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Abstract

This paper introduces Filtered Corpus Train-
ing, a method that trains language models
(LMs) on corpora with certain linguistic con-
structions filtered out from the training data,
and uses it to measure the ability of LMs to
perform linguistic generalization on the basis
of indirect evidence. We apply the method
to both LSTM and Transformer LMs (of
roughly comparable size), developing filtered
corpora that target a wide range of linguistic
phenomena. Our results show that while trans-
formers are better qua LMs (as measured by
perplexity), both models perform equally and
surprisingly well on linguistic generalization
measures, suggesting that they are capable of
generalizing from indirect evidence.

1 Introduction

Language models (LMs) play an increasingly large
role in natural language processing systems and
have become capable of producing surprisingly
fluent and grammatical text. However, the mech-
anisms underlying the acquisition and use of such
linguistic proficiency remain largely unknown. In
particular, the degree that language learning relies
on memorization versus generalization remains a
topic of investigation (Hupkes et al., 2023). The
reliance of LMs on large amounts of training data
raises the suspicion that they do not generalize
in a ‘‘human-like manner’’ (McCoy et al., 2019;
Hu et al., 2020; Oh and Schuler, 2023b), but it
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is hard to address such questions with traditional
evaluation metrics such as perplexity.

This paper introduces Filtered Corpus Training
(FiCT) as a method for measuring the linguistic
generalization abilities of language models. As de-
picted in Figure 1, FiCT involves training models
on corpora that have been filtered to remove spe-
cific linguistic constructions, thereby testing the
models’ ability to generalize beyond their training
data. For example: We can train a model on a
corpus that has never seen subjects modified by
a prepositional phrase (e.g., ‘‘A sketch of lights
{doesn’t / *don’t}...’’), and then ask whether it
can judge the grammaticality of such sentences.
If a model has learned that verbs must agree with
the head noun of the subject noun phrase (NP),
and that NPs can be modified by PPs (e.g., from
seeing these in object but not subject position), it
should be capable of generalizing to the unseen
PP-modified subjects.

This method enables us to ask whether models
can form relevant linguistic generalizations from
indirect evidence, or whether they require direct
evidence (e.g., examples of constructions during
training; Warstadt and Bowman, 2022; Mueller
and Linzen, 2023). In essence, by intervening on
patterns in the training data we obtain a more
causal account of the relation between training
data and model behavior (Pearl, 2009). Further-
more, by carefully controlling for the number of
parameters, we can investigate the inductive bi-
ases of two major LM architectures, Transformers
and LSTMs, which allows us to give more detailed
answers about the recent successes of Transformer
models on a fine-grained linguistic level.

We apply the FiCT methodology by develop-
ing filters targeting a wide range of the linguistic
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Figure 1: Overview of the Filtered Corpus Training
methodology (FiCT). For a linguistic construction of
interest (e.g., prepositionally modified subjects), we
filter out sentences containing that construction and
train a new language model on the filtered corpus. We
measure performance on targeted syntactic evaluations
to assess the capacity of the LM to generalize from
related constructions to this novel, unseen construction.

phenomena evaluated by BLiMP (§3; Warstadt
et al., 2020) and training both LSTM and Trans-
former LMs on the resulting corpora (§4). Our
results (§5) show that while Transformers are uni-
formly better qua language models (as measured
by perplexity), their linguistic generalization abil-
ities are not better than that of the LSTMs (as
measured by a metric we introduce called accu-
racy delta), demonstrating a dissociation between
perplexity and linguistic generalization. Further-
more, for both models, the impact of filtered
corpus training on grammaticality judgments is
quite low, suggesting that language models are
able to form sophisticated linguistic generaliza-
tions on the basis of only indirect evidence (as
discussed in §6).

These results shed light on the debate between
memorization and generalization in language
models: By causally intervening on the train-
ing data, we ensure that models have never seen
instances of their evaluation targets. That they
can still make correct grammaticality judgments

shows they generalize in subtle and linguistically
relevant ways that go beyond their training data.

2 Background

2.1 Surprisal Theory

Language modeling performance can be measured
using perplexity, indicating a model’s fit to a cor-
pus distribution. Intuitively, one might expect that
lower perplexity leads to more human-like linguis-
tic behavior. This connection has been explored
in detail in the context of surprisal theory (Hale,
2001; Levy, 2008): Encountering a highly sur-
prising token results in a longer reading time.
Initial findings indicate that lower perplexity,
as measured by language models, leads to bet-
ter reading time predictions (Fossum and Levy,
2012; Goodkind and Bicknell, 2018; Wilcox
et al., 2020), although affected by model ar-
chitecture (Hao et al., 2020), cross-lingual
effects (Kuribayashi et al., 2021), and syn-
tactic ambiguity (Arehalli et al., 2022). It
has been shown, however, that lower perplex-
ity only results in better predictive power up
to around 2 billion training tokens (Oh and
Schuler, 2023a): After this point LMs become
too accurate at predicting low-frequency con-
structions and long-distance dependencies (Oh
et al., 2024). The present paper also explores the
connection between perplexity and human-like
linguistic behavior and will find a dissociation
with perplexity.

