
NoviCode: Generating Programs
from Natural Language Utterances by Novices

Asaf Achi Mordechai Yoav Goldberg Reut Tsarfaty
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

{asaf.achimordechai, yoav.goldberg, reut.tsarfaty}@gmail.com

Abstract

Current Text-to-Code models demonstrate im-
pressive capabilities in generating executable
code from natural language snippets. However,
current studies focus on technical instructions
and programmer-oriented language, and it is
an open question whether these models can
effectively translate natural language descrip-
tions given by non-technical users and express
complex goals, to an executable program that
contains an intricate flow—composed of API
access and control structures as loops, condi-
tions, and sequences. To unlock the challenge
of generating a complete program from a plain
non-technical description we present Novi-
Code, a novel NL Programming task, which
takes as input an API and a natural language
description by a novice non-programmer, and
provides an executable program as output. To
assess the efficacy of models on this task,
we provide a novel benchmark accompanied
by test suites wherein the generated program
code is assessed not according to their form,
but according to their functional execution.
Our experiments show that, first, NoviCode is
indeed a challenging task in the code synthe-
sis domain, and that generating complex code
from non-technical instructions goes beyond
the current Text-to-Code paradigm. Second,
we show that a novel approach wherein we
align the NL utterances with the compositional
hierarchical structure of the code, greatly en-
hances the performance of LLMs on this task,
compared with the end-to-end Text-to-Code
counterparts.

1 Introduction

The current Text-to-Code paradigm focuses on
generating code-lines from technical descriptions
produced by trained programmers. In this work,
we move from this Text-to-Code paradigm to-

wards generating programs with intricate struc-
tures from intuitive, day-to-day language descrip-
tions produced by non-technical individuals. This
novel reconstruction of the task is challenging
on two levels: (a) the generated programs have
non-trivial control-flow structures—with API calls
to a novel API that the model was not necessar-
ily trained on—rather than generic one-liners; and
(b) we are interested in instructions provided by
laypeople in everyday natural language, without
using technical concepts or jargon. We term this
task Natural Language Programming (NLProg).

NLProg differs from standard code generation
models, tasked to convert natural language in-
structions or descriptions into executable code,
in several ways. In the Text-to-Code paradigm,
models require the user to use technical terms, like
flow structures (e.g., conditions or loops), data
types, variables, and programming concepts (e.g.,
sorting algorithms, object-oriented concepts, re-
cursions, etc.). In contrast, in NLProg we aim to
convert plain, everyday language descriptions, de-
void of any technical jargon, into functional code
using independent and unseen API specifications.

NLProg is particularly challenging when the
descriptions implicitly allude to code constructs
as control flow elements such as sequences, loops,
or conditional statements, without explicitly men-
tioning them. For example, given a standard API of
email and calendar applications and a user request
‘‘Check that I received confirmation emails from
all advisors in the committee or cancel my meeting
with them’’, we expect the model to interpret the
conjunction ‘‘or’’ as indicating a condition, and to
recognize ‘‘all advisors in the committee’’ as an
iteration over a particular set. The model should
then generate a proper executable program based
on the API (Figure 1).

Recent work on natural language synthesis
to code (Chen et al., 2021; Wang et al., 2023a;

1330

Transactions of the Association for Computational Linguistics, vol. 12, pp. 1330–1345, 2024. https://doi.org/10.1162/tacl a 00694
Action Editor: Shay Cohen. Submission batch: 1/2024; Revision batch: 4/2024; Published 10/2024.

c© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:asaf.achimordechai@gmail.com
mailto:yoav.goldberg@gmail.com
mailto:reut.tsarfaty@gmail.com
https://doi.org/10.1162/tacl_a_00694

Figure 1: The NLProg Task. Left: The input, consisting of an utterance and an API specification for implementing
the target code. Right: The output, reflecting the procedural instructions in the utterance, is implemented with the
correct usage of the API specifications.

Nijkamp et al., 2023) have shown remarkable
success in code generation tasks using LLMs.
Trained on a large fraction of GitHub repositories
(Iyer et al., 2018; Husain et al., 2019; Lu et al.,
2021; Wang et al., 2021; Wang et al., 2023a) or
StackOverflow question-answer pairs (Yin et al.,
2018), these code-oriented LLMs learn rich con-
textual representations that can be transferred to
various code-related downstream tasks.

However, these works share several limita-
tions. They predominantly focus on technically
precise descriptions given by programmers, us-
ing jargon-laden, code-centric discourse geared
towards seasoned programmers. Other datasets in
intent recognition and slot fillings (Gupta et al.,
2018; Chen et al., 2020) focus on plain language
description from non-programmers, or novices,
but these are translated into simple code that ex-
hibits no complexity in its flow execution and is
inherently derived from the NL descriptions in
its datasets.

To bridge this gap, we present NoviCode, a
novel task that aims to translate NL descriptions
from novices into complex executable programs.
We curated a dataset where novice-centric NL in-
structions are paired with complex code programs.

These code programs adhere to API specifications
to facilitate the functional execution of the pro-
duced code. Having defined this task and created
the benchmark, two additional challenges pres-
ent themselves, namely: (i) How can we evalu-
ate the efficacy of models on such complex code
synthesis tasks? and (ii) What would be good
models for addressing the non-trivial challenge
of translating high-level language to low-level
intricate code?

To address the evaluation challenge, we de-
liver, along with the task data, test suites that
simulate diverse scenarios of execution flows to
gauge the functional correctness of the generated
code. Our evaluation methodology is designed to
assess the functional correctness of the control
flow elements within the generated complex pro-
grams, rather than merely looking at the form of
the code or assessing an end state only.

To address the modeling challenge, we hypoth-
esize that learning the alignment of the natural
language queries with codes’ hierarchical struc-
tures, rather than learning a simple end-to-end
text-to-code model, can improve performance,
particularly with programs as complex as we tar-
get here.

1331

Our experiments with standard LLMs assessed
by our functional evaluation suites demonstrate
that the task is indeed challenging. Existing mod-
els struggle to produce the expected executable
code with complex constructs. We further empir-
ically confirm our hypothesis that learning the
alignment of natural language spans to composi-
tional hierarchical code structures is better than
the de-facto standard end-to-end modeling.

