on TabFact (Chen et al., 2020), without further
training on the latter. Contrary to FEVEROUS,
TabFact only contains two veracity labels: Sup-
ported and Not Supported, the latter covering both
refutations and NEI instances. TabFact contains
only well-structured tables; the first row is al-
ways the table header. TabFact is designed to be
evaluated on gold evidence tables E. We evalu-
ate methods on its development set, consisting of
12,851 claims with evenly distributed labels, out
of which 4,424 are simple (R1) and 8,427 complex
claims (R2).

4.2 Baselines

We compare TabVer against strong baselines
that can be categorized into two classes: (i)
classifiers that predict a veracity label without
symbolic mechanisms or explanation produc-
tion (ii) symbolic reasoning models that produce
faithful explanations.

Classification models. DeBERTa+NLI is a
DeBERTaV3 model (He et al., 2023) fine-tuned
on multiple NLI tasks. PASTA (Gu et al., 2022) is
a DeBERTaV3 model further pre-trained on dif-
ferent tabular operations. TAPAS (Herzig et al.,
2020) is a transformer pre-trained on tabular
data with additional table-aware positional em-
beddings. TAPEX (Liu et al., 2022b) is based
on BART (Lewis et al., 2020), pre-trained as
an SQL executor and fine-tuned on tabular
data via table linearization. We follow typical
encoder-only fine-tuning, where a linear trans-
formation from embeddings to veracity labels
is jointly optimized with the pre-trained model
itself. Furthermore, we evaluate several LLMs, in-
cluding Llama2-Chat-7B (Touvron et al., 2023)
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and MistralOrca-7B (Jiang et al., 2023). We
fine-tuned the LLMs via LoRA (Hu et al., 2022).

Symbolic Reasoning Models. We compare
against LPA (Chen et al., 2020), a LISP-style
program synthesis algorithm with hand-crafted
functions and trigger words to prune the search
space. It incorporates a fine-tuned transformer to
rank candidate programs. SASP (Ou and Liu,
2022) is built on top of neural symbolic machines
(Liang et al., 2018) and considers both lexical and
structure features to constrain program candidates
and further uses TaBERT (Yin et al., 2020) and
an LSTM (Hochreiter and Schmidhuber, 1997)
for program generation. We also consider Binder
(Cheng et al., 2023), an approach that uses LLMs
to map tabular claims to SQL queries and to ex-
ecute specific API calls embedded in the queries
on tables. To maintain comparability with Tab-
Ver, Binder uses MistralOrca-7B as the LLM.
If no viable program can be found for a given
claim, LPA, SASP, and Binder fall back to an
NEI/Not Supported prediction. QA-NatVer (Aly
et al., 2023) constructs natural logic inference
proofs by casting natural logic operators into a
question-answering framework. We linearize the
evidence table and use the Flan-T5 3B backbone
(Chung et al., 2024).

4.3 Implementation Details

Claim Decomposition. A FEVEROUS claim
typically contains multiple factual statements
which might not all be covered by the anno-
tated evidence tables, since its annotations are
only required to be sufficient (but not necessar-
ily complete) to reach a verdict. Subsequently,
the annotation for a refuted claim might lack
evidence for some other parts of the claim, re-
sulting in erroneous NEI predictions. Thus, a
FEVEROUS claim c is decomposed into a list
of sub-claims C, such that each sub-claim is an
atomic statement contained in the claim. We use
a language model MD, fine-tuned on manually
annotated decompositions of the same FEVER-
OUS training instances described above. During
inference, the sub-claims are enumerated follow-
ing the question generation decoding scheme. The
decomposition prompt is shown in Appendix C.
The predictions for each subclaim are aggregated
into a final verdict ŷ via deterministic rules:

ŷ “ Supp iff @c P C.DFApOcq “ Supp
ŷ “ Ref iff Dc P C.DFApOcq “ Ref
ŷ “ NEI iff D{c P C.DFApOcq “ Ref

^ @{ c P C.DFApOcq “ Supp,

thus a claim c is supported, iff all subclaims are
supported by evidence, refuted iff there exists
a sub-claim that is refuted, and not enough in-
formation is predicted in all other cases. Since
these rules are deterministic, the final prediction
remains faithful. See Figure 5 for an example.

