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Abstract

Large Language Models (LLMs) have trans-
formed natural language processing tasks
successfully. Yet, their large size and high
computational needs pose challenges for prac-
tical use, especially in resource-limited set-
tings. Model compression has emerged as a
key research area to address these challenges.
This paper presents a survey of model com-
pression techniques for LLMs. We cover meth-
ods like quantization, pruning, and knowledge
distillation, highlighting recent advancements.
We also discuss benchmarking strategies and
evaluation metrics crucial for assessing com-
pressed LLMs. This survey offers valuable in-
sights for researchers and practitioners, aiming
to enhance efficiency and real-world applica-
bility of LLMs while laying a foundation for
future advancements.

1 Introduction

Large Language Models (LLMs) (Touvron et al.,
2023a,b; Zhang et al., 2022; Scao et al., 2022;
Wang and Komatsuzaki, 2021; OpenAI, 2024)
refer to Transformer language models that con-
tain billions (or more) of parameters, which are
trained on massive text data. LLMs consistently
exhibit remarkable performance across various
tasks, but their exceptional capabilities come with
significant challenges stemming from their ex-
tensive size and computational requirements. For
instance, the GPT-175B model (Brown et al.,
2020), with an impressive 175 billion parameters,
demands a minimum of 350GB of memory in
half-precision (FP16) format. Furthermore, de-
ploying this model for inference necessitates at
least five A100 GPUs, each featuring 80GB of
memory, to efficiently manage operations. To
tackle these issues, a prevalent approach known
as model compression (Han et al., 2016) offers
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a solution. Model compression involves trans-
forming a large, resource-intensive model into
a compact version suitable for deployment on
resource-constrained devices. Additionally, model
compression can enhance LLM inference speed
and optimizes resource efficiency.

In our paper, our primary objective is to illu-
minate the recent strides made in the domain of
model compression techniques tailored specifi-
cally for LLMs. Our work conducts an exhaustive
survey of methodologies, metrics, and bench-
marks of model compression for LLMs. Figure 1
shows the taxonomy of model compression meth-
ods for LLMs, including quantization, pruning,
knowledge distillation, and low-rank factoriza-
tion. Figure 2 further shows basic flow of these
model compression methods for LLMs. Further-
more, our study sheds light on prevailing chal-
lenges and offers a glimpse into potential future
research trajectories in this evolving field. We
advocate for collaborative efforts within the com-
munity to pave the way for an ecologically con-
scious, all-encompassing, and sustainable future
for LLMs. While there were previous surveys on
neural networks model compression (Li et al.,
2023c) and it has been lightly discussed in prior
surveys on LMs (Rogers et al., 2020) and LLMs
(Zhao et al., 2023), our work is the inaugural
survey dedicated solely to model compression for
LLMs.

2 Metrics and Benchmarks

2.1 Metrics

Model compression of LLMs can be measured
using various metrics, which capture different
aspects of performance. These metrics are com-
monly presented alongside accuracy and zero-shot
ability to comprehensively evaluate the LLM.

Model Size in a LLM typically is measured
by the number of total parameters of the LLM.
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Figure 1: Taxonomy of model compression methods for large language models.

Figure 2: Illustrations of model compression methods for LLMs. In these methods, Quantization-Aware Training
(QAT) and Knowledge Distillation (KD) stand out as task-based model compression techniques, tailored for
specific tasks. Conversely, other model compression methods are task-agnostic, designed to operate independently
of specific tasks.

In general, LLMs with more parameters often
requires more computational resources and mem-
ory for both training and inference.

Floating Point Operations (FLOPs) is an indi-
cator that measures the computational efficiency
of LLMs, representing the number of floating-

point operations required for the LLM to per-
form an instance. In model compression, reducing
FLOPs helps to make the LLM run faster and
more efficiently.

Mean FLOPS Utilization (MFU) quantifies
the practical efficiency of computational resource
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utilization by LLMs during tasks. MFU mea-
sures the ratio of actual FLOPS utilized by the
LLM to the maximum theoretical FLOPS of a
device. Unlike FLOPs, which estimates the max-
imum operations an LLM might perform, MFU
assesses the actual effectiveness of resource use
in operation. Essentially, while FLOPs measures
a LLM’s theoretical compute needs, MFU shows
how effectively these computations are utilized in
practice.

Inference Time (i.e., latency) measures the
time taken by the LLM to process and generate
responses for input data during inference. Infer-
ence time is particularly crucial for real-world
applications where the LLM needs to respond for
user queries or process large amounts of data in
real-time.

Speedup Ratio measures how much faster a
compressed LLM performs tasks compared to
the original LLM. Specifically, it measures the
ratio of the inference time of the uncompressed
model over the inference time of the compressed
model. Higher ratios mean greater efficiency and
reduced computation time, highlighting effective
compression.

Compression Ratio measures how much a
LLM’s size is reduced through compression, cal-
culated as the original size divided by the com-
pressed size. Higher ratios mean greater size
reduction, showing the compression’s effective-
ness in saving storage and memory.

2.2 Benchmarks and Datasets

The main goal of these benchmarks and datasets
is to measure the efficiency and performance of
compressed LLMs in comparison to their un-
compressed counterparts. These benchmarks and
datasets typically consist of diverse tasks and da-
tasets that cover a range of natural language pro-
cessing challenges.

