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Abstract
Recently, large language models (LLMs), es-
pecially those that are pretrained on code, have
demonstrated strong capabilities in generating
programs from natural language inputs. De-
spite promising results, there is a notable lack
of a comprehensive evaluation of these mod-
els’ language-to-code generation capabilities.
Existing studies often focus on specific tasks,
model architectures, or learning paradigms,
leading to a fragmented understanding of the
overall landscape. In this work, we present
L2CEval, a systematic evaluation of the
language-to-code generation capabilities of
LLMs on 7 tasks across the domain spec-
trum of semantic parsing, math reasoning,
and Python programming, analyzing the fac-
tors that potentially affect their performance,
such as model size, pretraining data, instruc-
tion tuning, and different prompting methods.
In addition, we assess confidence calibration,
and conduct human evaluations to identify
typical failures across different tasks and mod-
els. L2CEval offers a comprehensive under-
standing of the capabilities and limitations of
LLMs in language-to-code generation. We re-
lease the evaluation framework1 and all model
outputs, hoping to lay the groundwork for
further future research.

1 Introduction

Language-to-code (L2C2) is a type of task that
aims to automatically map natural language de-
scriptions to programs, which are later executed
to satisfy the user’s demand (Yin and Neubig,
2017; Austin et al., 2021). As illustrated in
Figure 1, language-to-code is the foundation of
many applications in AI, such as task-oriented

1All future evaluations (e.g., LLaMA-3, StarCoder2, etc)
will be updated on the project website: https://l2c
-eval.github.io/.

2We refer to ‘‘natural language’’ whenever we use the
term ‘‘language’’ in this work.

dialogue systems (Andreas et al., 2020), coding
assistant (Agashe et al., 2019; Lai et al., 2023), lan-
guage interfaces to databases (Pasupat and Liang,
2015; Yu et al., 2018), and robotic control (Zhou
et al., 2022; Shridhar et al., 2020). It has also
served as a great testbed for evaluating various
language understanding capabilities of NLP sys-
tems, such as logical and math reasoning (Gao
et al., 2023; Han et al., 2022), grounded lan-
guage understanding (Xie et al., 2022; Huang
et al., 2023), and tool use (Schick et al., 2024;
Paranjape et al., 2023).

Recent progress on large language models
(LLMs) (OpenAI, 2023; Chowdhery et al., 2023;
Touvron et al., 2023a), especially those specif-
ically trained for coding (Fried et al., 2023;
Nijkamp et al., 2022; Chen et al., 2021; Li
et al., 2023), has shown that LLMs trained on
a mixture of text and code are able to perform
language-to-code generation under few-shot or
even zero-shot learning settings (Rajkumar et al.,
2022; Ni et al., 2023b). However, the modeling
factors that affect the performance of LLMs for
such L2C tasks–including model size, training
data mixture, prompting methods, and instruction
tuning–are poorly understood. In addition, there
lacks a consistent evaluation of different LLMs
on the same spectrum of language-to-code tasks,
making it difficult for the users to decide which
models to use for certain tasks or if they should re-
sort to finetuning their own models. Beyond model
performance, model properties such as robustness
to prompt and confidence calibration are also cru-
cial for understanding the reliability of LLMs,
but such properties have not been systematically
studied for L2C tasks.

In this work, we present L2CEval, providing
a systematic evaluation of the language-to-code
generation capabilities of LLMs. L2CEval in-
cludes a wide range of state-of-the-art models,
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Figure 1: Language-to-code (L2C) generation is the cornerstone for many applications in AI. It is also the key to
enabling direct communication between the users and the computers with natural language.

specifically 56 models from 13 different organ-
izations, all evaluated on three core domains
of language-to-code generation tasks: semantic
parsing, math reasoning, and Python pro-
gramming. Our L2CEval framework includes
extensive evaluations of models as small as 1 bil-
lion parameters, to significantly larger ones such
as Falcon-180B, as well as davinci and
GPT-4 models from OpenAI. We also bench-
mark models that are trained on different mixtures
of data of varying sizes (35B ∼ 3.5T tokens),
as well as models that are instruction-tuned,
from both open-source and open-access pro-
prietary categories. Our work is the first to
conduct extensive and thorough comparisons of
LLMs for language-to-code generation across
multiple dimensions of variation. To summarize,
we release L2CEval and its main contributions
are as follows:

• We standardize the evaluation (e.g., prompts,
metrics) of 7 L2C tasks across domains
of semantic parsing, math reasoning, and
Python programming to allow controlled
comparisons among 56 models from 13
organizations;

• We study the scaling effect of model
size, pretraining compute/data mixture, as
well as several modeling contributions (e.g.,
instruction-tuning, zero/few-shot prompting)
for L2C tasks;

• We analyze the robustness and calibra-
tion measurements of different models, and
identify their common error cases;

• We release the code for our evaluation frame-
work, and model outputs (i.e., texts and
logits) for reproducibility and future studies.

Through our work, we hope to provide insight into
applying LLMs to L2C applications, as well as
building future LLMs.