2.2 Targeted Syntactic Evaluations

Perplexity should be augmented with other eval-
uations that specifically target the models’ ability
to generalize in a human-like way. Such investiga-
tions often draw on psycholinguistic paradigms,
treating language models as participants in order
to learn what such models ‘‘know’’ about spe-
cific linguistic phenomena (Futrell et al., 2019;
Warstadt et al., 2019b; Ettinger, 2020). A com-
mon paradigm in this body of literature, usually
referred to as ‘‘targeted syntactic evaluations’’
(Linzen et al., 2016; Jumelet and Hupkes, 2018;
Marvin and Linzen, 2018; Kann et al., 2019;
Newman et al., 2021) involves comparing lan-
guage models’ preferences between minimal pairs
of sentences: A model is deemed to understand a
phenomenon if it assigns a higher probability to
the grammatical alternation.
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The benchmark suites with the widest cover-
age over linguistic phenomena are SyntaxGym
(Gauthier et al., 2020) and the Benchmark of Lin-
guistic Minimal Pairs (BLiMP, Warstadt et al.,
2020), the latter of which we will use in our
experiments. BLiMP consists of 67 different
benchmarks, each consisting of 1,000 minimal
pairs, which target twelve different linguistic
areas, broadly construed, across morphology, syn-
tax, semantics, and the syntax-semantics interface.
This is the benchmark we use as a primary
means of evaluation in the present investigation,
discussed in greater detail in §4.

2.3 Linguistic Generalization

While targeted syntactic evaluations give an in-
sight into a model’s linguistic competence, it
does not show how a model acquires this no-
tion of grammaticality. In this paper we focus on
two kinds of linguistic generalization. Structural
generalization (Hupkes et al., 2023) asks: Can
language models make grammaticality judgments
in syntactically more complex constructions than
seen during training? One line of work approaches
this question from a fine-tuning perspective: By
fine-tuning a model on a particular set of construc-
tions we can measure the impact that this has on
other linguistic constructions (Prasad et al., 2019;
Weber et al., 2024). Lexical generalization asks
whether models can generalize a seen construction
to new lexical items that it has not seen in that
construction (Kim and Linzen, 2020).

In order to gain a causal perspective on how the
training data influences model performance, we
retrain models from scratch on filtered corpora.
This methodology has been deployed in earlier
work to investigate how LMs learn the licens-
ing conditions of negative polarity items from
different contexts (Jumelet et al., 2021; Weber
et al., 2021). Warstadt (2022) investigates the
poverty of the stimulus debate through the lens
of filtered corpora, focusing on the phenomenon
of subject auxiliary inversion. Finally, Misra and
Mahowald (2024) investigate rare adjective-noun
constructions and manipulate training corpora to
investigate how models acquire an understand-
ing of rare constructions. Whereas most of these
focus on a particular linguistic construction, our
work applies the approach to a wide range of
phenomena.

3 Filtered Corpus Training (FiCT)

This section first introduces the logic of the FiCT
method before detailing the specific filters that
we use in our experiments. The final experimental
setup is described in §4. Code and data, as well as
a link to all models on the HuggingFace Hub, can
be found at https://github.com/CLMBRs
/corpus-filtering.

3.1 Logic of the Method

The core methodological basis of this paper is what
we call Filtered Corpus Training, or FiCT. This
involves comparing the performance of otherwise
identical learners that are trained on data which
differs in some interesting way.

In this paper, the FiCT methodology is primarily
used to test whether LMs are capable of extrapo-
lating linguistic rules learned from environments
in training data to unseen environments. In order
to ensure that the specified environments are not
seen in the training data, we use filters to remove
sentences with the specified environments from a
naturalistic corpus. By comparing models trained
on the ablated data and models trained on the full,
naturalistic corpus, we can potentially determine
whether, how, and when language models are able
to make such generalizations.

Figure 1 illustrates the logic of our method.
The sentence pair ‘‘A sketch of lights {doesn’t /
*don’t} appear’’ contains a subject with a preposi-
tional phrase (PP) modifying a noun, itself with a
noun that differs in number from the main subject.
We filter from the training corpus all sentences
with subjects containing PP modifiers, and then
compare the ability to make the correct grammat-
icality judgments on this pair between a model
trained on the full corpus and this filtered cor-
pus. This difference in performance we call accΔ
(formally defined in §4). A model that has not
seen PP-modified subjects could still make the
correct judgments by forming the following gen-
eralizations: Verbs agree with the head noun of
the subject, and noun phrases with PP modifiers
(which can be seen in object, but not subject po-
sition) are headed by the main noun. Low accΔ
would then provide evidence that the model has
developed such generalizations.