2.2.1 Common Benchmarks and Datasets
The majority of research evaluates compressed
LLMs on well-established NLP benchmarks and
datasets. For instance, WikiText-2 (Merity et al.,
2017), C4 (Raffel et al., 2020), and PTB (Marcus
et al., 1993) are designed for evaluating the per-
plexity performance of language models. LAM-
BADA (Paperno et al., 2016), PIQA (Tata and
Patel, 2003), and OpenBookQA (Mihaylov et al.,
2018) are designed to evaluate the zero-shot abil-

ity of language models. GSM8K (Cobbe et al.,
2021), CommonsenseQA (Talmor et al., 2019)
and StrategyQA (Geva et al., 2021) are designed to
evaluate the reasoning ability of language models.

2.2.2 BIG-Bench
BIG-Bench (BBH) (Srivastava et al., 2023) is a
benchmark suite designed for LLMs, covering
over 200 NLP tasks, e.g., Text Comprehension
Tasks, Inference Tasks, and Mathematical Rea-
soning Tasks. The aim of BBH is to evaluate the
performance of LLMs across these various com-
plex tasks. The compressed LLMs use BBH to
measure their capability across a multidimensional
spectrum of tasks.

2.2.3 Unseen Instructions Datasets
Unseen instructions datasets are used to evaluate
the performance of LLMs on unseen tasks. For
instance, the Vicuna-Instructions (Zheng et al.,
2023) dataset created by GPT-4 includes 80 com-
plex questions across nine different categories like
generic, knowledge-based, and writing tasks. An-
other dataset, User-Oriented-Instructions (Wang
et al., 2023d), consists of 252 carefully selected
instructions inspired by various user-focused ap-
plications such as Grammarly, StackOverflow,
and Overleaf. These datasets evaluate how well
compact LLMs can handle and carry out new tasks
by presenting them with unfamiliar instructions.

2.2.4 EleutherAI LM Harness
The EleutherAI LM Harness (Gao et al., 2023)
is an advanced framework for evaluating LLMs,
providing a unified testing platform that supports
over 60 standard academic benchmarks along
with hundreds of subtasks and variants. The stan-
dardized evaluation tasks provided by the harness
ensure the reproducibility and comparability of
evaluation, which is essential for implementing
fair and reproducible evaluations for the com-
pressed LLMs.

3 Quantization

Quantization (Gray and Neuhoff, 1998) refers to
the process of reducing the number of bits (i.e.,
precision) in the parameters of the model with
minimal loss in inference performance. Quantiza-
tion can be categorized into two main approaches:
Quantization-Aware Training (QAT), and Post-
Training Quantization (PTQ). The primary dis-
tinction between the two approaches lies in
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Category† Methods LLM
Bit Width Perplexity Difference‡

Speedup
Weights Activations KV Cache Wikitext-2 C4

QAT

LLM-QAT LLaMA-30B 4 8 16 0.5 0.9 –

BitDistiller LLaMA2-13B 2 16 16 1.9 – –

OneBit LLaMA-13B 1 16 16 4.09 3.64 –

Weight-Only Quantization

LUT-GEMM LLaMA-65B 3 16 16 0.14 – 2.04×
SqueezeLLM LLaMA-13B 3 16 16 0.51 0.67 2.4×
GPTQ OPT-175B 3 16 16 0.34 0.23 3.24×
AWQ LLaMA2-70B 3 16 16 0.42 – 3.2×
OWQ LLaMA-65B 3.01 16 16 0.72 – –

SpQR LLaMA-30B 3.89 16 16 0.15 0.1 2.0×
QuIP LLaMA2-70B 2 16 16 3.007 3.228 –

Weight-Activation Quantization

ZeroQuant GPT-J-6B 8 8 16 0.16 – 3.67×
LLM.int8() OPT-13B 8 8 16 – 0.00 1.22×
SmoothQuant OPT-175B 8 8 16 0.18 – 1.56×
RPTQ OPT-175b 4 4 16 2.26 2.15 –

Olive BLOOM-7B 4 4 16 2.11 2.24 4.5×
OS+ LLaMA-65B 4 4 16 5.77 – –

QT OPT-1.3B 8 8 16 17.74 – –

ZeroQuant-FP LLaMA-30B 4 8 16 0.18 0.13 –

OmniQuant LLaMA-7B 4 6 16 0.41 0.55 –

KV Cache Quantization
KVQuant LLaMA-65B 16 16 2 0.19 0.11 1.4×
WKVQuant LLaMA-13B 4 16 4 0.12 0.14 –

† : The results presented in the table are solely derived from the original papers.
‡ : (The perplexity of the quantized LLM) - (The perplexity of the origin LLM).

Table 1: The performance of various representative LLM quantization methods.

whether retraining is needed during quantization.
PTQ enables direct use of quantized models in
inference, while QAT requires retraining to rec-
tify errors introduced by quantization. Table 1
shows the performance of many representative
LLM quantization methods.

3.1 Quantization-Aware Training
QAT involves retraining a quantized model to
counteract performance degradation caused by
quantization. For instance, LLM-QAT (Liu et al.,
2023b) implements the standard QAT framework
directly onto LLMs. LLM-QAT distills knowl-
edge by generating data from the LLM itself, and
train the quantized LLM to align with the out-
put distribution of the original LLM based on
the generated data. BitDistiller (Du et al., 2024)
merges QAT with self-distillation, enhancing LLM
performance at sub-4-bit precisions. It employs
tailored asymmetric quantization, clipping, and a
Confidence-Aware Kullback-Leibler Divergence
objective for faster convergence and superior
results. OneBit (Xu et al., 2024) introduces a

novel 1-bit parameter representation method and
an effective parameter initialization method to
implement 1-bit quantization for LLM weight ma-
trices, paving the way for the extremely low bit-
width deployment of LLMs.