The contribution of this paper is thus multi-
fold. First, we define a novel code-synthesis task
based on plain non-technical natural language.
Second, we deliver a dataset of NL instructions
obtained from non-programmers, paired with an
expert-crafted evaluation suite that focuses on the
function, rather than form of the generated code.
Finally, we provide a novel modeling approach
that aligns NL spans with the explicit composi-
tional structures of the code. We further show that
this approach outperforms the standard end-to-
end baseline models on this task, even with the
most capable contemporary generative LLMs.

2 The Challenge: Technical Code from
Non-Technical Users

2.1 Terminology

In this work we are interested in synthesizing
complex programs from descriptions by novice
users. Before we begin, we define the relevant
terms:

Natural Language Programming. We equate
programming in natural language with the ability
to translate a desired scenario using plain, ev-
eryday language to a working program (Harel,
2008).

Novices vs. Programmers. When crafting NL
descriptions of programs, we distinguish two
distinct types of personas, defined by their pro-
gramming skills: Programmers, who often use
technical terminology—such as functions, loops,
iterations, conditions, exceptions, methods, and
concepts that are common when expressing
computations—which is not typically familiar
to individuals without formal training in the
field. Novices, who are devoid of programming
skills, utilizing intuitive, everyday language to
describe program functionality without using tech-
nical terms or referring to specific programming
paradigms.

Simple vs. Complex Programs. In this work,
we define a simple program as a simple statement
that abstains from long sequences of actions or the
incorporation of logical control-flow elements.
A program is deemed complex if it executes a
sequence of statements or has one or more control
flow structures, such as loops or conditions.

2.2 Why is Programming in Natural
Language Challenging?

Programmers and novices describe code differ-
ently—with programmers describing explicitly
elements in the target code, like functions, argu-
ments, and variable names. Programmers express
ideas using technical jargon and programming
concepts used in the code.

Let’s consider for example the following ar-
ticulation of a simple program by a programmer:
‘‘Start a server listening on port 8080’’. This ex-
ample shows a close coupling of the description
and the program code. This description explicitly
specifies the arguments (port) and their respec-
tive values (8080) in the start server API. The
ontological terms (server and port) in the descrip-
tion also exemplify the technical language used
by programmers. Last, the description uses code
concepts like Start a server and listen on port.

Moreover, when describing a complex program
in natural language, programmers typically use a
structured language to describe the logical con-
trol flows within the desired program. In their
description, specific keywords (e.g., if-else and
for or while) are used to describe conditionals
or loops. Loops are also described using ex-
plicit quantifiers. Control flow structures, like
sequences of operations, are often brought in the
plain order of execution. For example, ‘‘Find
the average of every three columns in Pandas
DataFrame and then return the max value’’. This
description exhibits the logical flow in the order it
should appear in the code – it indicates a sequen-
tial operation, which begins in a loop and then
commences with a simple call for a function (i.e.,
max). The loop is described using a quantified
term (i.e., every three).

On the other end, Novices craft NL utterances
unaligned with the program code they describe.
They have no prior knowledge of the target pro-
gram code or programming language, the API
being used, or programming concepts in general—
making their descriptions simpler using everyday

1332

language and diverging from the underlying code
elements. When describing complex programs,
novices use semantics that implicitly hints at loops
or conditions. Furthermore, novices’ discourse in
the utterances is not constrained to the order of
logical control flow structures in the code but to
their more intuitive capture in their minds.

To illustrate, examine the following novice
description of a complex program: ‘‘Find me
adjacent seats for Shakespeare in the Park, on
the first weekend day the weather will be nice’’.
In this example, and depending on the specific
API, the expected resulting program might need
to contain a loop (i.e., iterating over the weekend
days) that is contingent on the result of a condition
(i.e., the weather will be nice). One should notice
that the order of the predicates in the description
differs from the order of the statement executed in
the code. Furthermore, no explicit keywords were
used to indicate the condition or the loop. Last,
the NL terms do not necessarily align with the
actual arguments within the code (i.e., "weather
will be nice" will be inferred to a range of temper-
ature and other weather features in the code). This
creates an additional challenge, that of translating
of language used in novices’ utterances into the
technical intricacies of the target code.

2.3 Why is the Evaluation of NL
Programming Challenging?

Code generation models have traditionally been
assessed by string-match-based metrics, such as
BLEU (Papineni et al., 2002) and CodeBLEU
(Ren et al., 2020). However, these methods fall
short because they misjudge functionally equiv-
alent solutions to the reference solution in the
vast space of programs. As a result, recent work
in code synthesis turned to evaluating models
through the functional correctness of the gener-
ated code. In this line of work, a dataset sample is
considered correct if it passes a set of unit tests.

HumanEval (Chen et al., 2021) is a notable
step in this direction. It presents a dataset of hand-
written unit tests for programming problems,
crafted by programmers, which describes simple
program execution, like those in programmers’
repositories datasets such as Github.

At the same time, the granularity of functional
correctness in the HumanEval work is limited
to the final output of the generated program. In
a complex program comprising multiple steps,

we need to provide insights into which parts of
the program are correct. Also, obtaining precise
evaluation, especially for complex code with nu-
merous edge cases, requires a comprehensive
functional test suite. Last, functional correctness
metrics are often task-specific. A metric idesigned
for one type of task (e.g., generic programming
problems) may not be suitable for another type
(e.g., generating code accessing a certain API).

To overcome these challenges, in this work
we create a set of functional correctness evalua-
tion tests for programs that originate from novice
descriptions. The described scenarios are thus
accompanied by comprehensive unit tests, encom-
passing the various edge cases typical of complex
programs, to give us a clear and more granular
assessment of the generated code.

3 Task and Benchmark

Input The task takes as input (i) a novice-
generated natural language utterance, which
describes a complex code, and (ii) API speci-
fications that allow for the functional execution
of the relevant code. These API specifications
serve as a bridge between the high-level com-
plex NL instructions and the low-level code
implementation.

Output The output of this task is a program
code that satisfies the description given in the
NL utterance. The output code is required to be
syntactically and functionally correct and compile
successfully following the API specifications.