The filters used in the present investigation
are listed in Table 1, along with the BLiMP
benchmark(s) each targets, and some descrip-
tive summary statistics for each. These filters

1599

https://github.com/CLMBRs/corpus-filtering
https://github.com/CLMBRs/corpus-filtering


Corpus name BLiMP benchmark Example %BLiMP %sentences #Tokens as
items targeted filtered out % of full

FULL – – – 0.00 100.0
AGR-PP-MOD distractor agr relational noun A sketch of lights doesn’t/*don’t appear 99.5 18.50 95.80
AGR-REL-CL distractor agr relative clause Boys that aren’t disturbing Natalie suffer/*suffers. 94.4 2.76 98.99

AGR-RE-IRR-SV

irregular plural subject verb agr 1 This goose isn’t/*weren’t bothering Edward. 99.4

11.29 98.59
irregular plural subject verb agr 2 The woman/*women cleans every public park. 97.2
regular plural subject verb agr 1 Jeffrey hasn’t/*haven’t criticized Donald. 99.3
regular plural subject verb agr 2 The dress/*dresses crumples. 99.1

NPI-ONLY
only npi licensor present Only/*Even Bill would ever complain. 100

0.09 99.93
only npi scope

Only those doctors who Karla respects ever . . . /

*Those doctors who only Karla respects ever ...
100

NPI-SENT-NEG
sentential negation npi licensor present Those banks had not/*really ever lied. 100

0.45 99.82
sentential negation npi scope

The turtles that are boring me could not ever . . . /

*The turtles that are not boring me could ever ...
100

NPI-SIM-QUES matrix question npi licensor present Should I ever join? / *I should ever join. 100 0.01 99.98

QUANTIFIER-SUPERLATIVE
superlative quantifiers 1 No man has revealed more than/*at least 5 forks. 98.5

7.29 97.72
superlative quantifiers 2 An/*No actor arrived at at most 6 lakes. 99.3

QUANTIFIER-EXISTENTIAL-THERE existential there quantifiers 1 There aren’t many/*all lights darkening. 99.1 1.15 99.82

BINDING-C-COMMAND principle A c command
A lot of actresses that thought about Alice

healed themselves/*herself.
96.6 0.01 100.0

BINDING-CASE
principle A case 1 Tara thinks that she/*herself sounded like Wayne. 100

1.54 99.54
principle A case 2 Anna imagines herself praising/*praises this boy. 92.5

BINDING-DOMAIN

principle A domain 1 Carlos said that Lori helped him/*himself. 100
0.44 99.84principle A domain 2 Mark imagines Erin might admire herself/*himself. 99.3

principle A domain 3
Nancy could say every guy hides himself. /

*Every guy could say Nancy hides himself.
99.5

BINDING-RECONSTRUCTION principle A reconstruction It’s herself who Karen criticized / *criticized Karen. 99.1 0.01 99.99

PASSIVE
passive 1 Jeffrey’s sons are insulted/*smiled by Tina. 96.9

2.67 99.57
passive 2 Most cashiers are disliked/*flirted. 98.9

DET-ADJ-NOUN

det noun agr with adj 1 Tracy praises those lucky guys/*guy. 95.6

1.14 99.78
det noun agr with adj 2 Some actors buy these/*this gray books. 93.0
det noun agr with adj irregular 1 He shouldn’t criticize this upset child/*children. 92.0
det noun agr with adj irregular 2 That adult has brought that/*those purple octopus. 93.9

DET-NOUN

det noun agr 1 Craig explored that grocery store/*stores. 99.7

0.47 99.95
det noun agr 2 Carl cures those/*that horses. 99.8
det noun agr irregular 1 Phillip was lifting this mouse/*mice. 100
det noun agr irregular 2 Those ladies walk through those/*that oases. 100

Table 1: An overview of all the filters, the BLiMP benchmark they target, an example for each
benchmark, and number of items targeted by the filter. The rightmost column represents the relative
number of tokens in each filtered corpus after they have been downsampled to the same number of lines.

utilized part-of-speech, morphological features,
and syntactic dependency annotations generated
via the use of Stanza (Qi et al., 2020), an
off-the-shelf package that uses pretrained neu-
ral models to generate grammatical annotations
within the framework of Universal Dependencies
(UD) (Nivre et al., 2017, 2020). We now describe
the filters in more detail.

3.2 Corpus Filters

In general, we favor ‘‘stronger’’ filters, i.e., those
that include false positives (and so filter out more
training data), since our goal is to ensure that
the LM has not seen a given construction during
training. In what follows, x >z y means that there
is a dependency from x to y with label z.

3.2.1 Structural Generalization

In the following filters, a particular structural
configuration has been completely removed from
the corpus, and a model must generalize to it from
similar/related configurations.

AGR-PP-MOD The benchmark targeted by this fil-
ter tests subject-verb number agreement in the
presence of an intervening distractor in a preposi-
tional phrase, as illustrated in Figure 1. AGR-PP-MOD

filters all sentences containing the dependency
structure VERB >nsubj NOUN >nmod NOUN >case ADP.
The resulting filtered corpus will still contain PPs
modifying nouns in other contexts (e.g., object po-
sition). If a learner has formed a general ‘rule’ for
subject-verb agreement, and seen PP-modified ob-
jects, it should be able to generalize to agreement
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with PP-modified subjects, even when it hasn’t
seen them during training.

AGR-REL-CL This filter is similar to the previous
one, but targets sentences where the distractor
occurs in a relative clause in subject position,
removing all sentences containing the structure
VERB >nsubj NOUN >acl:relcl ADJ, e.g., ‘‘The boys
that aren’t disturbing Natalie dream’’. A model
might generalize again from its general ‘rule’ for
subject-verb agreement, and learn about relative
clause structure from relative clauses in object
position.