We use the same decomposition for TabVer
as well as all symbolic reasoning baselines we
consider to maintain comparability. Classification
models use the original claim as input instead,
since the impact of evidence incompleteness is
expected to be minimal and decomposition can
lead to error propagation. With the exception of
Wang and Shu (2023), who represent a claim as
a conjunction over subclaims, the aggregations
over verdicts of parts of a claim are executed
via neural mechanisms and thus do not guarantee
faithfulness (Chen et al., 2022; Zhao et al., 2024).

Experimental Setup. We do not consider a val-
idation set for hyperparameter-tuning, following
the real-world few-shot learning setting of Alex
et al. (2021). TabVer fine-tunes the question
generation model MQG, the question answering
model MQA, and the proof generation model
MP on annotated handcrafted rationales and
proofs described in Section 4.1. MQG, MQA,
and and the claim decomposition model MD are
MistralOrca-7B models, fine-tuned using LoRA
(Hu et al., 2022). We use the proof generation
model MP of Aly et al. (2023). Specifically,
we fully fine-tune a FlanT5-3B parameter model
and a smaller BART0 model (406M parameters)
(Lin et al., 2022) as MP to measure the ac-
curacy of TabVer across model sizes. While it
would be of interest to simplify TabVer by us-
ing MistralOrca-7B (or another powerful LLM)
for all components, the implementation in Aly
et al. (2023) currently only supports the training
of encoder-decoder models, following Liu et al.
(2022a). Furthermore, whileMQG,MQA, andMD

require language generation, the proof generation
model MP of Aly et al. (2023) solves a discrim-
inative task (answering binary/ternary questions),
for which encoder-decoders have shown to be
competitive to decoder-only models on smaller
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Full Numerical Execution Found
Accuracy Macro F1 Accuracy Macro F1 (%)

Majority Baseline 61.7 20.5 64.8 21.6 –
Classific. DeBERTav3 53.90.7 36.80.4 55.60.6 36.01.3 –

PASTA 54.62.8 34.10.4 55.34.3 32.61.4 –
TAPAS 53.67.6 35.94.1 52.97.3 33.83.4 –
TAPEX 53.61.5 34.00.9 52.83.4 32.92.1 –
Llama2-Chat-7B 56.04.0 30.91.6 55.06.1 30.92.5 –
MistralOrca-7B 68.01.1 45.44.4 64.53.2 43.63.0 –

Symbolic LPA (w/o decomp) 31.60.4 27.50.5 37.30.7 28.10.9 54%
LPA 21.80.1 21.40.2 22.30.4 21.30.4 41%
SASP (w/o decomp.) 52.92.6 29.81.8 55.13.4 29.31.9 98%
SASP 58.80.8 29.60.8 61.51.2 29.40.8 95.2%
Binder (w/o decomp.) 60.91.2 38.01.3 61.01.6 40.12.2 95.7%
Binder 62.71.4 37.31.3 63.71.8 39.31.6 95.4%
QA-NatVer 54.01.1 34.80.2 52.61.6 28.90.3 100%

TabVer BART0 69.90.3 49.40.9 66.70.3 42.40.8 100%
FlanT5-xl 71.40.5 51.00.5 70.11.3 45.80.3 100%

Table 1: Verdict accuracy and macro-averaged F1 on FEVEROUS. Numerical reports scores exclusively
on the subset of claims involving numbers. Execution found is the proportion for which a program or
proof was found.

scale (i.e., ď 11B parameters) (Chia et al., 2024).
We leave the exploration of alternative model
architectures and backbones for TabVer to future
work. Implementation details and the prompts for
all models are in Appendix C and A, respectively.
Results are averaged over five runs with standard
deviation indicated. In all other cases, results are
reported using default seed 42.