Benchmark Creation In what follows we dis-
cuss the steps towards benchmark creation for the
task. First, we collect intent-based program de-
scriptions from non-programmers, serving as a
window into the intuitive language constructs and
phrasing preferred by this group, capturing a di-
verse range of plain language descriptions involv-
ing different logical control flows (Section 4.1).
Second, we create a corresponding wide-coverage,
hand-crafted test-suite validating the control flow
and edge cases in the described systems, which is
used for function-based evaluation (Section 4.2).
Finally, we create a corresponding code-base
solving these utterances, based on a domain-
specific API specification which we formulate
(Section 5).

1333

4 Data Collection and Curation

Our benchmark creation begins with collect-
ing natural language utterances from novices, in
domains that are understandable to them (Sec-
tion 4.1). Next, we assemble an evaluation dataset
that combines these utterances with corresponding
test suites to assess the quality of the generated
code (Section 4.2). In addition, we synthetically
generate NL utterance-code pairs to facilitate the
training of models for the task (Section 4.3).

4.1 NL User Requests Collection Interface
The first step of our data collection aims at a scal-
able collection of natural language instructions
from novices that depict complex execution in
control flow structures. This collection is achieved
via crowd-sourcing. We crowdsourced novice de-
scriptions of complex code from crowd-workers1

on the Amazon Mechanical Turk platform. We
ground the collected NL utterances in a task-
oriented dialogue-systems environment. This
realm is a critical component of virtual assistants,
which are responsible for understanding the user’s
intents (e.g., set reminder, play music, etc.). It is
user-friendly and requires no coding expertise or
familiarity with specific programming languages.

We focused our collection efforts on 9 domains
and their inherent intents: clock, events, map, mes-
saging, music, reminders, shopping, smart home,
and weather. These domains are intuitive to the
novice crowd worker, do not require any pro-
ficiency, and can be interleaved to describe the
execution of a complex program. The API covers
all these domains, yet it remained hidden from the
novice crowd workers, preventing biases that may
have influenced their natural language descrip-
tions. This highlights the disconnect between the
novice’s phrasing and the anticipated program.

To stimulate the generation of creative descrip-
tions, the interactive user interface simulates a
mobile device. The interface guides the contribu-
tors through a series of steps to formulate complex
queries, validate the control flow, and submit their
utterances. To foster creativity, contributors were
randomly presented with (1) a subset of potential
domains, (2) a preferred control flow (e.g., condi-
tion or sequence) phrased in an intuitive manner,
and (3) in certain cases, a restriction on the use of
frequently recurring words (e.g., ‘‘if ’’, ‘‘then’’,

139 native English speakers with a high approval rate of
above 99%.

‘‘tomorrow’’, ‘‘tonight’’, ‘‘weather’’, ‘‘when’’,
etc).

Another tactic employed to foster creativity
was providing the task with a single-step non-
complex utterance example, randomly selected
from the TOP (Gupta et al., 2018) and TOPv2
(Chen et al., 2020) datasets, and requesting the
contributors to rephrase the utterance to express
a more complex goal, and educating them what
complex utterances might be like.

4.2 Human Crafted Test Suites

The second stage of our benchmark creation pro-
cess focuses on the formulation of hand-written
test suites. For evaluation of the code, we collected
manually crafted Python test suites containing unit
tests that are tailored to check the correctness of
the code generated for the NL instructions from
the first stage. We randomly selected 150 evalu-
ation targets from the 1,200 collected utterances
in the first stage (4.1). Two undergraduate and
graduate computer science students, familiar
with Python programming and unit testing, spent
about 100 hours constructing the tests to carry out
the task reliably.

Each annotator coded the functional test with a
test scenario snippet, to be seeded with data used
as input to the test, and a set of assertion tests ac-
cordingly. At runtime, we executed the unit test by
combining the test scenario snippet, the generated
code, and the assertion tests. Until the unit test
execution, the generated code remains concealed
from the programmers coding the unit tests, ensur-
ing an impartial evaluation of the code-generating
model (see Figure 2).2

4.3 Synthesized Training Dataset

We augment our dataset by following the Berant
and Liang (2014) approach to generate synthe-
sized utterances. This approach matches NL sen-
tences with logical predicates. First, we sourced
a seed lexicon specifying a canonical phrase
(e.g., ‘‘check weather’’) for each logical predicate
(checkWeather) in the scope of our domains.
This lexicon was drawn from a held-out set,
a subset of the larger dataset we collected via
crowd-sourcing (section 4.1).

2To prevent leakage of the problems in the evaluation test
suites, we archived the plain content of the tests in a gzip file
that is not accessible to crawlers or scraping.

1334

Figure 2: An example of the unit test code used for
evaluating the utterance ‘‘Check that I received con-
firmation emails from all advisors in the committee or
cancel my meeting with them’’. At test time, we embed
and execute the generated code within the test frame-
work. This process allows us to evaluate the functional
correctness according to the test scenario.

Second, we define a grammar, that along with
the seed lexicon and a mock data generator,3 can
automatically generate a plethora of canonical
utterances (‘‘check the weather in New York City
tonight’’) paired with their execution code.

Having defined the predicates and potential
arguments, we expand our grammar with natu-
rally occurring phrases manifesting control-flow
rules sourced from the held-out set, facilitating the
generation of control flows with varying degrees
of nesting.

Last, canonical utterances were recursively used
to compose complex canonical utterances (e.g.,
‘‘check weather tonight and traffic in New York
City’’). A generated utterance may not have the
elegance of a genuine NL user query, though it
still retains the semantics of executed through
the code. In contrast to the crowd-sourced user
queries, that we allotted for evaluation, the syn-
thesized user queries are merely used as training
data to fine-tune large language models.

Finally, this synthetic process is easily scalable.
While we focus our synthesized dataset efforts on

3We used Faker, a Python package that simulates data
such as names, addresses, and phone numbers.

the specific set of the 9 domains and their inher-
ent intents, adding a domain consists of sourcing a
seed lexicon for the new domain, identifying pred-
icates in the domain, and updating the grammar
with the new domain grammar rules.

5 The API Specifications

To provide code frameworks that bridge the trans-
lation of NL descriptions to their respective code
programs, we created an API that generically
aligns spans in the user description to code data
types and actions. The generated code must cor-
rectly utilize the API endpoints and be executable,
allowing us to assess its functionality by execut-
ing corresponding tests. The API specifications
followed the nine domain apps defined for sourc-
ing the prompts (see Section 4.1). Nonetheless,
the formulation of the API was designed inde-
pendently from the process of collecting natural
language user utterances in these domains.

