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Abstract

Despite the recent success of automatic met-
rics for assessing translation quality, their
application in evaluating the quality of
machine-translated chats has been limited.
Unlike more structured texts like news, chat
conversations are often unstructured, short,
and heavily reliant on contextual information.
This poses questions about the reliability of
existing sentence-level metrics in this domain
as well as the role of context in assessing the
translation quality. Motivated by this, we con-
duct a meta-evaluation of existing automatic
metrics, primarily designed for structured do-
mains such as news, to assess the quality
of machine-translated chats. We find that
reference-free metrics lag behind reference-
based ones, especially when evaluating trans-
lation quality in out-of-English settings. We
then investigate how incorporating conversa-
tional contextual information in these metrics
for sentence-level evaluation affects their per-
formance. Our findings show that augmenting
neural learned metrics with contextual infor-
mation helps improve correlation with human
judgments in the reference-free scenario and
when evaluating translations in out-of-English
settings. Finally, we propose a new evaluation
metric, CoNTEXT-MQM, that utilizes bilingual
context with a large language model (LLM)
and further validate that adding context helps
even for LLM-based evaluation metrics.

1 Introduction

Automatically estimating the quality of machine
or human-generated translations has received a lot
of attention over the past two decades from the
NLP community (Han et al., 2021), specifically
via shared tasks organized by WMT from 2014—

*Work partially developed during internship at Unbabel.

present (Machacek and Bojar, 2014; Stanojevi¢
et al., 2015; Bojar et al., 2016, 2017; Ma et al.,
2018, 2019; Mathur et al., 2020; Freitag et al.,
2021, 2022, 2023). A variety of evaluation met-
rics have been developed for this purpose, en-
compassing lexical matching approaches such as
BLEU (Papineni et al., 2002) and cHrF (Popovic,
2015); embedding-based methods like BERT-
Scork (Zhang et al., 2019) and Word Mover Dis-
tance (Zhao et al., 2019); learned metrics like
Comer (Rei et al., 2020a), and BLEURT (Sellam
et al., 2020); and metrics that employ prompting
techniques with large language models (LLMs)
like GEMBA-MQM (Kocmi and Federmann, 2023a)
or AutoMQM (Fernandes et al., 2023a).

Among these metrics, neural metrics have
gained widespread acceptance (Freitag et al.,
2022) as they are directly trained to predict
sentence-level translation quality assessment
scores (Kreutzer et al., 2015; Rei et al., 2020a;
Sellam et al., 2020), word-level error annotations
collected by professional linguists (Guerreiro et al.,
2023), or post-editing efforts as measured by
HTER (Snover et al., 2006; Fonseca et al., 2019;
Specia et al., 2021). However, the reliance on
human-written reference translations and judg-
ments collected predominantly from structured
domains like news or Wikipedia as training data
raises questions about their adaptability and relia-
bility in detecting errors in other domains (Zouhar
et al., 2024), for example, in evaluating transla-
tion quality in more informal settings.

Unlike news articles, which involve carefully
authored and well-formatted text, and which cur-
rent translation systems are well equipped for,
chat conversations are often synchronous and
short, and involve formal language, colloquial
expressions, and slang that may not have direct
equivalents in the target language (Gongalves
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gostaria de cancelar meu
#PRS_ORG#

LRSS ©

como fago para cancelar ?

g 1O
I'm so sorry to hear you're

@ interested in cancelling your
membership.

Lamento saber que vocé esta
interessado em cancelar sua
assinatura.

To confirm your account
@ cancellation, please follow this link:
#URL# and complete the prompts.

Para confirmar o cancelamento da
sua conta, siga este link: #URL# e
complete as instrugdes.

esse link ndo abre

( R ©

No worries, | can cancel it here in
@ my ned.

N&o se preocupe, eu posso
cancelar aqui no meu blog.

Tudo certo, aguardo sua
confirmagéao e se possivel poderia
enviar um email com a
confirmacao do cancelamento

- @

Figure 1: An example chat from the MAIA corpus
(Martins et al., 2020): The agent and the customer only
see the texts in their respective languages. Errors both
MT and user-generated are bold-faced.

et al., 2022). An example of such a conversation
is presented in Figure 1. Although chat messages
are relatively easier to translate, errors introduced
by machine translation (MT) systems might go
unnoticed by end users if not detected properly,
potentially leading to miscommunication, conver-
sation breakdowns, or even more serious implica-
tions on high-risk domains (e.g., patient-physician
chats) (Yamashita et al., 2009; Robertson and
Diaz, 2022). Identifying these errors as they oc-
cur can potentially help the users ask clarifica-
tion questions and correct any misunderstandings
due to the mistranslation of the intended informa-
tion (Gao et al., 2015).