2 L2CEval

The main motivation behind L2CEval is
to provide a comprehensive evaluation of
language-to-code generation capabilities and
understand what affects such L2C capabilities. In
the following sections, we first discuss the key
desiderata in design of L2CEval in § 2.1, then
the formulation of L2C in § 2.2, then in § 2.3
we introduce the domains and specific tasks we
consider for L2CEval, as well as the reasons for
choosing such tasks. Finally, in § 2.4, we describe
the models included in L2CEval and the model
selection process.

2.1 Desiderata

To ensure that the L2CEval framework serves
as a comprehensive resource for evaluating
language-to-code (L2C) capabilities, we outline a
set of key desiderata that guided its construction.

Task Inclusion. Diverse Task Representa-
tion: The benchmark aims to capture a wide
scope of L2C tasks, specifically incorporat-
ing semantic parsing, Python programming,
and math reasoning. Task Complexity: Under
each of these domains, we include 2 to 3
sub-tasks to represent a combination of differ-
ent levels of language understanding, reasoning,
and programming abilities.

Model Evaluation. Open Source and Com-
mercial Models: L2CEval is designed to
accommodate both open-source and commercial
models to provide a holistic view of available L2C

1312



Domain Dataset Split Size Input Output

Semantic Parsing
Spider (Yu et al., 2018) Dev 1,032 DB schema + NL SQL Query
WikiTQ (Pasupat and Liang, 2015) Dev 2,831 Table headers∗ + NL SQL Query

Math Reasoning
GSM8k (Cobbe et al., 2021) Dev3 1,495 Math problem in NL Python solution
SVAMP (Patel et al., 2021) All 1,992 Math problem in NL Python solution

Python Programming
MBPP (Austin et al., 2021) Test 500 NL spec. + 1 test Python function
HumanEval (Chen et al., 2021) All 164 NL spec. + 1–3 test Python function
DS-1000 (Lai et al., 2023) All 1,000 NL spec. Python lines

Table 1: A summary of all the benchmarks included for evaluation in L2CEval.

capabilities. Our focus is more on the open-source
models, however, as proprietary models do not
disclose certain basic information which makes
drawing scientific conclusions difficult. Model
Size Variability: The benchmark includes models
of different sizes to explore any correlation be-
tween model size and performance. Specialized
vs General Models: We examine the performance
trade-offs between models exclusively trained on
code and general language models to understand
the advantages or disadvantages of specialization.

Evaluation Setup. Standardized Prompts: All
tasks and models are evaluated using standardized
prompts, overcoming the inconsistencies preva-
lent in prior work. Reproducibility: Our evaluation
setup is clearly described to facilitate reproducible
experiments. Fair Comparison: Universal evalu-
ation metrics are employed across diverse tasks
and models to enable equitable comparisons.

Transparency and Reusability. Documenta-
tion: The framework is thoroughly documented to
promote community engagement and constructive
feedback. Interoperability: L2CEval is built to
be easily updated or extended, allowing for the
incorporation of new tasks or models as the field
evolves. We also share the code and model outputs
to support future research in this domain.

By adhering to these desiderata, the L2CEval
framework aims to be a comprehensive, fair, and
practical evaluation resource for the community.

2.2 Language-to-Code Generation (L2C)

Problem Formulation. While language-to-
code generation covers a wide range of tasks as
shown in Figure 1, here we attempt to give a
unified problem formulation. Given the user’s
intent described in natural language x (e.g.,
description of a Python function) and optionally
some programming context c (e.g., existing

3Here we use the split from Ni et al. (2023a).

function definitions, open test cases), an L2C
model aims to automatically map the input to
a program y (e.g., a Python function). In the
context of LLMs, this is typically modeled as a
conditional generation problem with prompting:

ŷ = argmax
y

PLM(y | prompt) (1)

where the ‘‘prompt’’ consists of task-specific
instructions I and optionally m exemplars
{(xi, yi, ci)}i<m:

prompt = f(I, {(xi, yi, ci)}i<m, c, x)

To obtain the best candidate program ŷ, we use
greedy decoding in all our evaluations.4 Also for
a fair comparison, we standardize the prompting
methods by following previous work (Ni et al.,
2023b; Ben Allal et al., 2022) and avoid prompts
that are tailored for specific models.

Execution-based Evaluation. The generated
program candidate ŷ, sometimes accompanied
with additional execution context e (e.g., con-
nection to DB) is later executed by an executor
E(·) (e.g., Python interpreter). We can evaluate
execution accuracy by checking if it matches the
gold execution results z∗ upon execution:

Acc. = 1(ẑ, z∗) where ẑ = E(ŷ, e) (2)

We use execution accuracy as a proxy for whether
the user’s original intent is satisfied.5 This is also
consistent with previous work on L2C (Xie et al.,
2022; Ni et al., 2023b; Shi et al., 2022).