Remark 1. While QAT can mitigate quantiza-
tion’s accuracy degradation, retraining demands
a lot of effort due to tens or hundreds of billions
of parameters in LLMs. A practical solution is
to incorporate Parameter-Efficient Fine-Tuning
(PEFT) into the retraining process of QAT. Cur-
rently, methods like QLORA (Dettmers et al.,
2023), PEQA (Kim et al., 2023a), and LoftQ
(Li et al., 2023a) combine quantization with
PEFT for model fine-tuning efficiency. However,
these methods are typically task-dependent. L4Q
(Jeon et al., 2024) makes a preliminary attempt
to enhance generality by leveraging LoRA-wise
learned quantization step size for LLMs. We think
that introducing PEFT to enhance QAT efficiency
is not only feasible but also holds significant
promise, warranting thorough exploration.
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3.2 Post-Training Quantization

PTQ efficiently converts a full-precision LLM to
low-precision without retraining, saving memory
and computational costs. We categorize PTQ for
LLMs into three groups: Weight-Only Quan-
tization, Weight-Activation Quantization, and
KV Cache Quantization. The disparity between
these groups lies in their quantization objectives.
Weight-only quantization focuses solely on quan-
tizing weights, whereas weight-activation quan-
tization extends its objective to both weights and
activations. Prior research (Yao et al., 2023) indi-
cates that activation quantization is typically more
sensitive to weight quantization, allowing weight-
only quantization to achieve lower bit-width.
However, since quantized weights necessitate
dequantization before multiplication with activa-
tions, weight-only quantization inevitably intro-
duces additional computational overhead during
inference and cannot enjoy the accelerated low-
bit operation supported by specific hardware. Fur-
thermore, KV cache quantization targets the KV
cache, which stores keys and values of attention
layers. The KV cache often consumes lots of
memory, acting as a bottleneck for input streams
containing lengthy tokens. By implementing KV
cache quantization, it is possible to increase
throughput and accommodate inputs with longer
tokens more efficiently.

3.2.1 Weight-Only Quantization

Weight-only quantization is the most conven-
tional and widespread method. For example, LUT-
GEMM (Park et al., 2024) uses binary-coding
quantization (BCQ) (Rastegari et al., 2016) for-
mat, which factorizes the parameters of LLMs
into binary parameters and a set of scaling fac-
tors, to accelerate quantized matrix multiplica-
tions in weight-only quantization. GPTQ (Frantar
et al., 2023) proposes a layer-wise quantization
method based on Optimal Brain Quantization
(OBQ) (Frantar and Alistarh, 2022), which up-
dates weights with inverse Hessian information,
and quantizes LLMs into 3/4-bit. QuIP (Chee et al.,
2023) optimally adjusts weights by utilizing the
LDL decomposition of the Hessian matrix de-
rived from vectors drawn uniformly at random
from a calibration set, and multiplies weight and
Hessian matrices with a Kronecker product of ran-
dom orthogonal matrices to ensure incoherence

between weight and Hessian matrices. Combin-
ing these two steps, QuIP successfully quantizes
LLMs into 2-bits with minimal performance loss.

To further minimize quantization errors in the
weight-only quantization of LLMs, many studies
identify sensitive weights, which have an impor-
tant effect on LLMs’ quantization performance,
and store these sensitive weights in high precision.
For example, AWQ (Lin et al., 2023) stores the
top 1% of weights that have the most significant
impact on LLM performance in high-precision,
and integrates a per-channel scaling method to
identify optimal scaling factors. Here, ‘‘chan-
nel’’ denotes individual dimensions or feature
maps within the model. Similar with AWQ, OWQ
(Lee et al., 2024) store weights sensitive to ac-
tivation outliers in high-precision, and quantizes
other non-sensitive weights. Different from OWQ,
SpQR (Dettmers et al., 2024) employs the L2
error between the original and quantized predic-
tions as a weight sensitivity metric. Furthermore,
SqueezeLLM (Kim et al., 2023b) introduces a
weights clusters algorithm based on sensitivity,
using k-means centroids as quantized weight val-
ues, to identify sensitive weights. The sensitivity
is approximated by the Hessian matrix of weights.
Then, SqueezeLLM stores sensitive weights in
an efficient sparse format, and quantize other
weights. SqueezeLLM quantizes LLMs in 3-bit,
and achieves a more than 2× speedup compared
to the FP16 baseline.

3.2.2 Weight-Activation Quantization

Alongside studies centered on weight-only quan-
tization in LLMs, there is a plethora of research
focusing primarily on weight-activation quanti-
zation in LLMs. For example, ZeroQuant (Yao
et al., 2022) is the first work to implement weight-
activation quantization for LLMs, which uses
group-wise quantization for weight and token-
wise quantization for activations, and reduces the
precision for weights and activations of LLMs
to INT8.