Moreover, conversational texts rely heavily on
context, meaning that the interpretation of a text
is largely influenced by the surrounding contex-
tual information. Hence, MT systems for such
domains are often trained with contextual in-

formation and this has been shown to improve
translation quality, lexical inconsistency, and co-
herence of the generated outputs (Farinha et al.,
2022; Fernandes et al., 2021). However, it is
unclear to what extent context plays a role in esti-
mating translation quality for machine-translated
conversations.

In this work, we first systematically analyze
the nature and the frequency of the errors in real
bilingual chat translations from customer support
and contrast them with the structured news do-
main (§ 2). We find that translation errors are
21% less frequent in chat relative to the news
domain and that the nature of the errors intro-
duced by MT systems in the two domains is
also different. This underscores the importance of
understanding and evaluating existing automatic
metrics for chat translation. Due to the infrequent
error occurrences at the turn level, MT systems
for chat translation tasks might receive higher
scores, necessitating a more nuanced evaluation
of the metrics.

Motivated by the same, we present a meta-
evaluation of automatic metrics, primarily tested
on news translation tasks, in their ability to gauge
the quality of machine-translated chats at turn and
dialogue level (§ 3). We use the Multidimensional
Quality Metrics (MQM) annotations collected by
the WMT22 Chat Shared Task on systems sub-
mitted for bilingual customer chat translations
(Farinha et al., 2022), where experts were asked
to rate the quality of translation at each turn given
the bilingual context, independently for all lan-
guage directions. We evaluate the sentence-level
metrics across two scenarios: on all translation
pairs as well as imperfect translations as judged
by humans. We then study the impact of aug-
menting a subset of the learned sentence-level
neural metrics with different types of conversa-
tional contextual information (§ 4). Our findings
are summarized below:!

e CoMET-22, a reference-based metric, best
correlates with human judgments.

e Reference-based CoMET-22 does not bene-
fit from the added contextual information,
whereas reference-free CoMET-20-QE has
better correlations with human judgments as

ICode is available at https://github.com/sweta20
/chat-ge.
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the context window increases when evalu-
ating translations in out-of-English settings.
This is useful as reference-free metrics allow
translation quality to be assessed on the fly.

e Adding context helps assess translation qual-
ity better for short and ambiguous sentences.
Using correct and complete context from both
speakers improves chat quality estimation via
COMET-based metrics.

Finally, we present CoNTEXT-MQM, an LLM-
based evaluation metric that uses context for chat
translation quality estimation (§ 5.3). Our prelim-
inary experiments with CoNTEXT-MQM show that
adding bilingual context to the evaluation prompt
helps improve the quality assessment of machine-
translated chats on imperfect translations.

2 Errors in Chat vs. News: A Case Study

To better understand how the error types differ in
these domains, we present an analysis of the nature
and the frequency of errors using MQM annota-
tions (conversation: 7120, news: 4800 translation
pairs) collected for English-German as a part of
the WMT?22 Metrics shared task (Freitag et al.,
2022).

Errors are Less Frequent. We calculate the
percentage of translations with a perfect MQM
score from the news and conversational subset of
the WMT22 dataset: only 46.4% of news trans-
lations have perfect MQM scores, whereas this
percentage is 57.8% for the conversational do-
main. This suggests that errors are less frequent
in the conversational domain, likely due to the
relatively short (see Figure 2) and probably less
complex text dominant in conversations. How-
ever, it is important to note that these errors do not
occur in isolation and can escalate into larger com-
munication issues. Moreover, if quality estimation
metrics fail to accurately detect less frequent er-
rors, they may misrepresent the true quality of the
MT systems.

Most Frequent Error Types Across Domains
are Different. Errors related to fluency, such as
issues with spelling, consistency, and register, oc-
cur more frequently in conversations compared to
accuracy-based errors like mistranslation, which
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Figure 2: Conversational texts tend to be much shorter
than news texts in WMT22 EN-DE.
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Figure 3: Counts of MQM error categories normalized
by the number of annotated instances for each domain:
frequent errors differ in the two domains.

are more common in the news domain (Figure 3).
This underscores the idea that the nature of ob-
served errors is also influenced by the specific
domain context.

The variation in error types and their frequen-
cies across the two domains underscores the need
for a systematic study of the suitability of current
automatic metrics within the chat domain.