NPI-Filters We use the list of negative polarity
items (NPIs) provided by Jumelet et al. (2021) and
filter as follows: NPI-ONLY removes all sentences
with an NPI occurring after ‘only’ (e.g., ‘‘Only
students have ever complained about morning
classes’’), NPI-SENT-NEG removes sentences with a
negation and an NPI, and NPI-SIM-QUES removes
questions with NPIs in them. In each of these
cases the model can generalize NPI licensing
conditions for a particular environment from other
environments that are still present.

QUANTIFIER-SUPERLATIVE Superlative quantifiers
(e.g., at least, at most) cannot be embedded
under negation: An actor arrived at at most
six lakes vs. *No actor arrived at at most six
lakes. BLiMP targets this phenomenon in two
ways: either by replacing the superlative quan-
tifier under negation with a relative quantifier
(e.g., more than 5), or by removing the negation.
We cannot detect superlative quantifiers based on
dependency information alone, so we use mor-
phological feature annotations. Next, we filter all
such constructions that appear in object position:
VERB >obl/obj/iobj NOUN > · · · > QUANTIFIER. It is
less clear for this filter how a model can still infer
the grammaticality from other constructions that
are not covered by the filter.

QUANTIFIER-EXISTENTIAL-THERE Weak quan-
tifiers can occur in the scope of existential
there constructions, whereas strong quantifiers
cannot: There are many people here vs. *There
are all people here (Milsark, 1974). BLiMP
targets this phenomenon in two ways: either
replacing a weak quantifier with a strong one, or
increasing the scope of a locative there such that it
becomes existential. We filter all weak quantifiers
occurring in subject position under an existential

there: THERE <expl ARE >nsubj NOUN > WEAK-Q.
However, we only filter the 5 weak quantifiers
occurring in the BLiMP benchmark (a(n), no,
some, few, many), which still allows a model
to generalize from other weak quantifiers to
infer the grammaticality conditions. Furthermore,
weak vs. strong quantification plays a role in
other linguistic phenomena as well, a fact which
a learner could leverage.

BINDING-Filters Four filters, BINDING-C-COMMAND,
BINDING-CASE, BINDING-DOMAIN, and BINDING-
RECONSTRUCTION target the seven binding-related
benchmarks of BLiMP. All seven benchmarks
typify various facets of Chomsky’s (1993)
Principle A. The implementations of all four
filters is generally similar: They target sentences
where a reflexive or non-reflexive pronoun occurs
in the specific context(s) illustrated by the corre-
sponding benchmarks, narrowly construed, while
leaving in sentences where the same or similar
principle is applied in a different environment. For
example, the BINDING-C-COMMAND filter removes
evidence of the use of the c-command relationship
in anaphora licensing in relative clauses, but not
elsewhere, as in sentences like Mary’s brother
hurt himself (but not *Mary’s brother hurt
herself ).1 The other three benchmarks operate in
similar ways.

DET-ADJ-NOUN One of the filters targeting
determiner-noun agreement focuses on cases
where an adjective occurs between a demonstra-
tive determiner and a noun, e.g., These/*This red
cars. We create a filter that removes all occur-
rences of a demonstrative determiner followed
by an adjective and a noun. A model can then
still infer the number agreement from determiner/
noun pairs without an intervening adjective.

3.2.2 Lexical Generalization
In the following filters we do not filter out an entire
configuration, but only do so for a subset of lexical
items. This way a model can indirectly general-
ize to a specific occurrence of the configuration
from other occurrences, but no longer rely on di-
rect co-occurrences. These filters focus on lexical
generalization because the BLiMP benchmarks

1BLiMP assumes a straightforward one-to-one relation-
ship between certain names and their grammatical gender.
While such a relationship may not actually be borne out in
practice today, the corpora used in this investigation likely
do adhere to such a formulation.
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that they target are centered around particu-
lar lexical items and not particular syntactic
constructions.

AGR-RE-IRR-SV The four BLiMP benchmarks tar-
geted by AGR-RE-IRR-SV all test language model
performance on subject-verb agreement, targeting
regular plurals, like dress/dresses and irregular
plurals, like goose/geese. The filter removes all
sentences with nominal subjects where the noun
occurs in any of the four benchmarks. A learner
on this filtered corpus can still beat the benchmark
if it develops a notion of grammatical number,
a representation of the grammatical number of
the nouns in the benchmark based on their us-
age in other contexts, and then generalizes the
subject-verb agreement it sees for other nouns to
these nouns.

DET-NOUN The other filter besides DET-ADJ-NOUN

that targets determiner-noun agreement for
demonstrative determiners (e.g., These/*This
books) does so with the determiner directly adja-
cent to the noun. We create a filter based on all
nouns occurring in the BLiMP benchmark that are
preceded by a demonstrative determiner. A model
can still infer the number agreement between
determiner and noun from other nouns, and learn
the number information of the filtered nouns
from other agreement tasks like subject-verb
agreement.

PASSIVE In English, passive constructions can
only be formed from transitive verbs. BLiMP tar-
gets this phenomenon by replacing transitive verbs
in passive constructions by intransitive verbs:
John is insulted by Mary vs. *John is smiled
by Mary. Much like AGR-RE-IRR-SV and DET-NOUN,
the PASSIVE filter operates by removing sentences
that contain words on a word list in a specific
linguistic environment. Concretely, this word list
consists of the verbs that are actually used in these
two benchmarks in passive form, and the filter
removes sentences where such words appear in
passive voice.