LLMs have outliers in activations, and the per-
formance of LLMs declines considerably, if these
activations with outliers are directly quantized.
Recent studies try to treat these outliers specially
to reduce quantization errors in weight-activation
quantization. For example, LLM.int8() (Dettmers
et al., 2022) stores these outlier feature dimen-
sions into high-precision, and uses vector-wise
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quantization, which assigns separate normaliza-
tion constants to each inner product within ma-
trix multiplication, to quantize other features.
LLM.int8() quantizes weights and activations of
LLMs into 8-bit without any performance degra-
dation. SmoothQuant (Xiao et al., 2023) designs
a per-channel scaling transformation to smooths
the activation outliers based on the discovery that
different tokens have similar variations across
channels of activations. RPTQ (Yuan et al., 2023a)
finds that the range of values varies greatly be-
tween different channels, and integrates a channel
reordering method, which clusters and reorders the
channels in the activation and uses the same quan-
tization parameters to quantize the values in each
cluster, into layer normalization and linear layer
weights to efficiently reduce the effect of numer-
ical range differences between channels. OliVe
(Guo et al., 2023) thinks that outliers are more
important than the normal values, and uses an
outlier-victim pair (OVP) quantization to handle
outlier values locally with low hardware overheads
and significant performance benefits. OS+ (Wei
et al., 2023) further finds that outliers are concen-
trated in specific and asymmetric channels. Based
on the findings, OS+ incorporates channel-wise
shifting to eliminate the impact of asymmetry
and channel-wise scaling to balance the distri-
bution of outliers. LLM-FP4 (Liu et al., 2023a)
uses floating-point formats (specifically FP8 and
FP4) to address the limitations of traditional in-
teger quantization (such as INT8 and INT4) to
deal with outliers. Furthermore, LLM-FP4 (Liu
et al., 2023a) points out that exponent bits and
clipping range are important factors that effect the
performance of FP quantization, and introduces
a search-based framework for determining the
optimal exponent bias and maximal quantization
value. OmniQuant (Shao et al., 2024b) handles
the activation outliers by equivalently shifting
the challenge of quantization from activations to
weights, and optimizes the clipping threshold to
adjust the extreme values of the weights.

3.2.3 KV Cache Quantization

With the increasing number of input tokens sup-
ported by LLMs, the memory usage of the KV
cache also increases. Recent efforts begin to focus
on KV cache quantization to reduce the memory
footprint of LLMs and accelerate their inference.
For example, KVQuant (Hooper et al., 2024) pro-

poses several KV Cache Quantization methods,
such as Per-Channel Key Quantization, PreRoPE
Key Quantization, and Non-Uniform KV cache
quantization, to implement 10 million context
length LLM inference. Through an in-depth anal-
ysis of the element distribution within the KV
cache, KIVI (Liu et al., 2024) finds that key
caches should be quantized per-channel, while
value caches should be quantized per-token. Fi-
nally, KIVI succeeds in quantizing the KV cache
to 2 bits without fine-tuning. WKVQuant (Yue
et al., 2024) presents an innovative approach for
quantizing LLMs by integrating past-only quan-
tization to refine attention computations, employ-
ing a two-dimensional quantization strategy to
manage the distribution of key/value (KV) caches
effectively, and utilizing cross-block reconstruc-
tion regularization for optimizing parameters. This
method enables the quantization of both weights
and KV caches, resulting in memory savings
that rival those of weight-activation quantization,
while nearly matching the performance levels of
weight-only quantization.

4 Pruning

Pruning (LeCun et al., 1989) is a powerful tech-
nique to reduce the size or complexity of a model
by removing redundant components. Pruning can
be divided into Unstructured Pruning, Semi-
Structured Pruning, and Structured Pruning.
Structured pruning removes entire components
like neurons, attention heads, or layers based on
specific rules while preserving the overall network
structure. On the other hand, unstructured pruning
prunes individual parameters, resulting in an ir-
regular sparse structure. Semi-structured pruning
is a method that lies between structured pruning
and unstructured pruning, capable of achieving
fine-grained pruning and structural regularization
simultaneously. It prunes partial parameters based
on specific patterns rather than entire channels,
filters, or neurons, making it a fine-grained form
of structured pruning. Table 2 shows the per-
formance of many representative LLM pruning
methods.

4.1 Unstructured Pruning

Unstructured pruning preserves the pruned mod-
el’s performance, hence, works related to un-
structured pruning of LLMs often dispense with
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Category† Methods LLM Perplexity Difference Compression Rate Speed up(WikiText-2)‡

Unstructured Pruning

SparseGPT OPT-175B −0.14 50% –
Wanda LLaMA-65B 1.01 50% –
SAMSP LLaMA2-13B 0.63 50% –
DSnoT LLaMA-65B 2.08e4 90% –

Structured Pruning

LLM-Pruner LLaMA-13B 3.6 20% –
Shortened LLaMA LLaMA-7B 10.5 35% –
FLAP LLaMA-65B 7.09 50% –
SliceGPT LLaMA2-70B 1.73 30% 1.87×

Semi-Structured Pruning
E-Sparse LLaMA-65B 2.13 2:4 1.53×
SparseGPT OPT-175B 0.39 2:4 2×
Wanda LLaMA-65B 2.69 2:4 1.24×

† : The results presented in the table are solely derived from the original papers.
‡ : (The perplexity of the pruned LLM) - (The perplexity of the origin LLM).