2.3 Tasks

We evaluate the language-to-code capabilities of
LLMs in three representative application scenarios

4We discuss the limitation of greedy decoding in § 4.
5See § 4 for the limitations of execution-based evaluation.
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shown in Figure 1: semantic parsing, math reason-
ing, and Python programming. Particularly, these
tasks collectively assess the capabilities of models
in language-to-code generation to understand nat-
ural language in different contexts, reason about
the steps for solving the problem, and convert
it into executable code (see Figure 1). Semantic
parsing focuses on the transformation of natural
language queries into structured, domain-specific
languages; math reasoning challenges the models’
numerical and logical reasoning abilities by requir-
ing them to solve problems that involve multiple
steps of calculation and reasoning; and Python
programming tests the models’ proficiency in
generating functional code that aligns with a
user’s intent, reflecting a real-world application
of LLMs in software development. A summary of
L2CEval benchmarks is shown as Table 1 and
we discuss each of these tasks in detail as below.

Semantic Parsing. Semantic parsing considers
the task of translating a user’s natural language
utterance (e.g., who averaged the most pots in the
last season? in Figure 1) into machine-executable
programs (e.g., an SQL database query), and
has been a long-standing problem in NLP
(Zettlemoyer and Collins, 2005; Berant et al.,
2013). A prompt to an LLM consists of an
NL utterance and descriptions of relevant struc-
tured context, such as the schema information
of a database (e.g., columns in each table).
The target output is a program defined in some
domain-specific languages, such as SQL. Intu-
itively, semantic parsing challenges LLMs on
grounded language understanding (Xie et al.,
2022; Cheng et al.), where a model needs to
associate NL concepts in utterances (e.g., ‘‘last
season’’) with relevant structured knowledge
(e.g., superlative operation on column season)
in order to synthesize the program (Pasupat and
Liang, 2015; Yu et al., 2018; Yin et al., 2020).
In this work, we choose to use text-to-SQL as
a representative task as it closely ties with ap-
plications such as natural language interface to
databases (Androutsopoulos et al., 1995; Affolter
et al., 2019). Recent work (Rajkumar et al., 2022;
Ni et al., 2023b) shows that LLMs are effective in
performing text-to-SQL parsing. In this work, we
use two widely used text-to-SQL datasets, Spider
(Yu et al., 2018) and WikiTQ (Pasupat and Liang,
2015), as our datasets for benchmarking semantic
parsing capabilities of LLMs. Following Xie et al.

(2022), we concatenate the natural language ut-
terance with the database schema or table headers
as LLM input.6

Math Reasoning. To solve a math word prob-
lem, a model needs to abstract the mathematical
relations from the natural language description,
and reason about the potential steps. Compared
to semantic parsing where the target programs
are table-lookup queries, programs for math rea-
soning tasks usually require multiple steps of
calculation and numerical and logical reasoning.
Because of this, math word problems are widely
adopted as testbeds for evaluating the reasoning
abilities of LLMs (Cobbe et al., 2021; Wei et al.,
2022b; Ni et al., 2023a; Welleck et al., 2022). In
this paper, we choose the GSM8k (Cobbe et al.,
2021) and SVAMP (Patel et al., 2021) datasets,
which are grade-school level math problems de-
scribed in natural language. We chose these two
benchmarks due to their moderate difficulty and
popularity. Following Welleck et al. (2022) and
Gao et al. (2023), we prompt the models to an-
swer math word problems by generating Python
programs as solutions, which are later executed
by a Python interpreter to output the answer.

Python Programming. One of the most
important applications for LLMs trained on
code is to assist programmers in developing
software. Typically, a model is given a de-
veloper’s natural language intent (e.g., write a
merge sort function) with optional additional
specifications (Austin et al., 2021) such as
input/output examples or unit tests (e.g., assert
merge sort([5,7,3])==[3,5,7])), to
generate the code (e.g., a Python function) that
implements the user’s intent. To evaluate the
basic programming skills of the LLMs, we use
the MBPP (Austin et al., 2021) and HumanEval
(Chen et al., 2021) datasets, for which the model
needs to implement some basic Python functions
to pass the test cases. Moreover, we also include
DS-1000 (Lai et al., 2023), which focuses on
data-science-related questions and libraries.7

6While more challenging datasets exists for text-
to-SQL (e.g., BIRD-SQL (Li et al., 2024)), we believe the
observations should be generalizable due to the similar task
format.

7While APPS (Hendrycks et al., 2021) is another popular
Python programming dataset, we decide not to use it due to
various issues found in Li et al. (2022b).
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Organization Model Series Variants Sizes # All # Code Context Code
Tokens Tokens Length Specific

Salesforce CodeGen (Nijkamp et al., 2022) multi/mono 6.1/16.1B 505∼577B 119∼191B 2K ✓

CodeGen-2.5 (Nijkamp et al., 2023) multi/mono/ 7B 1.4T 1.4T 2K ✓
instruct†

Eleuther AI GPT-J (Wang and Komatsuzaki, 2021) 6.1B 402B 46B 2K ✗
GPT-NeoX (Black et al., 2022) 20.6B 472B 54B 2K ✗
Pythia (Biderman et al., 2023) 1.4/6.9/12B 300B 35B 2K ✗