5 Results

FEVEROUS Results on FEVEROUS are
shown in Table 1, reporting both accuracy and
macro average F1 due to the dataset’s label
imbalance. TabVer outperforms all baselines
both on the full dataset as well as the numerical
reasoning subset by 3.4 and 5.6 accuracy points,
respectively. We see similar differences in terms
of F1 with a lead of 5.6 points. Except for the
LLM MistralOrca-7B baseline, all classification
models perform poorly in a few-shot scenario
on FEVEROUS. Llama2-Chat-7B model’s
surprisingly poor performance confirms previous
observations on few-shot tabular fact-verification
(Chen, 2023; Zhang et al., 2024a,b). In addition
to the classification baselines being outperformed
by TabVer, they lack transparency and faithful
explanations. To highlight TabVer’s data effi-
ciency, we compare it against a fully supervised
TAPAS classification model trained on 18,836

tabular FEVEROUS claims, where it achieves
an accuracy score of 73.0, performing only 1.6
accuracy points better than TabVer.

While symbolic reasoning baselines provide
faithful explanations, their performance is sub-
stantially worse than TabVer. Symbolic reasoning
systems that construct semantic representations
are unable to handle diverse and complex tabular
structures (e.g., nested table headers) as present
in FEVEROUS. For instance, the rule-based LPA
approach finds a suitable program only for 41% of
claims. The accuracy for claims where LPA finds
a program is 55.8 points, improving by 25.6 points
on its overall performance but still being outper-
formed substantially by TabVer. While the rate of
executable programs is much higher for SASP and
Binder due to the generation of programs being
neural-guided, the overall performance is worse
than TabVer, with a difference of 8.7 accuracy
points for the best performing symbolic baseline,
Binder. Finally, QA-NatVer has a 100% execu-
tion rate due to its flexibility by operating on
natural language similarly to TabVer, however,
the difficulty of aligning linearized evidence to
claims and the lack of arithmetic reasoning ca-
pabilities result in low scores. Interestingly, the
symbolic baselines perform better or comparably
on the numerical subset than on the full dataset,
while we observe the opposite for the majority
of classification models and natural logic-based
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Full R1 R2
Accuracy Macro F1 Accuracy Macro F1 Accuracy Macro F1

Full Supervision LPA 65.2 64.2 77.6 77.5 57.4 55.6
SASP 74.7 74.7 86.1 86.1 68.9 68.9
TAPAS 82.1 82.0 92.8 92.8 76.5 76.4

Classific. DeBERTav3 50.70.4 49.71.3 50.80.7 49.51.7 50.60.2 49.81.1

PASTA 50.40.6 46.15.6 50.61.1 46.46.1 50.40.5 45.95.4

TAPAS 53.95.9 53.06.8 58.810.6 58.511.3 51.33.6 49.94.7

TAPEX 49.74.3 44.35.1 49.53.4 47.63.8 49.82.9 43.32.9

Llama2-Chat-7B 51.21.6 47.34.2 51.52.5 47.84.3 51.11.2 47.04.2

MistralOrca-7B 60.63.1 58.16.0 67.24.2 65.95.8 57.22.6 53.36.4

Symbolic LPA 59.41.4 57.91.4 70.42.5 70.32.5 53.80.9 50.21.0

SASP 48.72.8 45.12.9 50.73.0 47.52.0 47.73.0 43.83.7

Binder 65.11.0 65.11.0 76.90.6 76.90.6 59.11.3 59.11.3

QA-NatVer 50.90.1 43.60.3 52.70.2 49.80.1 49.90.1 49.10.2

TabVer BART0 62.80.8 62.30.9 71.11.0 71.11.1 58.60.6 57.50.9

Flan-T5-xl 65.60.3 64.80.6 72.60.5 72.20.6 62.10.4 60.80.9

Table 2: Verdict accuracy and macro-averaged F1 in a transfer scenario on TabFact, when trained on
FEVEROUS. R1: Tabfact’s subset of simple claims. R2: TabFact’s subset of complex claims.

approaches, confirming the difficulty for these
meaning representations to model complex textual
claims correctly. Qualitative examples and repre-
sentation limitations are discussed in Appendix
Figures 6 and 7.