Table 2: The performance of various representative LLM pruning methods.

retraining to restore performance. Nevertheless,
unstructured pruning renders the pruned model
irregular, necessitating specialized handling or
software optimizations for inference accelera-
tion. An innovative approach in this domain is
SparseGPT (Frantar and Alistarh, 2023), which
introduces a one-shot pruning strategy without
retraining. SparseGPT frames pruning as an ex-
tensive sparse regression problem and solves it
using an approximate sparse regression solver.
SparseGPT achieves significant unstructured spar-
sity, even up to over 50% on the largest GPT
models like OPT-175B and BLOOM-176B, with
minimal increase in perplexity. To reduce the
cost about the weight update process required by
SparseGPT, Wanda (Sun et al., 2024) achieves
model sparsity by pruning weights with the small-
est magnitudes multiplied by the norm of the
corresponding input activations, without the need
for retraining or weight updates. To further mini-
mize pruning-induced errors while upholding the
desired overall sparsity level, SAMSP (Shao et al.,
2024a) utilizes the Hessian matrix as a metric
for weight matrix sensitivity evaluation, and dy-
namically adjusts sparsity allocation based on
sensitivity. Furthermore, DSnoT (Zhang et al.,
2024) minimizes the reconstruction error between
dense and sparse models through iterative weight
pruning-and-growing on top of sparse LLMs to
enhance LLM performance across various spar-
sity rates, especially at high sparsity levels. To
provide hardware support for handling unstruc-
tured pruning on the GPU Tensor Core hardware,
Flash-LLM (Xia et al., 2023) introduces an un-
structured sparse matrix multiplication method,
which loads weight matrices in a sparse format

from global memory and reconstructs them in a
dense format within high-speed on-chip buffers
for computation using tensor cores.

4.2 Structured Pruning
Compared to unstructured pruning, structured
pruning offers the advantage of being hardware-
agnostic, allowing for accelerated inference on
traditional hardware post-pruning. However, the
removal of larger and potentially more critical
components in structured pruning may result in
performance degradation, typically requiring ef-
ficient parameter fine-tuning for recovery. We
divide LLMs structured pruning works into sev-
eral groups based on pruning metrics: Loss-
based Pruning, Magnitude-based Pruning, and
Regularization-based Pruning.

Loss-based Pruning (Molchanov et al., 2019)
assesses the significance of a pruning unit by
measuring its impact on loss or gradient informa-
tion (e.g., first-order or second-order derivatives
of loss). For example, LLM-Pruner (Ma et al.,
2023) introduces a one-shot structured pruning
on LLMs based on gradient information. Specifi-
cally, LLM-Pruner identifies dependent structures
via a dependency detection algorithm and selects
optimal pruning groups using gradient informa-
tion, rather than solely relying on loss changes,
in a task-agnostic manner. Different from LLM-
Pruner, which focuses on narrowing LLMs’ width,
Shortened LLaMA (Kim et al., 2024) introduces
a one-shot depth pruning on LLMs. Shortened
LLaMA chooses the Transformer block as the
prunable unit, and prunes these unimportant
Transformer blocks, where the importance of
Transformer blocks is evaluated by loss and
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its second-order derivative. After pruning, both
LLM-Pruner and Shortened LLaMA utilize LoRA
to rapidly recover the performance of the pruned
model.

Magnitude-based Pruning (Han et al., 2015)
involves devising a heuristic metric based on the
magnitudes of pruning units, and use the metric
to assess the importance of pruning units, sub-
sequently pruning those units whose scores fall
below a predefined threshold. For example, FLAP
(An et al., 2024) utilizes a structured fluctuation
metric to assess and identify columns in the weight
matrix suitable for pruning, measuring the vari-
ation of each input feature relative to a baseline
value to estimate the impact of removing a column
of weights. Additionally, FLAP uses an adaptive
structure search to optimize global model com-
pression, and restores the model’s performance
post-pruning through a baseline bias compen-
sation mechanism, avoiding the need for fine-
tuning. To further maintain the pruned model’s
performance, SliceGPT (Ashkboos et al., 2024)
leverages the computational invariance of trans-
former networks and optimizes the pruning
process through Principal Component Analysis
(PCA). Specifically, SliceGPT employs PCA as
the pruning metric, applying it at each layer of the
transformer network to project the signal matrix
onto its principal components and eliminate in-
significant columns or rows from the transformed
weight matrices, ultimately aiming to compress
the model effectively.

Regularization-based Pruning (Wen et al.,
2016) typically adds a regularization term (e.g.,
L0, L1, and L2 regularization) into the loss func-
tion to induce sparsity for LLMs. For example,
Sheared LLaMA (Xia et al., 2024) uses a pair
of Lagrange multipliers based on pruning masks
to impose constraints on the pruned model shape
directly, thereby formulating pruning as a con-
strained optimization problem. Through solv-
ing this optimization problem, Sheared LLaMA
derives optimal pruning masks. Additionally,
Sheared LLaMA introduces dynamic batch load-
ing, a strategy that adapts training data loading
based on each domain’s loss reduction rate, en-
hancing the efficiency of data utilization during
training.

Remark 2. Structured pruning typically reduces
model size by removing redundant parameters,
but it may degrade model performance. A novel

approach is to combine knowledge distillation
(Hinton et al., 2015) with structured pruning.
Knowledge distillation allows knowledge ex-
tracted from a LLM to be transferred to a smaller
model, helping the smaller model maintain its
performance while reducing its size.