Databricks Dolly-v2 (Conover et al., 2023) 6.9/12B – – 2K ✗

BigCode SantaCoder (Allal et al., 2023) 1.1B 236B 236B 2K ✓
StarCoder (Li et al., 2023) base/plus 15.5B 1∼1.6T 1T 8K ✓

Meta

InCoder (Fried et al., 2023) 1.3/6.7B 52B 52B 2K ✓
LLaMA (Touvron et al., 2023a) 7/13/30B 1∼1.4T 45∼63B 2K ✗
LLaMA-2 (Touvron et al., 2023b) 7/13/70B 2T − 4K ✗

CodeLLaMA (Rozière et al., 2023) base/instruct† 7/13/34B 2.5T 435B 16K ✓

Stanford Alpaca† (Taori et al., 2023) 7/13/30B – – 2K ✗

Replit Replit-v1-3b (rep) 3B 525B 525B 2K ✓

WizardLM WizardCoder-v1 (Luo et al., 2023) 15B – – 2K ✓

MosaicML MPT (Team, 2023a,b) base/instruct† 7/30B 1T 135B 2K/8K ✗

MistralAI Mistral-v0.1 (Jiang et al., 2023) base/instruct† 7B – – 32K ✗

XLANG Lemur-v1 (Xu et al., 2023) 70B – – 4K ✓

TII Falcon (Almazrouei et al., 2023) base/instruct† 7/40/180B 1∼3.5T – 2K ✗

OpenAI

Codex (Chen et al., 2021) code-cushman-001 12B/ – 400B 100B 2K/8K ✓code-davinci-002
InstructGPT† (Ouyang et al., 2022) text-davinci-002/3 – – – 4K ✗
ChatGPT† (OpenAI, 2022) turbo-0301/0613 – – –
GPT-4† (OpenAI, 2023) 0314/0613 – – – 8K ✗

Table 2: Information table for the models evaluated in this work. –: no information on training data size
is available, or the model is further tuned on top of other models. †: Instruction-tuned models.

2.4 Models

We evaluate 56 models that vary in size, training
data mixture, context length, and training methods.
Table 2 summarizes the open-source models we
evaluated and several key properties.

Selection Criteria. While it is not possible to
evaluate every single LLM on these tasks, we
strive to provide a comprehensive evaluation of
the current LLMs inL2C generation, by covering a
diversified selection of LLMs of varying sizes and
are trained on different mixtures of data. For ex-
ample, the size of the models we consider ranges
from 1B (e.g., SantaCoder (Allal et al., 2023))
to 170B+ (e.g., Falcon-180B (Almazrouei et al.,
2023) and GPT-4 model from OpenAI). Though
we prioritize the evaluation of code-specific mod-
els, which means that the majority of the training
tokens are from code (e.g., CodeLLaMA (Rozière
et al., 2023), StarCoder (Li et al., 2023)), we
also include the most competitive general LLMs
such as LLaMA2-70B (Touvron et al., 2023a) and
Falcon-180B for comparison. To evaluate the ef-

fect of instruction-tuning and its data mixtures on
L2C tasks, we also include several instruct-tuned
versions of the LLMs, such as Alpaca (Taori et al.,
2023), Dolly (Conover et al., 2023), etc. We also
prioritize the evaluation of open-source models
and mainly present our findings with these mod-
els as we are unclear about the technical details
of proprietary models (e.g., model size, training
data) and hesitate to speculate about them.

Model Access. For all the open-source models,
we access them through huggingface model hub8

and run them locally on a server with RTX A6000
48GB GPUs, using Lightning9 as underlying
framework. For proprietary OpenAI models we
access them through the public API.10

3 Results and Analysis

We organize the experiment results and anal-
ysis as follows. We first discuss different

8https://huggingface.co/models.
9https://lightning.ai/.

10https://api.openai.com/.
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Group Model
Spider WikiTQ GSM8k SVAMP MBPP HE DS-1K

MWR
(2-shot) (2-shot) (8-shot) (4-shot) (3-shot) (0-shot) (0-shot)

Other
gpt-4 79.2 56.7 88.5 92.8 74.2 80.5 24.0 100%
text-davinci-003 68.3 45.4 64.1 80.7 63.6 52.4 15.3 95%
gpt-3.5-turbo 72.7 38.4 74.7 80.7 66.6 39.0 11.0 92%

20 ∼ 100B
CodeLLaMA-base (34B) 61.7 32.3 43.6 70.7 45.6 44.5 22.4 90%
Lemur (70B) 68.0 44.9 57.5 47.9 51.4 41.5 20.7 88%
LLaMA-2 (70B) 58.5 37.3 56.0 73.9 36.8 28.7 16.9 84%

10 ∼20B
CodeLLaMA (13B) 58.5 35.6 30.7 64.9 44.0 34.2 18.8 86%
StarCoder (15.5B) 52.1 27.4 22.1 48.8 46.6 34.2 19.8 78%
LLaMA-2 (13B) 35.7 24.6 26.1 58.9 27.0 17.7 9.1 59%