4 Experimental Setup

Data The base train, validation, and test cor-
pora are the English Wikipedia corpora released
by Gulordava et al. (2018), with the train corpus
consisting of 3.05M sentences (83M tokens, with
a vocabulary size of 50,000 plus an unknown and

EOS token). The 15 filtered corpora are derived
from this base corpus by discarding all sentences
that are targeted by the filter. The number of sen-
tences and tokens discarded by each filter varied
from as little as ∼0.1% to as much as ∼18.5%; for
specifics, refer to Table 1. Then, as an additional
control, the 15 filtered corpora plus the original,
FULL training corpus were uniformly downsam-
pled to 2.4M lines, corresponding to ∼80% the
size of the original training corpus. It is worth not-
ing that the number of tokens did vary by as much
as ∼4.2%, as reflected in the rightmost column of
Table 1: This is explained by the fact that certain
filters target longer sentences more often.

Models Two architectures are used for the
models trained in this investigation: LSTMs
(Hochreiter and Schmidhuber, 1997) and decoder-
only Transformers (Vaswani et al., 2017). For
each architecture, we train separate models on the
16 training corpora for five random seeds each,
resulting in a total of 160 models. Model hyper-
parameters were selected to control for number
of parameters as closely as possible. The LSTMs
have two layers with embedding and hidden di-
mension of 1024. Output and embedding layer
weights were tied, and we used dropout of 0.1 dur-
ing training. The Transformers were constructed
with feed-forward and hidden layer dimensions of
768, eight attention heads, and eight hidden layers.
The LSTMs and the Transformers had 68.0M and
67.1M trainable parameters, respectively.

Training Each model was trained on a single
A40 GPU for 40 epochs with mixed-precision
training, using the AdamW optimization algorithm
(Loshchilov and Hutter, 2017), a linear scheduler
with an initial learning rate of 5 × 10−5, and a
batch size of 32. We evaluated each model at
the end of every epoch, and report results for the
model with the best validation perplexity. The full
hyperparameter set may be found in Appendix A.

Evaluation We use four metrics—three stan-
dard and one novel—as the primary means of
evaluation for all models. The first is perplex-
ity over the (unfiltered) test corpus of Gulordava
et al. (2018). The second is accuracy on each of
the 67 benchmarks in the BLiMP challenge set
(Warstadt et al., 2020). Accuracy on the BLiMP
benchmarks was assessed via the ‘‘full-sentence’’
method (Marvin and Linzen, 2018), where a ‘‘suc-
cess’’, for any minimal pair, is defined by the
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model assigning a higher probability to the gram-
matical sentence in the minimal pair (s+) than to
the ungrammatical sentence (s−).

However, the FiCT methodology’s main ad-
vantage lies not in looking at the performance of
each model in isolation, but on the difference in
performance between two models that are other-
wise identical but for their training data. Thus, for
each model and each BLiMP benchmark, a change
score (or delta) was calculated with respect to the
average performance of all models of the same ar-
chitecture trained on the FULL corpus (i.e., average
over the five seeds).

To be more precise, with M a model type (i.e.,
M ∈ {LSTM,Transformer}), F a filter, and B a
benchmark, F (B) will refer to the filtered corpus
targeting B, and MF will refer to a model trained
on F . We can then define the accuracy delta by:

accΔ(M,F,B) := accMF
B − accMFULL

B (1)

where accMB refers to the accuracy of model M
on benchmark B. We will often be interested in
the case where F = F (B), i.e., the benchmark(s)
corresponding to the corpus filter, but report others
as well.

Our final evaluation metric looks at the
probability deltas between grammatical and
ungrammatical sentences:

PΔ(M,F )(s) = logPMF
(s+)− logPMF

(s−)
(2)

PΔ expresses the magnitude of a model’s
grammaticality judgment: Whereas accΔ only
expresses the ratio of items for which a model
assigned a higher probability to the grammatical
case, PΔ can be interpreted as the confidence of
a model’s judgment.

5 Results

We present our results along the four metrics of §4:
perplexity (§5.1), TSE accuracy (§5.2), accuracy
delta (§5.3), and probability delta (§5.4).

5.1 Perplexity
We found that Transformers uniformly achieve
lower perplexities on the test corpus than the
LSTMs for all training corpora, as expected. The
mean test perplexity across all corpora and ran-
dom seeds was 47.13 for the Transformers and
53.56 for the LSTMs; a paired t-test of mean per-
plexities per corpus found the difference between

the model types to be significant (t = 270.94,
p � 0.01). As noted in §4, while we downsam-
pled all corpora to the same number of lines, the
number of tokens varies between different training
corpora. Previous research has shown a clear neg-
ative relationship between the number of tokens
seen in training and test corpus perplexity (Kaplan
et al., 2020). This effect is also present in our
data, for both architectures (LSTMs: Pearson’s
r = −0.970; Transformers: r = −0.976).