4.3 Semi-Structured Pruning

Apart from unstructured pruning and structured
pruning, there are many studies which use semi-
structured pruning to prune partial weights of
LLMs based on specific patterns. N:M sparsity,
where every M contiguous elements leave N non-
zero elements, is an example of semi-structured
pruning. For example, E-Sparse (Li et al., 2023b)
implements N:M sparsity by introducing informa-
tion entropy as a metric for evaluating parameter
importance to enhances the significance of param-
eter weights and input feature norms. E-Sparse
incorporates global naive shuffle and local block
shuffle to efficiently optimize information distri-
bution and mitigate the impact of N:M sparsity
on LLM accuracy. Furthermore, many pruning
studies can also be generalized to semi-structured
patterns. For example, SparseGPT (Frantar and
Alistarh, 2023) and Wanda (Sun et al., 2024)
also explore N:M sparsity of LLMs. SparseGPT
(Frantar and Alistarh, 2023) employs block-wise
weight partitioning, with each block containing M
weights. It identifies and prunes N weights with
the lowest reconstruction error (based on Hessian
information), ensuring a sparsity ratio of N:M.
This process iteratively prunes and updates model
weights, addressing one block at a time until the
desired sparsity level is achieved across the entire
model. Wanda (Sun et al., 2024) achieves struc-
tured N:M pruning by dividing the weight matrix
into groups of M consecutive weights and com-
puting an importance score for each weight. The
score is determined by the product of the weight’s
magnitude and the norm of the corresponding in-
put activations. Within each weight group, the N
weights with the highest scores are retained, while
the rest are set to zero, thereby implementing
structured N:M pruning. Furthermore, choosing
the optimal pruning strategy is crucial for com-
patibility with the target hardware. For instance,
Choquette et al. (2021) introduce the Ampere
Tensor Core GPU architecture (e.g., A100 GPUs)
and propose 2:4 fine-grained semi-structured spar-
sity to accelerate Sparse Neural Networks on this
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hardware. However, the current implementation
of the Ampere architecture supports only the 2:4
ratio, leaving other ratios without acceleration.

Remark 3. LLMs often perform well on multiple
tasks, which means they contain a multitude of
parameters for various tasks. Dynamic pruning
(Xia et al., 2020) methods can dynamically prune
different parts of the model based on the current
task’s requirements to provide better performance
on specific tasks. This helps strike a balance
between performance and efficiency.

Remark 4. For PTQ and pruning, preparing a
high-quality calibration dataset to assist in im-
proving the performance of compressed LLMs is
crucial. Specifically, Williams and Aletras (2023)
make a extensive empirical study on the effect of
calibration data upon model compression meth-
ods, and find that the performance of downstream
tasks can vary significantly depending on the cal-
ibration data selected. High-quality calibration
data can improve the performance and accuracy
of the compressed model, so careful selection and
preparation of calibration data are necessary.

5 Knowledge Distillation

Knowledge Distillation (KD) (Hinton et al., 2015)
is a technique aimed at transferring knowledge
from a large and complex model (i.e., teacher
model) to a smaller and simpler model (i.e., stu-
dent model). We classify these methods into two
clear categories (Gu et al., 2024): Black-box KD,
where only the teacher’s outputs are accessible,
typically from closed-source LLMs, and White-
box KD, where the teacher’s parameters or output
distribution are available, usually from open-
source LLMs.

5.1 Black-box KD

Black-box KD usually prompts the teacher LLM
to generate a distillation dataset for fine-tune the
student LM, thereby transfering capabilities from
teacher LLM to the student LM. In Black-box KD,
teacher LLMs such as ChatGPT (gpt-3.5-turbo)
and GPT4 (OpenAI, 2024) are typically em-
ployed, while smaller LMs (SLMs), such as GPT-2
(Radford et al., 2019), T5 (Raffel et al., 2020),
FlanT5 (Chung et al., 2024), and CodeT5 (Wang
et al., 2021), are commonly utilized as student
LMs. On the other hand, researchers find that

LLMs have emergent abilities, which refers to a
significant improvement in performance when the
model reaches a certain scale, showcasing surpris-
ing capabilities. Lots of Black-box KD methods
try to distill emergent abilities from LLMs to stu-
dent LMs, and we introduce three commonly used
emergent ability distillation methods: Chain-of-
Thought (CoT) Distillation, In-Context Learning
(ICL) Distillation, and Instruction Following (IF)
Distillation.

5.1.1 Chain-of-Thought Distillation
CoT (Wei et al., 2022; Wang et al., 2023b) prompts
LLMs to generate intermediate reasoning steps,
enabling them to tackle complex reasoning tasks
step by step. Li et al. (2024b) and Hsieh et al.
(2023) employ LLMs to prompt the generation
of explanations and leverage a multi-task learning
framework to bolster the reasoning capabilities
of smaller models while enhancing their capac-
ity for generating explanations. Magister et al.
(2023) show that LLMs’ reasoning capability can
be transferred to SLMs via knowledge distilla-
tion, but there’s a trade-off between model and
dataset size in reasoning ability. Ho et al. (2023)
use zero-shot CoT techniques to prompt LLMs
to generate diverse rationales to enrich the dis-
tillation dataset for the student models. Shridhar
et al. (2023) distill two student models: a problem
decomposer and a subproblem solver, which the
problem decomposer decomposes complex prob-
lems into a sequence of subproblems, and the sub-
problem solver solves these subproblems step by
step. Wang et al. (2023a) incorporate contrastive
decoding during rationale generation for teacher
models and address shortcut issues by introducing
a counterfactual reasoning objective during stu-
dent model training. Fu et al. (2023) demonstrate
that increasing task-specific capabilities through
distillation may inadvertently lead to reduced per-
formance in solving generalized problems, and
focus on improving mathematical capability of
student LMs via distillation. PaD (Zhu et al., 2024)
prompts LLMs to generate Program-of-Thought
(PoT) rationales instead of CoT rationales to con-
struct distillation dataset, and fine-tunes SLMs
with the distillation dataset. Wang et al. (2023e)
establishes a multi-round interactive learning
paradigm that enables student LMs to provide
feedback to teacher LLMs during the distillation
process, thereby obtaining tailored training data.
Additionally, DRA introduces a self-reflection
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learning mechanism, allowing the student LMs
to learn from their mistakes and enhance their rea-
soning abilities. Li et al. (2024c) find that negative
data generated from teacher LMs also has reason-
ing knowledge, and guides student LMs to learn
knowledge from both negative samples besides
positive ones.