2 ∼10B
Mistral-v0.1 (7B) 53.3 31.4 38.4 69.4 37.8 25.0 14.1 79%
CodeLLaMA-base (7B) 54.3 29.5 25.5 52.8 40.0 31.1 16.0 76%
CodeGen2.5-multi (7B) 53.8 29.6 14.9 43.1 38.2 31.1 16.9 71%

<2B
SantaCoder (1.3B) 19.0 11.4 2.8 0.0 26.2 17.7 1.1 24%
InCoder (1.1B) 13.4 6.2 1.0 3.5 13.8 8.5 2.9 11%
Pythia (1.4B) 5.7 4.4 1.5 9.3 5.8 3.7 1.8 6%

Table 3: Top-3 models at different size ranges. All models are of the ‘‘base’’ variant (i.e., w/o
instruction-tuning or RLHF), except the ‘‘Other’’ group, which is for reference purposes only. MWR:
Mean Win Rate (see definition in § 3.1). The best performance for each group is highlighted with
color shades indicating the relative performance across different groups. Code-specific LLMs are

noted in italics.

scaling effects in § 3.1, then in § 3.2 and
§ 3.3, we analyze how pretraining data mix-
ture and instruction-tuning affects the models
for L2C tasks. To study model robustness, in
§ 3.4, we measure the sensitivity of the models
on the few-shot demonstrations, and show model
confidence calibration in § 3.5. Finally, we present
an error analysis in § 3.6.

3.1 Scaling

We examine the correlation between model per-
formance and its parameter count, as well as the
pretraining compute. While most of our findings
align with previous work on scaling laws (Kaplan
et al., 2020; Hoffmann et al., 2022), we focus on
properties that are more related to L2C tasks.

Model Size. We present the top-3 models across
different size ranges based on Mean Win Rate
(MWR) in Table 3. MWR is defined as the
fraction of times a model outperforms other
models, averaged across all 7 tasks. More specif-
ically, given a set of N models for comparison
P = {P1, . . . , PN} and and a set of M tasks
D = {D1, . . . ,DM}, MWR of a model Pi is
defined as:

MWR(Pi) =
∑

k≤M

|{Pj |Dk(Pj)≤Dk(Pi),j≤ N}|
M ×N

where Dk(Pj) denotes the performance of model
Pj on task Dk. From this table, we can observe
clear performance gaps between models of differ-
ent size groups. While this is especially the case
within the same model series, smaller models can
also beat bigger ones across different series (e.g.,
Mistral 7B outperforms LLaMA-2 13B), showing
that other factors such as training data is also
important.11 However, such a scaling effect also
varies across domains: for math reasoning tasks,
the performance gaps between models of different
size groups are much larger than those of Python
programming and semantic parsing tasks. Given
the programs to solve these math problems are
relatively simple in syntax, we hypothesize that
the bottleneck lies in the planning and reasoning
capabilities, which correlate with model size. This
hypothesis is consistent with previous findings
(Wei et al., 2022a,b).

Pretraining Compute. To study the scaling of
compute resources during pretraining, we plot
the average model performance across all 7 tasks
against the estimated FLOPS of compute12 needed
during training, as shown in Figure 2. From the
figure, we can see that code LMs are much more

11Evaluation of more recent smaller models like LLaMA-3
(8B) shows that it achieves avg. performance of 45.1,
outperforming CodeLLaMA-base (13B).

12Here we base our estimation on Kaplan et al. (2020):
FLOPS ≈ 6 * model size (B) * training tokens (B).
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Figure 2: Pretraining compute scaling for code-specific
and general LMs. Dashed lines denote the trend line
where the optimal compute is achieved for models of
each category.

compute efficient than general LMs in terms of
L2C performances. This is particularly noticeable
when the compute budget is constrained; for ex-
ample, SantaCoder-1B outperforms Pythia-6.9B
with an order of magnitude less compute, and
InCoder-1B outperforms Pythia-1.4B using only
1/5 of the pretraining compute. While code LMs
generally require fewer FLOPS to achieve compa-
rable performance on L2C tasks,13 it is expected
as well, given that general LMs are also optimized
for many other natural language tasks unrelated
to coding. Moreover, such a trend also seems
to be diminishing when scaling up (e.g., com-
paring CodeLLaMA-34B and LLaMA-2-70B),
which suggests that when model and pretrain-
ing data size gets larger, it is possible that general
LMs will be as compute efficient as code LMs for
L2C tasks.

3.2 Data Mixture
While all of the models we evaluate in L2CEval
have seen code during pretraining, the dis-
tributions of their training data mixture vary
significantly, as illustrated in Table 2. In
Figure 3, we show 12 different models that are
around 7B, ordered by their average model per-
formance on all 7 tasks, and plot the amount of
the code and non-code tokens in their pretraining
data. As we can see from the figure, the number
of code tokens in the pretraining data affects the

13The only exceptions are CodeGen-multi/mono mod-
els, which are trained with far less amount of code tokens
compared with other code LLMs.