We also investigate the perplexity on the
BLiMP sentences for the FULL and Filtered mod-
els. This provides us insight into the likelihood
of these sentences: If the model assigns a rela-
tively low likelihood to them, then grammaticality
judgments will be less reliable as well (Newman
et al., 2021). In Figure 3 we show the scores
for this. Surprisingly, the LSTM models yield
lower perplexity on the BLiMP sentences than the
Transformers. This shows that Transformers have
shifted their probability mass to other sentence
types than found in BLiMP, but where to exactly
remains an open question. Nonetheless, the per-
plexity scores on BLiMP are similar to the average
perplexity on the test corpus, which demonstrates
that these items are of similar likelihood.

5.2 TSE Accuracy on BLiMP

Mean overall accuracy on all of BLiMP across
different training corpora (i.e., accMF

ALL ) was 70.4
for the LSTMs and 71.9 for the Transformers.
This result was statistically significant (paired
t = −17.38, p � 0.01). Figure 6 in Appendix B
shows all of the accuracies.

We next look only at benchmark accuracy data
where the filtered corpus targeted a given bench-
mark, i.e., where F = FB . Here, the mean is
68.8 for the Transformers and 66.7 for the LSTMs
and this difference is not statistically significant
(paired t = −1.18, p = 0.258). In other words,
we find no difference in the two models’ ability
to make grammaticality judgments when trained
on filtered data that forces them to perform subtle
generalizations, despite differences in perplexity.

5.3 Accuracy Delta

A table of the accuracy deltas, averaged across
all random seeds, can be found in Figure 2. Mean
overall accuracy delta over all benchmarks and
across all training corpora (i.e., Δ̄(M,F,B)) was
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Figure 2: BLiMP benchmark accuracy for the models trained on the full corpus, and accuracy delta (Δ(M,F,B))
for the filtered corpora, averaged across seeds. Boxes with bold outlines correspond to benchmarks targeted by
the model’s corpus filter (i.e., where F = F (B)). The accuracy scored by a given model on a given benchmark
trained on a filtered corpus can be recovered by adding its delta to the accuracy score in the ‘‘full’’ column of the
same row.

Figure 3: Perplexity scores on the test corpus (C test)
and the grammatical and ungrammatical BLiMP sen-
tences (s+ & s−). BLiMP scores for the FULL models
are averaged over all benchmarks, and for the Filtered
models for their corresponding benchmark.

−0.393 for the LSTMs and 0.0313 for the Trans-
formers. This result was statistically significant
(paired t = −5.10, p � 0.01).

Focusing on the F = F (B) cases (i.e.,
black-outlined cells in the chart), we note that
most deltas are generally negative but fairly close
to zero, with a few outliers, such as the models
trained on the EXISTENTIAL-THERE, AGR-PP-MOD, and
NPI-ONLY corpora. These results suggest that, over-
all, learners are usually able to use various sorts
of indirect evidence to acquire correct grammati-
cal generalizations when direct evidence has been
made unavailable, as otherwise we could expect
much larger deltas across the board.

We may also observe that, for the cases where
the absolute value of the deltas was apprecia-
bly larger than zero, it is not the case that
one architecture is uniformly better than the
other. For example, LSTMs perform better than
Transformers (that is, their deltas are smaller
in magnitude) on the benchmarks associated
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Figure 4: Log probability differences between grammatical and ungrammatical minimal pairs (PΔ(M,F )(s)),
with Transformer performance plotted against LSTM performance. Individual points are the averaged scores
across the five model seeds. The four quadrants indicate the cases where i) both architectures got a correct
prediction (green), ii) only one architecture got a correct prediction (orange), and iii) neither architecture was right
(red). It can be seen that corpus filtering results in probability differences moving closer to the origin, and that the
magnitude of the difference of the full models can create a sufficient margin for the model to generalize in the
filtered cases as well.

with the AGR-RE-IRR-SV and the NPI-ONLY corpora,
while the converse is true for AGR-PP-MOD and
quantifier-existential-there. This is true even for
phenomena that are seemingly relatively similar;
for example, the AGR-PP-MOD and AGR-RE-IRR-SV-AGR

filters are extremely similar, in that they both test
long distance agreement in the present of a clausal
distractor intervening between the subject and the
verb; they differ only in the nature of that distrac-
tor. Yet, as noted, LSTMs trained on the AGR-RE-
IRR-SV corpus have, on average, a less negative
delta on the associated benchmarks than the anal-
ogous Transformer models (accΔ(LSTM, AGR-
RE-IRR-SV, F (B)) = −3.78; for the Transformer,
−6.38); conversely, on the models trained on the
AGR-PP-MOD corpus, it is Transformers which have
the smaller magnitude delta (accΔ(LSTM, AGR-
PP-MOD, F (B)) = −23.22; Transformer, −7.92).

As in the previous section, we can make this
precise by analyzing all of the accuracy deltas
where F = FB . The mean here is −5.41 for
the LSTMs and −4.62 for the Transformers; this
difference is not statistically significant (paired
t = −0.562, p = 0.583). That means that we again
find no difference between the two architectures
in the extent to which filtering affects their accu-
racy, despite significant differences in perplexity.
This suggests that perplexity does not predict the
ability of a model to perform linguistic generali-
zations from indirect evidence.