TabFact. Results in a domain-transfer scenario
without TabFact training data are shown in
Table 2. TabVer still remains competitive with our
baselines with an accuracy lead of 0.5 accuracy
points and an F1 of 0.3 points worse than the best
baseline (Binder). The performance against the
symbolic reasoning systems is particularly note-
worthy since LPA and SASP have been designed
specifically for TabFact, and Binder’s SQL pars-
ing excels at well-structured tables. Subsequently,
LPA, SASP, and Binder find viable programs
more frequently than on FEVEROUS, with 78%,
99.8%, and 100%, respectively. Binder performs
the best out of all baselines, outperforming TabVer
particularly on simple claims (R1) that do not re-
quire complex reasoning to predict correctly. Yet,
on complex claims (R2) TabVer performs better
than Binder. Binder’s performance discrepancy
between FEVEROUS and TabFact is noteworthy,
highlighting a fundamental limitation to previous
approaches when applied to diverse tables (cf.
Listing 4), which TabVer successfully addresses.

Training classification baselines, such as
TAPAS, on Tabfact’s 92,283 training samples, us-
ing the same experimental setup, results in scores
substantially outperforming all considered mod-

els (82.1 accuracy points). In contrast, TAPAS
achieves a score barely above random in our
transfer setting (53.9 accuracy points) since the
small training size is insufficient for fine-tuning
the model to the task and learning the linear trans-
formation described in Section 4.3. This problem
is exemplified with TAPEX as it is pre-trained
only on SQL queries, necessitating substantial
data during fine-tuning to learn a mapping to
natural language. Compared to fully-supervised
symbolic systems, TabVer remains competitive
to LPA with an accuracy lead of 0.4 points, but
falls behind SASP substantially with an accuracy
difference of 9.1 accuracy points.

Reading of Numerals. We further analyze Tab-
Ver’s reading of numerals by isolating its ability
to consider the context of numbers mentioned
in a claim.7 We automatically construct a di-
verse probing dataset that considers variations of
numbers in supported claims by adding numerical
inaccuracies, rounding numbers, adding modifiers
(i.e., approximately, about, around), and adding
cardinal determiners (i.e., at most/least). We mea-
sure the proportion between veracity predictions

7The ability of models to make pragmatic inferences has
been explored in Jeretic et al. (2020), however, their dataset
was constrained to a minimal scenario with four numbers
(2, 3, 10, 100) and two quantifiers (some, all). Importantly,
while their dataset focuses on correctness, our goal is instead
to probe a model’s reading of numerals.
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Class. Binder TabVer
Inaccuracy Δ +1 63.4% 57.7% 36.3%
Inaccuracy Δ 2% 42.7% 38.4% 29.1%
Inaccuracy Δ 10% 37.8% 38.4% 26.3%
Inaccuracy Δ 25% 31.7% 51.9% 23.6%
Rounding 33.3% 47.4% 30.3%
Modifiers (e.g., about) 40.6% 56.4% 57.0%
Cardinal (incorrect) 32.9% 53.8% 31.8%
Cardinal (correct) 37.8% 78.8% 49.1%

Table 3: Probing how modifications to numbers
impact veracity predictions. We report the pro-
portion of claims for which a veracity prediction
correctly labelled as supported does not flip af-
ter an edit to a claim’s numeral. We consider
absolute and relative numerical inaccuracies, ap-
proximations, explicit modifiers, and cardinals.

correctly labelled as supported and veracity pre-
dictions that remain supported after an inserted
numeric variation. The probing dataset consists
of 1638 claims. For a detailed description of the
constructed variations see Appendix D.

Table 3 shows the results of the probe for Tab-
Ver, Binder, and the MistralOrca-7B classification
baseline. TabVer is substantially more sensitive
to small numeric inaccuracies. Only for 36.3%
is the claim’s prediction maintained when adding
1 to the original number, compared to 63.4%
and 57.7% for Binder and the classifier, respec-
tively. This trend is also observed for relative
numerical inaccuracies and rounded numbers. We
argue TabVer’s behavior is more representative
of its training data, since FEVEROUS instances
are annotated to be refuted if numbers men-
tioned without modifier do not match exactly
due to the guidelines given to annotators (Aly
et al., 2021). In contrast, when adding explicit
modifiers we observe that TabVer maintains its
prediction more frequently than our baseline, with
57% versus 40.6% and 56.4% for the classifier
and Binder, respectively. Finally, TabVer’s more
nuanced reading of numerals is also seen for car-
dinals: While the classifier cannot differentiate
between incorrect cardinal determiners (e.g., 12
being modified to at most 10 and changing the
veracity label, and at most 15 while preserving
it), both TabVer and Binder differentiate between
the two. Yet, Binder overall favours the predic-
tion of supported, due to the answer-biased voting
strategy deployed by Cheng et al. (2023).