5.1.2 In-Context Learning Distillation
ICL (Dong et al., 2023; Wang et al., 2023c)
employs structured prompts with task descrip-
tions and examples for LLMs to learn new tasks
without gradient updates. Huang et al. (2022)
introduce a method called in-context learning
distillation, which transfers in-context learning
ability from LLMs to smaller models by combin-
ing in-context learning objectives with language
modeling objectives. Specifically, it trains the stu-
dent model to improve its generalization across
various tasks by imitating the soft label predic-
tions of the teacher model and the hard label
ground truth values. Additionally, the method
incorporates two few-shot learning paradigms:
Meta In-context Tuning (Meta-ICT) and Multitask
In-context Tuning (Multitask-ICT). In Meta-ICT,
the student model adapts to new tasks with
in-context learning and guidance from the teacher.
Conversely, Multitask-ICT treats all target tasks
as training tasks, directly using examples from
them in distillation. The outcomes show that
Multitask-ICT is more effective, despite its in-
creased computational requirements. AICD (Liu,
2024) leverages the autoregressive nature of LLMs
to perform meta-teacher forcing on CoTs within
the context, jointly optimizing the likelihood of all
in-context CoTs, thereby distilling the capabilities
of in-context learning and reasoning into smaller
models.

5.1.3 Instruction Following Distillation
IF (Ouyang et al., 2022; Brooks et al., 2023) aims
to bolster the zero-shot ability of LLMs through
fine-tuning using a collection of instruction-like
prompt-response pairs. For instance, Lion (Jiang
et al., 2023) prompts the LLM to identify and
generate the ‘‘hard’’ instructions, which are then
utilized to enhance the student model’s capabil-
ities. LaMini-LM (Wu et al., 2024) develops an
extensive collection of 2.58 million instructions,
comprising both existing and newly generated
instructions, and fine-tunes a diverse array of mod-
els by using these instructions. SELF-INSTRUCT

(Wang et al., 2023d) uses student LMs them-
selves as teachers to generate instruction following
dataset, and fine-tunes students themselves with
the dataset. Selective Reflection-Tuning (Li et al.,
2024a) leverages the teacher LLMs to reflect
on and improve existing data, while the student
LMs assess and selectively incorporate these im-
provements, thereby increasing data quality and
compatibility with the student LMs.

Remark 5. Black-Box Distillation uses the
teacher model’s outputs as supervision, but the
teacher model’s outputs may not cover all possi-
ble input scenarios. Thus, understanding how to
handle a student model’s generalization on un-
known data and how to increase data diversity is
an area that requires further investigation.

5.2 White-box KD

White-box KD enables the student LM to gain a
deeper understanding of the teacher LLM’s inter-
nal structure and knowledge representations, often
resulting in higher-level performance improve-
ments. A representative example is MINILLM
(Gu et al., 2024), which is the first work to
study distillation from the Open-source generative
LLMs. MINILLM uses a reverse Kullback-Leibler
divergence objective, which is more suitable
for KD on generative language models, to pre-
vent the student model from overestimating the
low-probability regions of the teacher distri-
bution, and derives an effective optimization
approach to learn the objective. Further, GKD
(Agarwal et al., 2024) explores distillation from
auto-regressive models, where generative lan-
guage models are a subset. GKD trains the
student using self-generated outputs, incorporat-
ing teacher feedback, and allows flexibility in
using different loss functions when the student
cannot fully replicate the teacher’s distribution.
Different from the above studies, which focus
on learning the teacher distribution, TED (Liang
et al., 2023) proposes a task-aware layer-wise
distillation method, which designs task-aware fil-
ters, which align the hidden representations of the
teacher and student models at each intermediate
layer, to reduce the knowledge gap between the
student and teacher models.

Remark 6. Although white-box distillation allows
student LMs to learn the knowledge of teacher
LLMs more deeply compared to black-box distilla-
tion, currently, open-source LLMs perform worse
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than closed-source ones, limiting the improvement
of student LMs performance in white-box distilla-
tion. This is one of the barren factors hindering the
development of white-box distillation. A feasible
solution is to distill knowledge from closed-source
LLMs to open-source LLMs through black-box
distillation, and then use white-box distillation
to transfer knowledge from open-source LLMs to
student LLMs.

Remark 7. White-box distillation often involves
understanding and utilizing the internal structure
of LLMs, such as layer connections and parameter
settings. A more in-depth exploration of different
network structures and interactions between lay-
ers can improve the effectiveness of white-box
distillation.