Figure 3: Pretraining data mixture for models of similar
sizes (6 ∼ 7B), ranked by performance. LLaMA-2
paper (Touvron et al., 2023b) only shares the size
but not the distribution of the pretraining data, and
CodeLLaMA is trained on top of LLaMA-2.

model performance much more than the amount
of non-code tokens, and the model performance is
almost monotonically increasing with the amount
of code tokens in the training data. Given that
CodeLLaMA models are further pretrained on
code tokens on top of LLaMA-2, by comparing
the performance of their 7B and 13B versions in
Figure 3 and Table 3, we can see that training on
more code tokens not only drastically improves
text-to-sql parsing and Python programming, but
also math reasoning tasks. As mentioned in
§ 3.1, since the generated Python solutions for
GSM8K and SVAMP are both simple in syntax
(i.e., straight-line programs with numeric opera-
tions), we hypothesize that training on more code
tokens improves the reasoning abilities of LMs
in general. This is also consistent with previous
findings (Fu et al., 2022; Mishra et al., 2022; Wei
et al., 2022b).

3.3 Instruction Tuning

Instruction tuning (Ouyang et al., 2022) is a type
of method that enhances the ability of LLMs
to follow instructions written in natural language.
Here we compare the instruction-tuned models and
their base models and show their few/zero-shot
results in Table 4.

Zero-shot Results. Firstly, we observe that
the zero-shot results are generally improved af-
ter instruction tuning for all models on Spider
and MBPP. This is perhaps a little surpris-
ing for Dolly and MPT-instruct models as
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Models Few-Shot Zero-Shot

Spider (2) GSM8k (8) MBPP (3) Spider (0) GSM8k (0) MBPP (0)

Base IT Base IT Base IT Base IT Base IT Base IT

Pythia/Dolly-6.9B 12.5 13.1 2.6 2.6 13.2 12.0 3.0 5.2 0.0 0.0 0.4 9.4
Pythia/Dolly-12B 16.2 13.0 2.6 2.6 19.0 15.0 2.8 6.5 0.0 0.0 1.2 3.8

MPT-7B 27.3 25.5 10.9 10.4 21.0 24.0 19.5 27.0 1.5 6.2 0.2 10.2
MPT-30B 43.3 42.8 30.7 29.1 29.2 28.4 34.9 44.1 0.0 1.9 0.8 23.4

LLaMA/Alpaca-7B‡ 13.1 16.1 8.0 3.5 16.6 14.4 5.7 20.5 0.0 0.0 5.0 13.2
LLaMA/Alpaca-13B‡ 15.2 24.3 15.7 18.5 22.8 23.4 15.2 26.1 0.0 0.0 2.2 7.2
LLaMA/Alpaca-30B‡ 38.5 46.2 15.9 19.4 26.6 32.0 41.8 46.3 0.0 0.0 20.6 27.2

CodeLlama-7B‡ 54.3 55.9 25.5 26.5 40.0 41.2 51.8 56.1 0.0 7.2 10.0 15.2
CodeLlama-13B‡ 58.5 63.0 30.7 48.2 44.0 48.2 64.2 66.2 17.0 10.6 18.6 19.0
CodeLlama-34B‡ 61.7 68.7 43.6 52.8 45.6 52.8 69.6 69.7 15.1 5.8 34.0 42.8

Table 4: How instruction-tuning affects few/zero-shot L2C performances. Model names shown as
{base}/{IT}-{size}. ‡: instruction-tuning includes code-related tasks. ‘‘IT’’ denotes the instruction-tuned
version of the base model. Performance improvements and degradations are marked accordingly.

their instruction-tuning data does not explic-
itly include coding tasks. Besides the fact that
instruction-tuning trains the models to focus more
on the instruction, we also hypothesize that
instruction-tuning generally improves language
understanding abilities, which is essential for L2C
tasks. We also note that the zeros-shot perfor-
mances for GSM8k are all zeros for the selected
models. By inspecting the model outputs, we find
that the models fail to follow the instructions and
provide the answer by ending the Python solution
with answer = x.

Few-shot Results. As for few-shot performance
numbers, those that are instruction-tuned with
coding tasks, such as Alpaca and CodeLLaMA-
instruct models, yield much more consistent im-
provements than Dolly and MPT-instruct across
all tasks. Notably, CodeLLaMA-34B-instruct im-
proves 7.0, 9.2, and 7.2 points over the base model
on Spider, GSM8K, and MBPP datasets, respec-
tively. Though we observe that some few-shot
results deteriorate for Dolly and MPT-instruct,
it should also be noted that such performance
degradations are quite minimal, as half of them
are within 2%. It is suggested in Ouyang et al.
(2022) that instruction tuning generally decreases
few-shot performance, as it shifts the attention
of the model from the few-shot exemplars to
the instructions, but from these results, we believe
that whether instruction-tuning improves few-shot

performance largely depends on how similar the
instruction-tuning tasks are to tasks for evaluation.

3.4 Sensitivity to Prompt

Here we study how sensitive are the models to the
number of few-shot demonstrations or different
examples in the prompt.