5.4 Probability Delta

In order to gain a more fine-grained insight into
the impact of corpus filtering, we examine the re-
sults at an item-level. For this we make use of

the PΔ metric, which expresses a model’s magni-
tude of a grammaticality judgment. In Figure 5A
we plot the average PΔ scores for the FULL mod-
els for each BLiMP benchmark, averaged across
seeds. It can be seen here that the Transform-
ers and LSTMs result in highly similar PΔ’s
(r = 0.98; p ≈ 0), although the Transformer
scores are slightly higher on average than those
of the LSTMs (2.99 vs. 2.41, respectively), which
is in line with the significant difference in TSE
accuracy of §5.2.

For the sake of brevity, we focus on three
salient filters that each yielded distinct results:
i) Subject-Verb Agreement for PP-modified sub-
jects, in which LSTMs are more impacted than
Transformers (accΔ: −23.2 vs. −7.9); ii) NPI
Only, in which LSTMs are less impacted than
Transformers (accΔ: −6.9 vs. −29.3); and iii)
Binding Case, in which neither architecture is
impacted by filtering. In Figure 4 we plot the
item-level scores of the LSTMs against the
Transformers (averaged across seeds). For each
benchmarkB we plot the results on the FULL model
and the F (B) filtered model. This demonstrates
that corpus filtering has the effect of moving PΔ
closer to the origin: The model becomes less cer-
tain in its grammaticality judgment. The resulting
accΔ score for a benchmark is then dependent
on the PΔ scores of the FULL model: A sufficient
margin here makes it robust to the decrease in PΔ
and allows it to correctly assign higher probabil-
ity to the grammatical item.

To investigate this observation across all bench-
marks we plot the difference in PΔ going from
FULL to Filtered in Figure 5B. This difference
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Figure 5: A: PΔ scores for the FULL Transformers and
LSTMs for each BLiMP paradigm. The more positive
this score, the more certain a model is in its grammati-
cality judgment. B: Paradigm-level differences in PΔ
scores going from the FULL to the Filtered model. The
closer to the origin, the less impact the filtering pro-
cedure had on model behavior. C: Pearson correlation
of PΔ scores between the FULL and Filtered models.
A detailed table with these results per paradigm is
provided in Figure 7 in Appendix B.

represents the absolute impact of filtering on the
TSE task. By plotting the Transformer results
against the LSTM we gain an insight whether fil-
tering has a similar impact on both architectures.
We observe a strong correlation between these
PΔ differences (r : 0.91, p ≈ 0). Subtle differ-
ence are present, however, for a number of filters
the PΔ score increases after filtering which is
especially prevalent for the Transformer models.

Finally, we examine the robustness of a
model’s grammaticality judgments: Does filter-
ing have a significant impact on the distribution
of judgments? For this we compute the Pearson
correlation of PΔ before and after filtering for
each filter benchmark. A model is robust to filter-
ing if this correlation remains high. In Figure 5C
we plot the LSTM correlations against the Trans-
former. A striking difference between the two
architectures arises here: the LSTM correlations
are systematically larger than those of the Trans-
former. This shows that LSTMs are less impacted
by filtering on an item-level than Transformers.

6 Discussion

Perplexity Versus Linguistic Generalization
Our findings contribute to a growing body of
research that suggest a dissociation between per-
plexity and more targeted evaluations of linguistic
competence in artificial learners (Hu et al., 2020).
In a carefully controlled setting and for a wide

range of phenomena, we demonstrate that the
training objective of minimizing perplexity does
not predict linguistic generalization. This raises
interesting questions on the relation between per-
plexity and grammaticality judgments (Lau et al.,
2017): While Transformers are better at memo-
rizing the structure of its training data, we show
they are less capable than LSTMs of forming ro-
bust linguistic generalizations. An interesting step
for future work would be to uncover what lan-
guage modeling aspects Transformers do excel at,
which allows them to obtain a superior test per-
plexity (e.g., word frequency, as studied in Wei
et al., 2021). Future work should also compare
our measure(s) of generalization with others in the
literature, given evidence that these are not always
well-correlated with each other (Sun et al., 2023).

We also note that while likelihood judgments
do not necessarily directly measure grammatical-
ity, since likelihood is the outcome of many other
factors (e.g., semantic plausibility, pragmatic fe-
licity), the use of minimal pairs for BLiMP does
help control for this since it reports judgments on
sentences which differ on (usually) one word, thus
keeping these other components constant between
the two sentences. That being said, it would be
a worthwhile follow-up to conduct probing ex-
periments to more directly model grammaticality
judgments, in the style of, e.g., Jumelet et al.
(2021) (see the next subsection as well).2

Our results also have consequences for how
we think about language model evaluation more
broadly: To the extent that we believe that models
should be able to generalize from indirect evi-
dence, we cannot rely on perplexity as the sole
measure of LM quality but must measure and test
for this ability directly.

Generalizing from Indirect Evidence Our
study also builds on the insights of numerous
other works that use artificial learners as models
for understanding human language acquisition,
and gaining better insights in the inductive bi-
ases of such learners (Warstadt and Bowman,
2020; Mueller and Linzen, 2023; Weber et al.,
2024). The present study conducts for a wide
range of phenomena what Warstadt (2022) calls
a ‘‘proof-of-concept [of a] large-scale controlled
ablation study on the input to model learners,’’

2We thank an anonymous reviewer for encouraging us to
think about this distinction.
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and finds that direct attestation of linguistic evi-
dence is not strictly necessary for the development
of sophisticated linguistic generalizations. Rather,
learners can leverage much more indirect sources
of evidence to arrive at the correct generalizations.