LPA Binder TabVer
Overall 43.8 76.5 76.0
Filter/Copy 41.7 85.6 90.4
Comparisons 33.3 0.0 25.0
Count 75.0 85.7 46.4
Sum 0.0 100.0 100.0
Diff 0.0 0.0 16.6
Min/Max 0.0 0.0 0.0

Table 4: Evaluation of arithmetic functions incor-
porated in TabVer’s proofs, compared to LPA and
Binder.

ArithExp Constr. Rationale Decomp Full Num.
✓ ✓ ✓ ✓ 72.0 71.4
✓ ✗ ✓ ✓ 69.2 66.2
✗ ✗ ✓ ✓ 66.1 61.0
✗ ✗ ✗ ✓ 60.9 59.9
✓ ✓ ✓ ✗ 66.3 63.7
✗ ✗ ✗ ✗ 44.6 43.0

Table 5: Ablation study on the components of
TabVer.

Correctness of ArithExps. To assess the qual-
ity of natural logic proofs with invoked ArithExps,
we randomly select 160 FEVEROUS samples and
annotate the arithmetic functions required to reach
the correct verdict. We compare these annotations
with functions identified by TabVer in the final
proof used to assess the claim’s veracity. LPA’s
programs are used as a comparison baseline. As
seen in Table 4, the overall accuracy of TabVer’s
arithmetic function calls outperforms the LPA
baseline with 76.0 versus 43.8 accuracy points,
and is comparable with Binder’s score of 76.5.
The largest performance lead for Binder is ob-
served for the count function whereas TabVer is
more accurate at comparisons.

TabVer Ablation. Table 5 shows an ablation
study of TabVer’s components. We see a sub-
stantial performance decline when removing the
generation of ArithExps, dropping accuracy on the
numerical subset by 10.0 accuracy points. When
additionally removing the extracted evidence ei
from the rationale and instead falling back to table
linearization, we observe performance compara-
ble to QA-NatVer, as expected. In line with our
expectations, a major accuracy drop is observed
on the full FEVEROUS data since the extraction
and formatting of evidence is particularly useful
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Figure 5: Illustrating claim decomposition and verdict aggregation. Further, claim decomposition partially
addresses the issue of producing less informative predictions by constraining natural logic to left-to-right
execution.

for non-arithmetic claims. Finally, the removal of
claim decomposition results in accuracy scores
worse than the majority baseline. We observe that
the removal of claim decomposition results in sub-
stantially more NEI predictions for longer claims,
further discussed in Section 6.

6 Limitations

While the addition of arithmetic reasoning ca-
pabilities addresses a vital limitation of natural
logic-based systems, TabVer is not attempting to
modify natural logic’s model of compositional
entailment itself (i.e., the DFA in Figure 2). Nat-
Log fails some inferences, such as De Morgan’s
laws for quantifiers, generally having less de-
ductive power than first-order logic (MacCartney
and Manning, 2014; Karttunen, 2015). In con-
trast, TabVer incorporates relevant reasoning
processes in the generated proof either explic-
itly, e.g., ArithExps and claim decomposition, or
latently, e.g., the assignment of NatOps between
an aligned claim and evidence span. Moreover,
inference rules that cannot be produced by Nat-
Log affect the granularity of the proof: Consider
a natural-language instantiation of De Morgan’s
law from MacCartney (2009) where the claim
‘‘Some birds do not fly’’ is entailed by the ev-
idence ‘‘Not all birds fly’’. Due to NatLog’s
limitations, the most fine-grained correct proof
would be to align (Not all, Some do not),

(birds, birds) and (fly, fly) to produce the proof
S ”

ÝÑ S ”
ÝÑ S ”

ÝÑ S ; thus the reason-
ing between the negations and quantifiers in the
aligned pair required to arrive at the set-theoretic
relation is omitted from the proof itself. There-
fore, the proofs of TabVer are not necessarily
fully comprehensive explanations, as they do not
fully explain the production of the proof.