Number of Few-shot Demonstrations. Figure 4
illustrates the correlation between model per-
formance and the number of exemplars in
the prompt.15 While increasing the number of
few-shot exemplars in the prompt generally im-
proves execution accuracy, such improvement is
not consistent with different models and tasks. For
example, on the MBPP dataset, increasing from 3
to 8 exemplars in the prompt actually decreases
the performance for most of the selected models,
e.g., by 4.0% for codex-cushman. We hypothesize
that this is because the programs in the prompt
will bias the model towards generating similar
programs and ignore the specification. Supporting

14To be consistent with previous work, we use the eval-
uation harness from the BigCode project (https://
github.com/bigcode-project/bigcode-evaluation
-harness) for evaluating HumanEval and DS-1000.
However, it does not output logits which are essential for
calculating calibration scores.

15While the range of number of shots are different for
each task due to different task prompt lengths (e.g., database
schema encoding for Spider), we keep it consistent across
different models on the same task for a fair comparison.
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Figure 4: Models perf. with different # of exemplars in the prompt.

Models Spider GSM8k MBPP
(2-shot) (2-shot) (3-shot)

code-davinci 73.7±0.3 66.4±1.0 59.0±1.9
code-cushman 50.4±0.7 24.2±1.1 39.3±3.3
CodeGen-6B-mono 32.4±0.6 13.8±0.2 35.5±0.5
StarCoder-15.5B 54.9±2.7 32.3±0.8 44.1±2.2
Alpaca-7B 20.1±3.5 7.3±1.2 13.6±0.6

Table 5: Mean and std for (n)-shot performance
over 3 runs with different random exemplars.

evidence of this is in Table 5, as codex-cushman is
shown to be more sensitive to the exemplars. This
effect has also been observed in Li et al. (2022b).

Different Examples as Demonstrations. More-
over, we also show the sensitivity of the mod-
els to different exemplars and present the results
in Table 5 by showing the variance of model
performance across different runs using different
exemplars in the prompt. While the variances dif-
fer for different models and tasks, none of them
are significant enough to alter the ranking of the
models, nor impact the conclusions presented in
this work.

3.5 Model Calibration

A good model not only produces high-quality out-
puts, but also should be well-calibrated, meaning
that it should be uncertain about its predictions
when such predictions are wrong. Following re-
cent work (Liang et al., 2022), we evaluate model
calibration using expected calibration error (ECE)
(Naeini et al., 2015; Guo et al., 2017). For a model
PLM and a dataset D, this is defined as:

ECE(PLM,D) = E(x,y∗)∼D[PLM(ŷ|x)− Acc(ŷ, y∗)]
s.t. ŷ = argmax

y
PLM(y|x)

where Acc(·) denotes the execution accuracy met-
ric described as Equation (2). From the results
shown in Figure 5, we can observe that while
model calibration generally correlates with model
performance, the best-performing models are not
necessarily the ones with the best calibration.
Note that with a well-calibrated model, methods
such as voting (Li et al., 2022a; Xuezhi Wang
et al., 2023) and confidence-based reranking (Ni
et al., 2023b) may be used to further improve their
performance. Moreover, a better-calibrated model
is more reliable in practical applications, such as
coding assistants, where its confidence levels can
serve as indicators of generation quality.

3.6 Error Modes

In Figure 6, we present an error analysis on the
four best models, by manually16 examining a fixed
set of 100 examples from the GSM8k and MBPP
datasets across 4 selected models. We categorize
the errors into 5 cases:

1) execution error, where deformed programs
are generated;

2/3) missing/extra steps, where some key steps
are missing or extraneous lines are generated
in predicted code;

4) wrong steps, where the model only makes
subtle mistakes in certain steps in the code;

16Two of the authors performed this annotation.
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Figure 5: Avg. perf. across selected datasets (i.e., Spider, WikiTQ, GSM8k and MBPP)14 and their calibration
score rankings.

Figure 6: Error analysis on 100 examples for GSM8k
and MBPP.

5) when the NL specification itself is ambiguous
and unclear.

From the results shown in Figure 6, we can see that
for GSM8k, compared with stronger models (e.g.,
code-davinci and GPT-4), while a similar number
of errors are made for missing and generating extra
steps for solving the math problem, StarCoder and
code-cushman make more mistakes in predicting
intermediate steps, or generating deformed pro-
grams. On MBPP, however, weaker models are
prone to miss crucial steps in the implementation,
which shows a lack of understanding of the prob-
lem as well as planning abilities. Hallucination (Ji
et al., 2023) is a common issue in natural language
generation, while we find it to be rare for models
to generate lines of code that are extraneous, hallu-
cination can also exhibit as using wrong operators
or introducing variable values that do not exist in
the natural language description, which would be
categorized as ‘‘wrong steps’’ in Figure 6.

4 Limitations

While we strive to provide a comprehensive and
fair evaluation of LLMs in L2C tasks, here we
also discuss the limitations of L2CEval.