The API code comprises multiple classes and
is designed to provide a comprehensive and mod-
ular framework for interacting with the system’s
functionalities. Forty-nine interfaces define the
different data type entities in our APIs. Loca-
tion, Contact, DateTime, are examples of
such data types. To perform actions with these en-
tities, we expose an additional 11 classes with 34
action methods that are available to be executed.
For instance, the Messages class defines meth-
ods to send a message and find messages received
from specific senders, with desired content, or at
a specific time.

Users provide natural language descriptions
detailing the actions they want to execute and
the specifics of each action. The model must in-
terpret descriptions and associate them with the
appropriate API classes and methods.

To map from user-specified text spans to do-
main objects, we assumed the API provides the
methods resolve from text and resolve
many from text, which discern relevant spans
of word sequences in an utterance and correlate
them with specific entities. For instance, when
a user queries for ‘‘the weather on independence
day’’ the method DateTime.resolve from
text is invoked with the temporal description

spans from the request (‘‘on independence day’’)
and returns a DateTime object which is stored
in the code. These variables, representing entities,
are then used in other API methods to execute the

1335

https://faker.readthedocs.io/

Figure 3: An example demonstrating methods to resolve
entities from text spans and other entities in the user
utterance ‘‘After every Astros game remind me to check
the traffic’’.

actions requested in the natural language descrip-
tion (e.g., get weather forecast). It is the
API provider’s responsibility to provide suitable
implementations for these text-resolution func-
tions. In our evaluation suite, we provide suitable
mock implementation (see Section 6.3).

In certain cases, an entity needs to be inferred
from another entity. For such instances, the API
offers extra methods such as resolve from
entity or resolve many from entity. For

instance, the phrase ‘‘After every Astros game’’
refers to a set of events on a public calendar. To
infer the DateTime entity from each event we
iterate on the events and call resolve from
entity on each event (see Figure 3).

6 Evaluation

6.1 Method

An essential aspect of any task is its evaluation
methodology and thus we introduce an automated
execution-based evaluation measure for the pro-
posed NoviCode task, addressing the challenge
we outlined in Section 2.

The evaluation aims to quantify three key fac-
tors: (1) The model’s efficacy in generating fully
executable code, (2) The model’s capacity to
identify and generate the intended control flows
reflected in the natural language utterances, and
(3) The success of the model in generating all
operations in every execution flow.

Instead of assessing the syntactic correctness
of the generated code, we shift the evaluation
method towards evaluating functional correctness,
wherein a synthesized program is deemed correct
if it satisfies a series of unit tests. We build up-
on this methodology by introducing a collection
of human-crafted test suites encompassing a di-
verse range of test cases, meticulously designed to
evaluate the accuracy, robustness, and the gener-
ated code logical structure. Thus, alongside the

NoviCode task, we release our set of 150 hand-
crafted evaluation problems.4

A human expert manually created each func-
tional test to ensure its accuracy in identifying
true positives. To minimize the likelihood of false
positives, the expert thoroughly designed multi-
ple test scenarios particularly focusing on the truth
or falsity in conditional control flows.

6.2 Metrics

To quantify a model’s functional correctness
evaluation score, we compute the pass@k (Kulal
et al., 2019) score, employing the method used
by Chen et al. (2021) and subsequent studies. We
generate n ≥ k samples per task, count the num-
ber of correct samples c ≤ n which pass the unit
tests, and calculate the unbiased estimator:

pass@k := E
Problems

⎡
⎢⎢⎣1−

(
n− c
k

)
(

n
k

)
⎤
⎥⎥⎦ (1)

6.3 Simulated API Implementation

To facilitate the evaluation by executing the func-
tional correctness tests with the generated code,
an implementation of the API was required to
be in place. In a real-world scenario, a system
is required to support the true execution of the
API-specified classes and methods. For example,
sending emails to selected contacts from the us-
er’s address book (e.g., ‘‘mom and dad’’), or re-
trieving the weather forecast at a specific time
and place relative to the user (e.g., ‘‘independence
day’’ and ‘‘my neighborhood’’ respectively). We
provide a mock-up implementation that simulates
the proposed actions in the API specifications, al-
lows test input data seeding, and supports evalu-
ating state changes of the underlying data model
following the invoked methods.

Another aspect of simulating the API is that it
expects an extractive span comparison for instan-
tiating data type entities from the NL description.
One of the challenges in reliably defining these
entities lies in matching the correct span (e.g., ‘‘all
advisors in the committee’’) to the expected data
dictionary entry (e.g., ‘‘Committee advisors’’).
For that, we implemented fuzzy matching over

4The dataset and source code are publicly available at
https://github.com/biu-nlp/novicode.

1336

https://github.com/asafam/novicode

Control flow Frequency

Sequences 57.8%
Conditions 31.8%
Loops 26.1%

Table 1: Frequency of the observed control flows
found in the crowd-sourced utterances. Multiple
control flows can be seen in a single utterance.

content words in the resolve * string compar-
ison methods, ignoring determiners and common
prepositions and postpositions. This technique
compares the input span with the expected span
and produces a BLEU score, accepting a match if
it exceeds a specific threshold. We used a BLEU
score threshold of 50% (Tran et al., 2019).

7 Data Quality Assurance

NL User Utterances Collection We imple-
mented a multi-step process to maintain the quality
of the collected utterances. First, we vetted experi-
enced Amazon Mechanical Turk crowd workers5

contributing to this task to ensure they were
non-programmers and had no coding proficiency
or educational background in computer science or
related fields. Secondly, we funneled our crowd
workers through preliminary qualification tests, to
verify they understood the task and its intricacies
and could provide a wide range of creative re-
sponses, avoiding templated, repeating, and short
answers. Last, we manually reviewed each input
and tagged it based on control flow structures
it exhibited (i.e., loop, sequence, and condition),
as shown in Table 1. This process resulted in a
collection of 1,200 verified utterances.