Moreover, proofs of TabVer do not allow
assigning NatOp sequences to individual claim
spans, such as cat Ñ dog Ñ poodle, which can
be a limitation for multi-hop claims where mul-
tiple pieces of evidence from one or more tables
have to be combined for a single span beyond
arithmetic functions. Furthermore, proofs are pro-
duced and executed from left to right. However,
NatLog does not impose such constraints and is in-
stead non-deterministic by design. This can lead to
inconsistencies, as the rearrangement of a NatOp
sequence O can lead to differently informative
veracity predictions (MacCartney and Manning,
2009; Angeli et al., 2016). For instance, con-
sider a variation of the running example shown in
Figure 5: ‘‘In 2018, Ortegal had three munici-
palities and a population larger than 12,000.’’.
Assuming the same NatOp relations are as-
signed, an NEI verdict would be produced: S
”
ÝÑ S ë

ÝÑ R Ď
ÝÑ N . TabVer mitigates

this issue via two mechanisms: (i) using claim
decomposition to avoid long proofs where such
phenomena occur, and (ii) considering multiple
proof candidates at different granularity levels,
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following Aly et al. (2023) (e.g., three munic-
ipalities and a population larger than 12,000
could be considered a single span with the ë

NatOp). As shown in Figure 5, by breaking the
original claims into atomic units of informa-
tion, the individual subclaim verdicts (via DFA
transitions S ”

ÝÑ S ”
ÝÑ S ë

ÝÑ R and
S ”

ÝÑ S ”
ÝÑ S Ď

ÝÑ S for subclaim 1 and
2, respectively) aggregate into the correct overall
verdict. Both mechanisms also help in dealing
with complex, multi-clause claims, where multi-
ple erroneous and independent facts can lead to
NEI predictions (double åæ)—another weak point
of natural logic’s nondeterministic composition of
NatOps.

7 Conclusion

This paper presented TabVer, a natural logic
inference system that adds arithmetic reason-
ing capabilities for few-shot fact verification
on tables. We presented a set-theoretic defini-
tion between numerals in a claim and answers
calculated on evidence via ArithExps. We pro-
posed a method for leveraging LLMs to generate
ArithExps via claim-aware question generation
and rationale-guided question answering with
constrained decoding. TabVer outperforms all
baseline systems on FEVEROUS and in a
domain-transfer setting on Tabfact, highlight-
ing our model’s generalizability. We show that
TabVer has learned a nuanced understanding
of numerals, more sensitive to the context of
a claim than other baselines. Future work in-
vestigates natural logic for scalar implicature on
diverse datasets with different requirements for
numerical precision.
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A Method Details

Table 6 shows the set-theoretic definitions of
NatOps o P O. The effect of environments on the
entailment relations is modelled in natural logic
via projection functions ρ : O Ñ O (MacCartney
and Manning, 2009). The upward-entailing
environment is the default environment with
the projection function being the identity.
Table 7 shows the projection function ρÓ for
downward-entailing environments. This projec-
tion function can now be further modified in the
context of a numeral’s reading in such an environ-
ment, following Panizza et al. (2009). Consider
the following example: In an upward-entailing
environment, the relationship 3 ë 4 holds, i.e.,
the numbers 3 and 4 are assigned the alternation
NatOp following the upper-bounded reading in
Section 3.1. However, in a downward-entailing
environment, we see that Everybody who scored
3 goals received a bonus Ď Everybody who
scored 4 goals received a bonus holds instead,
since the numbers have an at least interpretation
without further specification, following Panizza
et al. (2009). The projection function ρnumÓ from
an upward-entailing to a downward-entailing

NatOp Set-theoretic
Equivalence (”) x “ y
Frw. Entailment (Ď) x Ă y
Rev. Entailment (Ě) x Ą y
Negation (N) x X y “ ∅ ^ x Y y “ U
Alternation (ë) x X y “ ∅ ^ x Y y ‰ U
Independence (#) All other cases

Table 6: Natural logic operators (NatOps) and
their set-theoretic definitions.

o ” Ď Ě ë N #

ρÓpoq ” Ě Ď ! N #
ρnumÓpoq Ď Ě Ď Ď,Ě ! #

Table 7: A projection ρnumÓ for NatOps concerning
numerals for downward-entailing environments.
The cover (!) NatOp is shown here for
completeness only.

environment that results from such an at least
reading of numerals is shown in Table 7. The
prompt templates for MQG and MQA are shown
in Listing 1 and 2, respectively.