Generation Using Greedy Decoding. In this
work, we use greedy decoding to generate a single
program for each example as the models’ output.
While this is the most efficient way of generation
and ensures fair comparison for different mod-
els as it is not affected by factors like sampling
temperature, it is also relatively noisy (Nijkamp
et al., 2022; Chen et al., 2021). For tasks such as
MBPP or Python programming in general, sam-
pling k solutions then measure pass@k (any of
the k programs being correct) or n@k (i.e., # the
k programs being correct) are better as they give
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the model k tries to generate the correct program
to lower the variance. For Python programming
tasks, such methods are closer to practical use
cases as we typically have test cases that can filter
out some incorrect programs in the samples. For
other tasks, having a better pass@k also provides
opportunities for post-generation reranking meth-
ods such as (Shi et al., 2022; Zhang et al., 2023;
Ni et al., 2023b). However, the cost for evaluating
pass@k or n@k is k times of the compute com-
pared with greedy decoding, thus we choose to
only evaluate greedy decoding in this work and
leave sampling-based evaluation to future work.

Execution-based Evaluation. Moreover, we
mainly rely on execution-based evaluation (i.e.,
execution accuracy) for this work. However, such
evaluation may produce spurious programs, i.e.,
false-positive programs that achieve the correct
execution result by chance (Zhong et al., 2020; Ni
et al., 2020). In this work, we adopt human eval-
uation to measure the problem of spuriousness
and found non-trivial portion of ‘‘correct’’ pro-
grams being spurious for Spider but not for other
datasets. In addition, execution may not always
be straightforward in practice, especially when
complex dependencies and potentially harmful
programs are considered (Chen et al., 2021).

Confounding Factors During Comparison.
When comparing models, especially across dif-
ferent model series, there are typically multiple
performance-impacting factors that are in effect
at the same time, some of which are not stud-
ied in this work, such as model architecture and
pretraining objective. Such confounding factors
may limit the validity of the conclusions that we
draw from model comparisons. In this work, we
try to mitigate this by fixing as many variables
about the models as possible during a compari-
son, such as making observations within the same
model series. While the general trend can still be
observed across different model series, we should
also note that when interpreting the results, read-
ers should be mindful of such confounding factors
when comparing different models.

Lack of Information for Proprietary Models.
For the open-access proprietary LLMs (e.g., Open-
AI models), due to the lack of basic information
and mismatches between the models described
in the papers and the actual API engines, very

few scientific conclusions can be drawn from
these results. We evaluate such proprietary mod-
els mainly to provide baselines and in the hope of
helping practitioners in choosing models for their
use cases. We also present human evaluations of
some of the strong models to discuss differences in
common error modes. However, when making our
findings, we generally rely on open-source mod-
els instead, to avoid being misled by speculative
model details of such closed-source models.

5 Related Work

Code Generation Evaluation. Several code
generation benchmarks are collected from raw
data from GitHub and StackOverflow, and involve
professional annotators to enhance the quality of
the data (Iyer et al., 2018; Agashe et al., 2019; Yin
et al., 2018). While such benchmarks focus more
on lexical-based evaluation, ODEX (Xuezhi Wang
et al., 2023) introduces execution-based evalua-
tion, which has also been widely applied in recent
code generation evaluation benchmarks, such as
DS-1000 (Lai et al., 2023), HumanEval (Chen
et al., 2021), and MBPP (Austin et al., 2021).
More recently, there has been an increasing focus
on assessing the generalization capabilities of code
generation models across multiple programming
languages (Athiwaratkun et al., 2023), and bench-
marks such as CodeGeeX (Zheng et al., 2023) and
MultiPL-E (Cassano et al., 2023). In our work, we
focus on studying whether LLMs can map natural
language instructions to code using the most popu-
lar programming languages for each domain (i.e.,
SQL for semantic parsing and Python for math
reasoning and programming). While the study of
different programming languages are orthogonal
to our work, we refer the readers to these existings
works on multi-lingual evaluation benchmarks.

Other Code-related Tasks. Large language
models have also shown significant success in
other code-related directions. One popular di-
rection is code understanding. For example,
CodeXGLUE (Lu et al., 2023) comprises three
widely used code understanding tasks including
defect detection, clone detection, and code search.
However, CONCODE (Iyer et al., 2018) is the only
language-to-code task included in CodeXGLUE
and it uses surface-form based evaluation met-
rics such as BLEU. BigCloneBench (Krinke and
Ragkhitwetsagul 2022) tasks to measure the sim-
ilarity between code pairs to predict whether

1321



they have the same functionality. CodeSearchNet
(Husain et al., 2019) is a benchmark of semantic
code search given natural language queries. Be-
sides code understanding, there have been other
tasks such as code translation (Roziere et al., 2020)
and program repair (Gupta et al., 2017). We leave
systematic evaluation of LLMs on those tasks as
important future work.

6 Conclusions

In this paper, we present L2CEval, a comprehen-
sive evaluation framework for natural language to
code generation, and we evaluate 56 models from
13 organizations, on 7 tasks from 3 core domains.
L2CEval investigates models’ performance on a
variety of axes such as model scale, training data
mixture, sensitivity to few-shot exemplars as well
as the impact of instruction tuning, inter alia. We
also present an analysis on the model calibration
and conduct a human evaluation of common error
modes across different models. We hope our study
will provide useful insights for the community into
applying LLMs for downstream code applications
and future model development efforts.
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