Human Crafted Test Suites An expert pro-
grammer reviewed each of the 150 selected
problems in the evaluation set to ensure the qual-
ity of the functional correctness test suites in the
benchmark. First, by manually providing code for
every prompt, the expert confirmed that every
problem had a corresponding code that correctly
used the API classes and methods. Secondly, to
ensure the test is executable and can validate the
evaluated code, the expert programmer integrated
the manually provided code into the functional

5Native English speakers with a high approval rate (99%)
and significant experience (over 5,000 completed HITs) on
the Amazon Mechanical Turk platform.

Figure 4: An example of the cAST in a bracket notation.

correctness tests assigned to the problem and exe-
cuted it to either pass the test suites upon a correct
code or fail otherwise. This review process re-
sulted in a human performance score of 100% in
the functional correctness evaluation tests. This
ensured that all tests were executable upon pro-
viding a correct code for the prompt and that
the test formulation successfully checked multi-
ple test scenarios.

8 Better Code Generation through
Intermediary Representation

Instead of translating natural language utterances
directly to code, we propose to map the natural
language to an intermediary structure that better
encapsulates the control flow elements of the lan-
guage. By explicitly representing the structure of
the target complex program through a hierarchi-
cal structure, one that expresses the compositional
control flows expressed in the code, we hope
to improve the compositional generalization thus
improving code generation accuracy relative to
standard end-to-end text-to-code methods (Herzig
and Berant, 2020).

Formally, given a natural language utterance
x, our goal is to convert x into a surface code
y. Instead of mapping directly to y, we learn to
translate x to an intermediary logical form z,
which can be deterministically converted to y.
We use the text-to-code models to perform the
transformation x → z, and then use a determinis-
tic transformation z → y to obtain y. Specifi-
cally, z is based on a linearized compact AST
(cAST) which is derived from the abstract syntax
tree (AST) of the code, and is linearized into text
using a bracketted notation (Figure 4). The AST
is a tree structure representing the structure of
the program. Using the AST allows the model to

1337

focus more on the logic and flow of the complex
program rather than mere syntax (e.g., keywords,
symbols, indentation), reducing the complexity
of the output space. On top of that, we define a
compact AST (cAST) that only retains the control
flow logic structures, such as sequences, condi-
tions, and loops, in a tree form. To create compact
ASTs, we revert basic operations such as variable
assignments or function calls to their fundamen-
tal code syntax. These elements are transformed
from their AST hierarchical representation to
appear as leaves in the tree’s code form.

To translate the linearized cAST z back to code
y, we parse the string into its cAST tree form and
expand it back to the AST form using a tool we
provide. The ASTs are translated into actual code
using the official Python package for this (ast).

We note that previous work (Yin and Neubig,
2017; Yin and Neubig, 2018) also utilized ASTs
to synthesize code better. Yet, these works model
code generation as a series of classification prob-
lems of grammar rules required to reconstruct the
AST. Our method uses the hierarchical tree form
as a vehicle to directly map texts to hierarchical
code structures.

9 Experiments

We set out to evaluate how existing models cope
with the NoviCode task. Moreover, we aim to
assess whether our representation-based learn-
ing approach (Section 8) outperforms a simple
end-to-end Text-to-Code baseline.

To do so, we evaluated decoder-only generative
large language models (LLMs) using in-context
learning scenarios. We also tested pre-trained
encoder-decoder LLMs that are fine-tuned with
the synthesized trainset. We tested both a simple
end-to-end scenario (denoted base) and one where
we map to the hierarchical compact AST (denoted
cAST), as defined above.

Data and Evaluation We synthesize a training
dataset of 40K samples as discussed in Section 4.3.
Every sample in our dataset is a tuple containing
an NL user request, a matching Python code, and
the cAST representing the code (Section 4.1). We
evaluate models on this task using expert-crafted
test suites for the functional correction of the
generated code (Section 4.2).

Metrics To reliably estimate the functional cor-
rectness of a model, we generated 200 samples for

each prompt (n = 200) and calculated the mean
pass@1 and pass@10 scores.

In-context Learning. We conducted tests on
OpenAI’s GPT-3.5-Turbo6, and GPT-4-Turbo7

models using in-context learning (prompting)
(Brown et al., 2020). We also experimented with
open source LLMs including Meta’s CodeLlama,8

Mistra,l9 and DeepSeek Coder.10 Our experimen-
tal setup used in-context prompts that included the
full API specifications and multiple examples of
few-shot prompts randomly selected from the syn-
thetically generated dataset. The examples count
was capped at 11, aligning with the smallest con-
text window of our models, which equals 16,385
tokens. This type of in-context prompting was
feasible only with models that have a higher token
limit for context windows, as the API code itself
contained 15,397 tokens (including the Python
Docstrings).

Fine-tuned Models. We further assess the
NoviCode task by fine-tuning models that
were previously shown to successfully perform
program-synthesis tasks. These models include
T5 (with 220M parameters) (Raffel et al., 2019),
CodeT5 (220M) (Wang et al., 2021), and CodeT5+
(220M) (Wang et al., 2023a). Each model was
fine-tuned using input-output tuples tailored to
the specific experimental setups, utilizing data
from the synthesized training dataset. The dataset
of synthesized samples was split into train (80%),
validation (10%), and test (10%) sets for the fine-
tuning phase. All models were configured with a
maximum input and output length of 512 tokens
each. A learning rate of 5e-5 was employed, along-
side a constant warm-up with step inverse decay,
and the warm-up steps were capped at 1,000.
We utilized the AdamW optimizer (Loshchilov
and Hutter, 2019), and the experiments were
conducted with a batch size of 8 and were set
to run for a maximum of 20 epochs. However,
the execution was halted if no improvement
was observed for three consecutive epochs. An
A100 GPU machine was employed for these
experiments.

6gpt-3.5-turbo-1106.
7gpt-4-0125-preview.
8CodeLlama-7b-Instruct-hf.
9Mistral-7B-Instruct-v0.2.

10deepseek-coder-33b-instruct.