Where earlier work has focused on specific
linguistic constructions, such as subject auxil-
iary inversion (Warstadt, 2022), relative clauses
(Prasad et al., 2019), and negative polarity items
(Warstadt et al., 2019a; Jumelet et al., 2021; Weber
et al., 2021), the results of this paper essentially
confirm a similar result for a much wider array
of syntactic and semantic phenomena. While in
many cases the ablations we performed did clearly
negatively affect the performance of our artificial
learners on the relevant linguistic evaluations, the
magnitude of this effect was generally quite small
for all but a small handful of the linguistic phe-
nomena we analyzed. In general, even when tested
on the specific benchmarks corresponding to the
environments that were ablated from their in-
put, models still perform considerably better than
chance. Thus, our research provides evidence in
favor of the indirect evidence hypothesis.

Notably, we find that this is true not only for
filters where there are fairly obvious sources of
indirect evidence (as enumerated in §3), but also
for filters where potential sources of indirect ev-
idence for a correct generalization are much less
clear (such as the SUPERLATIVE-QUANTIFIER filter).
This suggests that there may be complex mecha-
nisms by which certain linguistic generalizations
can be derived via highly indirect means. Thus,
our results open a door to future research that can
provide a more thorough account of the source of
these generalizations, with potentially significant
ramifications for linguistics.

Explaining Linguistic Generalization As just
discussed, the primary contribution of this paper
has been the development of the FiCT method
and the use of it to demonstrate LMs’ successful
generalization from indirect evidence across a
wide range of linguistic phenomena. This success
raises a very natural follow-up question: What
explains this successful generalization behavior?

While a complete answer to this question must
await future work, a detailed look at the NPI cases
can provide insight into what an answer may look
like. Jumelet et al. (2021) used a filtered cor-
pus method to test LSTM LMs’ understanding of
negative polarity items, but then also did a fur-

ther analysis to examine the basis upon which the
models made their grammaticality judgments. In
particular, they found (via probing classifiers) that
LMs’ were successfully recognizing the mono-
tonicity of a linguistic environment and (via a
novel correlation method) that these judgments
of monotonicity were highly correlated with the
LMs’ judgment of NPI acceptability, reflecting
human acceptability judgments (Denić et al., 2021;
Chemla et al., 2011).

This example suggests two paths forward for
explaining the generalization observations in the
present paper. On the one hand, in the same way
that the monotonicity explanation was inspired by
human generalization, detailed explanations of in-
dividual cases of generalization can be developed
with human behavior as an initial inspiration. On
the other hand, in the same way that this paper
extends the filtered corpus training method to a
much wider range of phenomena, one can attempt
to generalize these forms of explanation on the
breadth axis as well. We leave these exciting
pursuits to future work.

7 Conclusion

We introduced the Filtered Corpus Training
methodology and applied it to a wide range of
linguistic constructions from the BLiMP bench-
mark. Our results show that while Transformers
are better language models (via perplexity) than
comparable LSTMs, the latter generalize equally
well (via accΔ and PΔ). The relatively low accΔ
scores in general show that all of our LMs ex-
hibit a strong ability to generalize from indirect
evidence, even for models of relatively low pa-
rameter count trained on relatively small data. In
summary, this shows that language model success
cannot be attributed solely to memorization from
its training data, since the data has been system-
atically purged of the evaluation targets. They
are, instead, able to form subtle and linguistically
relevant generalizations from indirect evidence.

Future work will i) extend this approach to
models of different sizes and pretraining corpora,
ii) perform deeper analyses of the bases on which
the models do make their generalizations (includ-
ing with probing experiments), and iii) analyze
other forms of lexical and structural general-
ization through the lens of the filtered corpus
training methodology.
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A Training Hyperparameters

adam beta1 0.9
adam beta2 0.999
adam epsilon 1e-08
dataloader num workers 8
evaluation strategy epoch
fp16 True
gradient accumulation steps 1
ignore data skip True
learning rate 5e-05
lr scheduler type linear
num train epochs 40
per device train batch size 32
per device eval batch size 32
optim adamw torch
seed 0,1,2,3,4
save strategy epoch

Table 2: Selected training hyperparameters, as
provided to the transformers package’s
TrainingArguments class. Any omitted val-
ues were set to the defaults associated with version
4.30.2 of the transformers package.

B Full Result Tables

Figure 6 contains the mean accuracies (across
random seeds) on all BLiMP benchmarks for both
models and every filtered corpus.

Figure 7 contains the paradigm-level PΔ
scores for the FULL and Filtered models, and
various Pearson correlations.
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Figure 6: Complete BLiMP benchmark accuracy results for all models, averaged across the five starting seeds
for a given training corpus and benchmark. Boxes with bold outlines correspond to benchmarks targeted by the
model’s corpus filter (i.e., where F = F (B)).
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Figure 7: PΔ scores for the LSTMs and Transformers (first four columns), and the Pearson correlations between
these PΔ scores (last four columns).
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