6 Low-Rank Factorization

Low-Rank Factorization (Srebro and Jaakkola,
2003) reduces a large matrix into smaller ones to
save space and computational effort. For example,
it decomposes a large matrixW into two small ma-
trices U and V (i.e., W ≈ UV ), where U is m×k
and V is k × n, with k much smaller than m and
n. Recent studies try to employ low-rank factor-
ization to compress LLMs and achieve significant
success in this regard. For example, LPLR (Saha
et al., 2023) compresses weight matrices of LLMs
through randomized low-rank and low-precision
factorization. Specifically, LPLR approximates
the column space of the matrix using random
sketching techniques, quantizes these columns,
and then projects the original columns onto this
quantized space to create two low-rank factors
stored in low-precision. ASVD (Yuan et al.,
2023b) finds that the activation distribution has an
effect on the compression performance. To sovle
the problem, ASVD proposes to scale the weight
matrix with a diagonal matrix that contains scaling
factors corresponding to the activation distribution
of the input feature channels. Moreover, ASVD
assigns the most suitable compression ratio to
different layers by analyzing the singular values
distribution in each layer’s weight matrix, ensur-
ing minimal loss of model performance during
the compression process. Furthermore, Sharma
et al. (2024) demonstrate that the performance of
LLMs can be significantly improved by apply-
ing Layer-Selective Rank Reduction (LASER) to
specific layers of Transformer models. LASER in-
volves selectively reducing the rank higher-order

components of weight matrices, which is shown
to improve the model’s handling of rare training
data and its resistance to question paraphrasing.

7 Challenges and Future Directions

7.1 More Advanced Methods

The research on model compression techniques
for LLMs is still in its early stages. These com-
pressed LLMs, as demonstrated in prior studies
(Frantar and Alistarh, 2023; Liu et al., 2023b;
Ho et al., 2023), continue to exhibit a signifi-
cant performance gap when compared to their
uncompressed counterparts. By delving into more
advanced model compression methods tailored
for LLMs, we have the potential to enhance the
performance of these uncompressed LLMs.

7.2 Scaling up Model Compression Methods
from Other Models

In our paper, we introduce several representative
model compression methods for LLMs. However,
many classic model compression methods remain
prevalent in traditional small models. For exam-
ple, lottery tickets (Frankle and Carbin, 2019) and
parameter sharing (Savarese and Maire, 2019)
are widely used model compression methods in
small models. These methods still hold signifi-
cant potential in the era of LLMs. Future work
should focus on exploring how to extend these
compression methods to LLMs to achieve further
compression.

7.3 LLM Inference and Deployment

The efficiency of compressed LLMs during de-
ployment is also a significant area for exploration.
This involves multiple evaluation metrics, in-
cluding arithmetic intensity, memory size, and
throughput. Furthermore, we can use an analyt-
ical tool, the Roofline Model (Williams et al.,
2009), to assess the resource efficiency of com-
pressed LLMs on specific hardware. Evaluating
the deployment efficiency of compressed LLMs
on specific hardware can guide researchers in
selecting and analyzing the advantages and disad-
vantages of various model compression methods
and further optimizing these methods.

7.4 The Effect of Scaling Law

The scaling law (Kaplan et al., 2020) underscores
the significant impact of model size, dataset size,
and compute resources on the performance of
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LLMs. However, the scaling law presents a fun-
damental challenge for LLM compression, i.e.,
there is a trade-off between model size and per-
formance in compressed LLMs. Delving into the
mechanisms and theories underpinning the scal-
ing law is crucial for elucidating and potentially
overcoming this limitation.

7.5 AutoML for LLM Compression

Existing compression techniques have made re-
markable progress, but they still heavily depend on
manual design. For instance, designing appropri-
ate student architectures for knowledge distillation
requires a significant amount of human effort. To
reduce this reliance on manual design, a feasible
solution is to combine Automated Machine Learn-
ing (AutoML) techniques such as Meta-Learning
(Finn et al., 2017) and Neural Architecture Search
(NAS) (Zoph and Le, 2017) with model com-
pression. By combining with AutoML techniques,
model compression can automatically select ap-
propriate hyperparameters and tailor architectures
and scales of compressed models, thus minimizing
human involvement and lowering the associated
costs. Furthermore, AutoML can identify optimal
model compression strategies tailored to spe-
cific task requirements, thereby further enhancing
compression rates without compromising model
performance.

7.6 Explainability of LLM Compression

Earlier research (Stanton et al., 2021; Xu et al.,
2021) has raised significant concerns regarding
the explainability of model compression tech-
niques applied to Pre-trained Language Models
(PLMs). Notably, these same challenges extend to
LLM compression methods as well. For example,
CoT-distillation can enhance SLMs’ reasoning
performance, yet the mechanism through which
it imparts CoT ability remains unclear. This
challenge underscores the importance of inte-
grating explainability with model compression
approaches for the advancement of LLM compres-
sion applications. Explainability not only clarifies
the changes and trade-offs in the compression pro-
cess but also enhances efficiency and accuracy.
Additionally, interpretability aids in evaluating
the compressed model’s performance to ensure it
aligns with practical requirements.

8 Conclusion

In this survey, we have explored model compres-
sion techniques for LLMs. Our coverage spanned
compression methods, metrics, and benchmark
datasets. By diving into LLM compression, we’ve
highlighted its challenges and opportunities. This
survey aims to be a valuable reference, providing
insights into the current landscape and promoting
ongoing exploration of this pivotal topic.
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González, Danielle Perszyk, Danny
Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard,
David Jurgens, Debajyoti Datta, Deep Ganguli,
Denis Emelin, Denis Kleyko, Deniz Yuret,
Derek Chen, Derek Tam, Dieuwke Hupkes,
Diganta Misra, Dilyar Buzan, Dimitri Coelho
Mollo, Diyi Yang, Dong-Ho Lee, Dylan
Schrader, Ekaterina Shutova, Ekin Dogus
Cubuk, Elad Segal, Eleanor Hagerman,
Elizabeth Barnes, Elizabeth Donoway, Ellie
Pavlick, Emanuele Rodolà, Emma Lam,
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