1338

Model Name Setup pass@1 pass@10

GPT-4-Turbo
base 33.8± 0.1 51.6± 0.4
cAST 39.0± 0.3 55.6± 0.8

GPT-3.5-Turbo
base 10.7± 0.0 29.0± 0.0
cAST 10.3± 0.1 31.3± 0.2

CodeLlama-7B
base 1.5± 0.1 10.7± 2.1
cAST 3.3± 0.0 17.2± 1.5

Mistral-7B
base 0.3± 0.0 2.1± 0.3
cAST 1.2± 0.3 6.6± 1.2

DeepSeek-Coder-33B
base 8.8± 0.3 27.8± 0.2
cAST 7.0± 0.4 26.2± 0.3

Table 2: Comparing LLMs with different input-output setups. We find that representing code in a
structural form outperforms the basic text-to-code approach. Results are indicated by mean and std dev.

10 Results and Analysis

10.1 Results

Our experiments revealed that in most model
architectures we tested, having an output of a com-
pacted AST (cAST) structural form showed in-
creased performance compared to the text-to-code
method. The best results were obtained with the
GPT-4-Turbo model, to which we supplied an
in-context prompt containing the NL descriptions
and expecting a cAST to be converted to code.

Analyzing the results, we observed that the
cAST form better generated code that exhibited
conditions and loops in control flows, forms
which are more explicit in the ASTs. With se-
quences of operations, the two setups showed sim-
ilar success. In cases where multiple control flows
were present in the same utterance, the cAST
output form also excelled compared to the text-
to-code setup.

In-Context Learning We assessed this task
on different commercial and open-source LLMs.
Our assessment evaluated the standard text-to-
code approach against our proposed structural rep-
resentation code setup. The results are shown in
Table 2. Our proposed approach using the code
representation method showed the best result.
This performance in an in-context learning for-
mat shows the promise of using this intermediate
form to represent code in general.

Fine-tuned Models We turned to assess this
task on three fine-tuned baseline models. The

Model Name Setup pass@1 pass@10

T5
base 0.0 ±0.0 0.0± 0.0
cAST 9.7± 1.1 19.6± 2.3

CodeT5
base 8.1± 0.7 14.8± 1.6
cAST 9.1± 0.5 18.8± 1.1

CodeT5+
base 11.3± 1.4 19.4± 2.8
cAST 11.7± 0.8 18.8± 2.1

Table 3: Comparison of fine-tuned models’
performance. Our proposed hierarchical code rep-
resentation form achieved the highest performance
scores across all models. Results are indicated by
mean and std dev.

results are presented in Table 3. In the pass@k
scores, the hierarchical code representation
method (using cAST) outperformed all text-to-
code strategies in all model architectures we
tested.

Training Size Learning Curve To understand
the minimal train-set size required for fine-tune
a model using our approach, we evaluated the
best-performing CodeT5+ model with the pro-
posed structural code representation approach,
by incrementally increasing the train set used
for fine-tuning. We observe that models trained
on smaller datasets (fewer than 5,000 samples)
yielded notably lower scores (Figure 5). As the
train set expanded, the performance improved
consistently and then reached a plateau. This im-
plies manually sourcing a sufficiently large dataset
would be difficult because of the substantial
volume needed.

1339

Figure 5: Comparison of fine-tuned models’ perfor-
mance for varying dataset sizes. The success of our
proposed approach for this task is limited by the reliance
on synthesized examples for fine-tuning models.

Control Flow Success %

Sequences 68%
Conditions 46%
Loops 16%

Table 4: Model success in recovering complex
descriptions to program code with control flows.
The more explicit control flow structures appear
in the NL description – the better the model can
embed it in code.

10.2 Error Analysis
We conducted an in-depth error analysis of the re-
sults of the best-performing model (GPT-4-Turbo
with a 128K token context window using the
cAST in-context setup) to identify key areas for
improvement. We based our analysis on a ran-
domly selected subset of 150 outputs generated by
the model.

Observing the model’s efficacy in generat-
ing code programs with accurate control flows
(Table 4), our analysis revealed that control flows
that are more explicitly expressed in the NL de-
scription, such as sequences and conditions (e.g.,
conditions that were described using the function
word if) were more accurately implemented in
code. Loops, in contrast,often require implicit de-
duction from nuances like quantifiers (e.g., every
day), noun phrases with conjunctions (e.g., mom
and dad), or specific semantic terms (e.g., my
book club group), and are harder to infer.

The model displays distinct patterns of errors
that provide insight into its limitations and po-
tential areas for improvement. We broadly clas-
sified errors into three categories: (i) Syntactic
errors: malformed cAST (ii) Logical errors: Com-

piled code with runtime errors/exceptions and
(iii) Semantic errors: Successful run with a wrong
outcome. We hereby detail them in turn.

Syntactic Errors. These were rare, seen in only
7.2% of the cases, but critical, as the model
generated code with incorrect syntax, such as mal-
formed AST node labels or mismatched brackets.
In that case, we were not able to reconstruct
the final Python code from the code intermediate
representation as cAST. A related case is where
the model generated an (too-) lengthy output and
reached its maximum token limits, neglecting the
correct closure of brackets in the linearized tree.

Logical Errors. In 26% of the cases, we noted
runtime errors where, although we successfully
transformed the intermediate representation into
a program code, it led to exceptions upon execu-
tion. Examples of these errors include referencing
undefined variables, incorrectly calling functions
with unexpected arguments, or illegal operations
on data types, like attempting to iterate over ob-
jects that are not iterable.

Semantic Errors. These were the most common
(53%), where the model succeeded in execut-
ing the generated code but failed to implement
correctly the NL description, leading to a com-
pletely different output than expected. Semantic
errors were detected following assertion failures
as part of the functional correctness evaluation
(Section 4.2). This error type is manifested in
outputs containing irrelevant or incorrect data not
present in the NL input, poor recall in identifying
necessary arguments due to data type errors or
omissions, and problems with variable reusabil-
ity, especially in cases where antecedents and
anaphors are distanced in the NL descriptions.

11 Related Work

Previous text-to-code datasets were delivered to
facilitate the training and testing of the code gen-
eration capacity of contemporary models. Notable
datasets include the CoNaLa Dataset (Yin et al.,
2018), which contains programming questions
from Stack Overflow along with code solutions,
the CONCODE dataset (Iyer et al., 2018), the
CodeSearchNet Corpus (Husain et al., 2019), and
the CodeXGLUE dataset (Lu et al., 2021), con-
structed using code-comment pairs from GitHub

1340

across numerous domains in various program-
ming languages. The majority of these include
very technical jargon and relatively short state-
ments, in contrast with our novice users language
and lengthier intent expressions (Section 2.1).