Training & Hyperparameters We fine-tune
the question generation MQG and question
answering MQA model using default hyperparam-
eters. Specifically, we use a learning rate of 2´4

and train for a total of 10 epochs across all models
and experiments. The maximum generation length
for MQG is set to 100 tokens for the generation of
question, and the constraint answer selection is set
to any-length span in c. For MQA the maximum
length of Erel is 100 tokens between every gen-
erated number. We use adamw (Loshchilov and
Hutter, 2019) as the optimizer. We use a batch size
of 1 during training with gradient accumulation,
resulting in an effective batch size of 8. For LoRA,
we use a rank r “ 16 and apply it to the query
and value vectors of the attention mechanism. For
fine-tuning, we exclude tokens of the prompts
from the loss computation that are not part of
the gold answer, so we are not fine-tuning the
instructions, only the answers that follow after the
instruction. For our proof generation model MP

we use the default hyperparameters of QA-NatVer
(Aly et al., 2023).
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Property All Numerical Subset
Number of claims 2011 521
Claims with more than 1 table 129 36
Supported claims 704 (35%) 178 (34.1%)
Refuted claims 1242 (61.7%) 338 (64.8%)
NEI claims 65 (3.2%) 5 (1%)
Avg. number of rows 14.3 15.1
Avg. number of col 4.82 5.9
Avg. num highlighted cells 4.85 7.3

Function annotations on 160 samples
Num. COPY 143 –
Num. COMPARATIVES 12 –
Num. COUNT 28 –
Num. SUM 1 –
Num. DIFF 6 –
Num. MIN/MAX 3 –

Table 8: Quantitative characteristics of the tabular
FEVEROUS subset.

B Dataset Details

Quantitative characteristics of the tabular subset
of FEVEROUS are shown in Table 8. The ta-
ble further shows the statistics for the function
annotations of 160 claims. The claims were sam-
pled randomly and annotated by the authors of
the paper as function annotations are made irre-
spectively of any model, limiting potential biases.
Note that annotations are in a multi-label format

since multiple functions can be required to verify
a single claim.

C Implementation Details

The prompt template for the decomposition model
MD is shown in Listing 3. We use the Huggingface
checkpoints for LLama2-7B,8 MistralOrca-7B,9

TAPAS,10 and TAPEX.11 The PASTA check-
point is taken from the associated repository.12

For constrained decoding, we used the library
guidance-ai.13 The Mistral models are licensed
under Apache2.0 and Llama2 is licensed under
the llama license.14 Our research is consistent
with the licenses’ intended use. The models are

8https://huggingface.co/meta-llama/Llama
-2-7b-chat-hf.

9https://huggingface.co/Open-Orca
/Mistral-7B-OpenOrca.

10https://huggingface.co/google/tapas
-large.

11https://huggingface.co/microsoft
/tapex-large.

12https://github.com/ruc-datalab/PASTA.
13https://github.com/guidance-ai.
14https://github.com/facebookresearch

/llama/blob/main/LICENSE.
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intended for use in English. All experiments are
run on a single Quadro 8000 with 48GB memory.
To fine-tune MP with a Flan-T5-3B backbone we
use a single A100 80GB.

Baselines We use the available implementations
for LPA,15 SASP,16 and Binder.17 Identically to
Tabfact, all three models consider the the first table
row of a FEVEROUS table as the header row. LPA
was trained for 20 epochs since the default number
of training epochs (10) was not sufficient to reach
convergence. Binder uses the default hyperparam-
eters as specified for Tabfact, but we use 4 instead
of 18 in-context examples as MistralOrca, with
a full number of in-context examples, produced
empty answers very frequently. We hypothesise
that MistralOrca generates the end of text token
too early since the OpenOrca dataset, on which
MistralOrca7B has been instruction-tuned, con-
sists of gold answers which are in 93% of the
cases shorter than 2.5K tokens. We train De-
BERTa, PASTA, TAPEX, and TAPAS using the
HuggingFace Trainer for 10 (100) epochs with full
(few-shot) data and a learning rate of 1 ˆ 10´5.18

To sanity check our training pipeline, we trained

15https://github.com/wenhuchen/Table
-Fact-Checking.