Identifying instructions in Task-Oriented data-
sets can also be seen as equivalent to interpreting
description as executions. Notable Task-oriented
datasets are TOP (Gupta et al., 2018) and TOPv2
(Chen et al., 2020) datasets. However, these da-
tasets fail to provide high-level abstractions that
elicit complex code with sequences and control
flow structures (e.g., loops and conditions).

On the front of evaluating text-to-code genera-
tion, automatic metrics for code generation evalu-
ation initially adopted techniques similar to those
used in machine translation. BLEU (Papineni
et al., 2002) has been extensively used for eval-
uating code generation. However, its limitations
have been increasingly recognized, including the
disregard for semantic correctness and function-
ality. CodeBLEU (Ren et al., 2020) enhances
BLEU by incorporating crucial code-related fea-
tures such as syntactic and semantic similarity,
data flow, and variable misuse. Despite its im-
provements, CodeBLEU still relies on a ref-
erence implementation, which may hinder its
efficacy in cases where multiple correct solutions
exist.

The HumanEval dataset (Chen et al., 2021)
presented a recent and significant effort in this
direction, where functional correctness tests eval-
uate the generated code. The evaluation tests in
HumanEval present basic programming problems.
Austin et al. (2021) presents a similar approach
for evaluating correctness. Additional code gen-
eration benchmarks extended this approach using
more challenging programming problems, which
require an understanding of algorithms (Li et al.,
2022; Hendrycks et al., 2021), or usage of external
and advanced Python packages (Lai et al., 2022;
Wang et al., 2023b).

Our benchmark presents code-generation tasks
that concentrate on everyday tasks for laypeo-
ple, such as scheduling meetings in a calendar or
checking weather forecasts. Furthermore, to sup-
port and extend the complexity, our benchmark
introduces a private and unseen API, in contrast
to using standard Python packages.

Other benchmarks challenged models by pro-
viding class-level Python code-generation tasks
(Du et al., 2023). The challenge introduced in this

paper is orthogonal to this challenge and does not
generate class-level code.

Functional tests on the generated code are prone
to false positives or true negatives upon low cov-
erage of test edge cases. Some works (Liu et al.,
2023) mitigate this using an automatic test input
generation engine. In contrast with this approach,
our evaluation method validates the data model
affected by the generated code and not the gen-
erated code itself.

Few code generation benchmarks have also
concentrated on the population composing the
NL prompts in the benchmarks for code LLMs,
specifically targeting non-expert beginner pro-
grammers (Babe et al., 2023). In contrast, the
prompts in our benchmark were crafted by nov-
ice, non-programmers lacking any programming
proficiency.

Last, other corpora capture how non-
programmers express if-then clauses (Quirk et al.,
2015). Yet, the tasks in this benchmark are ex-
pressed in a highly structured and noisy language
and exhibit only a single control flow paradigm –
conditionals.

12 Conclusion

In this paper we introduce NoviCode, a novel
NL programming task of generating executable
complex programs with control flow structures
from novice NL user requests and API speci-
fications that the program should comply with.
As an integral part of our task, we propose an
evaluation framework to assess model efficacy
on this task, based on functional execution and
denotation rather than on the code form. Building
upon this task, we propose a novel representation
that explicitly reflects the hierarchical structure
of code, which outperforms all baseline models,
open source (e.g., CodeT5+) or closed source (e.g.,
GPT-4-Turbo) models, in the evaluation tests.
Finally, our analysis suggests that while generat-
ing working code based on language is a feasible
task, ours is still a challenging one. Yet NoviCode
constitutes a promising approach towards true
natural language programming—where humans
program in their native tongues—encouraging
future research and development of this domain.

Limitations

Evaluation Test Size. Creating unit test suites
for evaluating code generation models on this task

1341

is both time-intensive and requires Python test-
ing skills and familiarity with specific APIs. This
process significantly contributed to the develop-
ment time of our evaluation dataset. On average, it
took an experienced programmer about 9 minutes
to create each unit test. Due to limited resources,
we could only prepare tests for 150 out of the
1200 collected user utterances. Expanding the
dataset for a more extensive evaluation is a key
goal for future work.

Acknowledgments

We gratefully acknowledge the contribution of
Tamar Gur for her invaluable assistance in this
work. Additionally, we extend our gratitude to
Royi Lachmy, Avshalom Manevich, and Shira
Kritchman for their helpful comments and discus-
sions. We also thank the anonymous reviewers and
the action editor for their valuable suggestions.

This project received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
program, grant agreement no. 677352 (NLPRO),
and grant agreement no. 802774 (iEXTRACT).

References

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, and Charles Sutton. 2021. Program
synthesis with large language models.

Hannah McLean Babe, Sydney Nguyen, Yangtian
Zi, Arjun Guha, Molly Q. Feldman, and
Carolyn Jane Anderson. 2023. Studenteval: A
benchmark of student-written prompts for large
language models of code.

Jonathan Berant and Percy Liang. 2014. Seman-
tic parsing via paraphrasing. In Proceedings
of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers), pages 1415–1425, Baltimore,
Maryland. Association for Computational Lin-
guistics. https://doi.org/10.3115/v1
/P14-1133

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are
few-shot learners.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harrison Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Eval-
uating large language models trained on code.
CoRR, abs/2107.03374.

Xilun Chen, Asish Ghoshal, Yashar Mehdad,
Luke Zettlemoyer, and Sonal Gupta. 2020.
Low-resource domain adaptation for compo-
sitional task-oriented semantic parsing. CoRR,
abs/2010.03546. https://doi.org/10.18653
/v1/2020.emnlp-main.413

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin
Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. 2023.
Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj
Kumar, and Mike Lewis. 2018. Semantic
parsing for task oriented dialog using hierar-
chical representations. CoRR, abs/1810.07942.
https://doi.org/10.18653/v1/D18
-1300

1342

https://doi.org/10.3115/v1/P14-1133
https://doi.org/10.3115/v1/P14-1133
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300

David Harel. 2008. Can programming be liber-
ated, period? Computer, 41(1):28–37.https://
doi.org/10.1109/MC.2008.10

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn
Song, and Jacob Steinhardt. 2021. Measuring
coding challenge competence with apps.