16https://github.com/ousuixin/SASP.
17https://github.com/xlang-ai/Binder.
18https://huggingface.co/docs

/transformers/en/main classes/trainer.

TAPAS in a full supervision setting on Tab-
Fact’s 92,283 training instances, achieving a score
of 82.1 accuracy points versus 81.59 points via
the official model checkpoint.19 To fine-tune the
LLM baselines with LoRA, we use Huggingface’s
SFTTrainer.20

D Reading of Numerals Probe - Details

We construct the probing dataset by first filter-
ing instances from the FEVEROUS evaluation
data labeled as Supported that contain numbers,
excluding dates (e.g., 1939) but including percent-
ages and floating point numbers. Afer a further
manual inspection a total 91 claims remain. For
eachclaim, we generate 17 variationsof a numeral x:

(1) x ` 1 (Adding one)

(2) x ` x ˚ 0.02 (Adding 2%)

(3) x ´ x ˚ 0.02 (Subtracting 2%)

(4) x ` x ˚ 0.1 (Adding 10%)

(5) x ´ x ˚ 0.1 (Subtracting 10%)

(6) x ` x ˚ 0.25 (Adding 25%)

(7) x ´ x ˚ 0.25 (Subtracting 25%)

(8) rounding via closest number to x that satisfies: x1

1˚10y ď

9 (10-ness)

(9) rounding via closest number to x that satisfies: x1

5˚10y ď

9 (5-ness)

19https://huggingface.co/google/tapas
-large-finetuned-tabfact.

20https://huggingface.co/docs/trl/en
/sft trainer.
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(10) rounding via closest number to x that satisfies:
x1

2.5˚10y ď 9 (2.5-ness)

(11) (About|Around|Approximately) + 10-ness (Modifier
10-ness)

(12) (About|Around|Approximately) + 5-ness (Modifier
5-ness)

(13) (About|Around|Approximately) + 2.5-ness (Modifier
2.5-ness)

(14) ‘At most’ + (Subtracting 10%) (Cardinal at most,
incorrect)

(15) ‘At least’ + (Adding 10%) (Cardinal at least, incorrect)

(16) ‘At most’ + (Adding 10%) (Cardinal at most, correct)

(17) ‘At least’ + (Subtracting 10%) (Cardinal at
least, correct)

Rounding to numbers that satisfy the 10-ness,
5-ness, and 2.5-ness property follows the empirical
observation by Jansen and Pollmann (2001) that

round numbers satisfying this arithmetic property
occur more frequently than round numbers that
do not. For instance, the number 1010 does not
satisfy either 10-ness, 5-ness, or 2.5-ness and
would generally be considered an atypical way
of rounding (1000 would most likely be more
natural). We follow the terminology of Keenan
(2017) to describe the modifiers at most and at
least as cardinal determiners.

We categorize these variations into the numeri-
cal classes shown in Table 3 as follows: Inaccuracy
Δ +1: Variation 1.

Inaccuracy Δ 2%: Average of Variation 2 + 3.
Inaccuracy Δ 10%: Average of Variation 4 + 5.
Inaccuracy Δ 25%: Average of Variation 6 + 7.
Rounding: Average of Variation 8 + 9 + 10.
Modifiers: Average of Variation 11 + 12 + 13.
Cardinal (incorrect): Average of Variation 14 + 15.
Cardinal (correct): Average of Variation 16 + 17.
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Figure 6: Output produced by TabVer. For comparison, we show Binder’s output. While more compact, Binder’s
SQL query is less readable and omits relevant context from its query (2008 Washington primary).
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Figure 7: Output produced by TabVer. For comparison, we show Binder’s output. In contrast to TabVer in its
natural logic formulation, Binder’s query is unable to handle probabilistic enrichment of natural language, for
instance, due to typing errors (e.g., Asiacom Philippines, Inc.).
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