Jonathan Herzig and Jonathan Berant. 2020.
Span-based semantic parsing for compositional
generalization. CoRR, abs/2009.06040.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit,
Miltiadis Allamanis, and Marc Brockschmidt.
2019. Codesearchnet challenge: Evaluating the
state of semantic code search. CoRR, abs/
1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
and Luke Zettlemoyer. 2018. Mapping lan-
guage to code in programmatic context. CoRR,
abs/1808.09588. https://doi.org/10
.18653/v1/D18-1192

Sumith Kulal, Panupong Pasupat, Kartik Chandra,
Mina Lee, Oded Padon, Alex Aiken, and
Percy S. Liang. 2019. Spoc: Search-based pseu-
docode to code. Advances in Neural Informa-
tion Processing Systems, 32.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi
Zhang, Ruiqi Zhong, Luke Zettlemoyer,
Scott Wen tau Yih, Daniel Fried, Sida Wang,
and Tao Yu. 2022. Ds-1000: A natural and
reliable benchmark for data science code
generation.

Yujia Li, David Choi, Junyoung Chung,
Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix
Gimeno, Agustin Dal Lago, Thomas Hubert,
Peter Choy, Cyprien de Masson d’Autume,
Igor Babuschkin, Xinyun Chen, Po-Sen
Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel J.
Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray
Kavukcuoglu, and Oriol Vinyals. 2022.
Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.
https://doi.org/10.1126/science
.abq1158, PubMed: 36480631

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang,
and Lingming Zhang. 2023. Is your code

generated by chatgpt really correct? Rigorous
evaluation of large language models for code
generation.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. 2021. Codexglue:
A machine learning benchmark dataset for
code understanding and generation.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong,
Silvio Savarese, and Yingbo Zhou. 2023.
Codegen2: Lessons for training LLMs on pro-
gramming and natural languages. ICLR.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: A method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguis-
tics. https://doi.org/10.3115/1073083
.1073135

Chris Quirk, Raymond Mooney, and Michel
Galley. 2015. Language to code: Learning se-
mantic parsers for if-this-then-that recipes. In
Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
and the 7th International Joint Conference
on Natural Language Processing (Volume 1:
Long Papers), pages 878–888, Beijing, China.
Association for Computational Linguistics.
https://doi.org/10.3115/v1/P15-1085

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2019. Exploring the limits of transfer learning
with a unified text-to-text transformer. CoRR,
abs/1910.10683.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou,
Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. 2020.
Codebleu: A method for automatic evaluation
of code synthesis. CoRR, abs/2009.10297.

1343

https://doi.org/10.1109/MC.2008.10
https://doi.org/10.1109/MC.2008.10
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://pubmed.ncbi.nlm.nih.gov/36480631
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/P15-1085

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan
Nguyen, and Tien Nguyen. 2019. Does bleu
score work for code migration? In 2019 IEEE/
ACM 27th International Conference on Pro-
gram Comprehension (ICPC), pages 165–176.
https://doi.org/10.1109/ICPC.2019
.00034

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi D. Q. Bui, Junnan Li, and Steven C. H.
Hoi. 2023a. Codet5+: Open code large lan-
guage models for code understanding and
generation. arXiv preprint arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven C. H. Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder
models for code understanding and generation.
arXiv preprint arXiv:2109.00859.

Zhiruo Wang, Shuyan Zhou, Daniel Fried,
and Graham Neubig. 2023b. Execution-based
evaluation for open-domain code generation.
https://doi.org/10.18653/v1/2023
.findings-emnlp.89

Pengcheng Yin, Bowen Deng, Edgar Chen,
Bogdan Vasilescu, and Graham Neubig. 2018.
Learning to mine aligned code and natural
language pairs from stack overflow. CoRR,
abs/1805.08949. https://doi.org/10.1145
/3196398.3196408

Pengcheng Yin and Graham Neubig. 2017. A
syntactic neural model for general-purpose
code generation. In Proceedings of the 55th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 440–450, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. Tranx:
A transition-based neural abstract syntax parser
for semantic parsing and code generation.

A Appendix: Code Intermediate
Representation Scheme

The intermediate form for representing the code
used Abstract Syntax Tree (AST) formulation as
its baseline.

Let T be a tree, and N be the set of all nodes
in T .

Let n1 ∈ N be a node in T .
We express that the label of a node n1 as in

the set of allowed labels L as follows:

lab(n1) ∈ L

Let Tn1
denote a subtree with n1 as its root.

Given that the terminals of Tn1
are t1, t2, . . . , tn

in order, the label of Tn1
can be expressed as

the concatenation of labels of the terminals:

lab(Tn1
) = lab(t1)||lab(t2)|| . . . ||lab(tn)

We say that a subtree Tn1
starts with a string s

if and only if:

s � lab(Tn1
)

Compactization Rule

LetL = {′Assign′,′ AugAssign′,′ AnnAssign′,
′Call′,′ Expr′}. And let the label of a node n1 in
the set of allowed labels L as follows:

lab(n1) ∈ L

We say that a subtree Tn1
should be replaced

with a node with the label of the unparsed value
of that node.

n1
|
∗

Translates as follows:

unparse(n1)

B NL User Utterance
Elicitation Interface

Figure 6: Task introduction screen.

1344

https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408

Figure 7: Educating crowd workers on simple
instructions.

Figure 8: Educating crowd workers on complex
instructions.

Figure 9: Goals and instructions.

Figure 10: Task input form.

Figure 11: Response verification.

Figure 12: Feedback screen.

1345

	Introduction
	The Challenge: Technical Code from Non-Technical Users
	Terminology
	Why is Programming in Natural Language Challenging?
	Why is the Evaluation of NL Programming Challenging?

	Task and Benchmark
	Data Collection and Curation
	NL User Requests Collection Interface
	Human Crafted Test Suites
	Synthesized Training Dataset

	The API Specifications
	Evaluation
	Method
	Metrics
	Simulated API Implementation

	Data Quality Assurance
	Better Code Generation through Intermediary Representation
	Experiments
	Results and Analysis
	Results
	Error Analysis

	Related Work
	Conclusion
	Appendix: Code Intermediate Representation Scheme
	NL User Utterance Elicitation Interface