3 Meta Evaluation of Automatic Metrics

We now investigate to what extent automatic
MT metrics capture chat translation quality. We

1252



LP

SENDER

Count

LencTH

CUA

% Perfect MQM  # Noisy Source’

# (Instances) ~ # (Chats)  # (Systems) Source MT Ref Weak  Moderate Good  Excellent
EN-DE A 2715 30 5 48.82 5734 57.20 89 90 120 2219 73.6 55
De-EN C 2720 38.14 3446 3549 113 88 166 2067 65.4 105
EN-Fr A 1868 23 2 36.26 42.81 4421 100 118 129 1274 46.7 40
Fr-EN C 1020 35.72 3236 33.19 45 37 41 748 65.7 116
EN-P1 A 1318 28 2 43.21 46.34  45.96 77 81 103 872 50.1 24
P1-Ex C 1016 30.44 31.06 3135 40 68 66 624 545 95

Table 1: Statistics from the MQM annotations of the WMT 22 Chat Shared Task: Errors are less
frequent in the chat domain with 46.7% to 73.6% translations receiving perfect MQM scores. A: Agent;

C: Customer.

detail the setup used for our meta-evaluation
below:

3.1 Dataset

We use the MQM annotations collected from the
WMT 2022 Chat Shared Task.? The dataset con-
sists of genuine bilingual customer support con-
versations translated by participants’ submitted
MT systems. The translations were evaluated at
turn-level using the whole conversational context
via an MQM-based human evaluation framework.
We convert token-level MQM spans into a
turn-level score via the following formula:

MQM = —(Cwmin + 5 X Omygj + 10 X Ccyi) (1)

where, Cmin, Cwmaj, and Ccyi denote the number
of minor, major, and critical errors, respectively
(Lommel et al., 2014; Farinha et al., 2022). We
measure the dialogue-level translation quality as
the mean turn-level MQM scores.>

Table 1 shows several statistics extracted from
the data.* Across language pairs, the percentage
of instances with no errors (% Perfect MQM)
ranges from 46.7 to 73.6%, confirming our initial
analysis that errors are less frequent in trans-
lated chats. Following Farinha et al. (2022), we
also present Customer Utility Analysis (CUA)
bucketing MQM scores in four regions: Weak
(negative - 39); Moderate (40 — 59); Good (60 —
79) and Excellent (80 — 100). It is apparent that
translating agent directions results in higher qual-
ity translations than translating customer direc-

’https://github.com/WMT-Chat-task/data
—and-baselines.

3While simple averaging of turn-level scores does pro-
vide a dialogue-level baseline, it might be insufficient for
capturing the true quality of translations at the dialogue level
that goes beyond turn-level errors.

“Note that the Agent communicates always in English
and the Customer in non-English languages.

tions, potentially due to less noisy source texts
(Gongalves et al., 2022).

3.2 Automatic Metrics

We benchmark sentence-level and document-
level metrics frequently used for translation qual-
ity assessment. Following the WMT QE shared
task evaluation (Blain et al., 2023), we report
Spearman-rank correlation (Zar, 2005) to measure
how well these metric scores align with human
judgments.’

3.2.1 Sentence-level

BLEU (Papineni et al., 2002) estimates the
translation quality based on n-gram overlap be-
tween the hypotheses and references. We com-
pute sentence-level BLEU (Chen and Cherry,
2014) using the SAcreBLEU (Post, 2018) library.®

cHRF (Popovié, 2015) evaluates the similarity
by computing an F1 score between the overlap-
ping character n-grams in the hypotheses and
references.

BERTSCORE (Zhang et al., 2019) computes
the cosine similarity between the pre-trained
contextualized embeddings of hypotheses and
references.

BLEURT (Sellam et al., 2020) uses pre-trained
transformer models to estimate the semantic sim-
ilarity between the hypothesis and the reference.
Its is a neural regression metric trained on an ex-
isting collection of human judgments.

CoMET-22 (Reietal., 2022a) is an XLM-R-based
(Conneau et al., 2020) regression metric trained

SIn this work, we opted for Spearman since it serves as a
compromise between Pearson and Kendall (Deutsch et al.,
2023).

Shttps://github.com/mjpost/sacrebleu/:
nrefs: 1 |case:mixed|eff:no|tok: 13a|smooth:exp|version:2.4.0.
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on direct assessments from WMT17 to WMT20.
Unlike BLEURT which compares the hypothesis
against the reference, COMET returns a score,
measuring the quality of translsation relative to
both source and reference.

CoMET-20-QE  (Rei et al.,, 2020b) is also an
XLM-R-based regression metric trained to predict
the direct assessment scores using representations
extracted from the (source, hypothesis) pair.

CoMETKIWI-22-QE  (Rei et al., 2022b) is
a reference-free model built on top of the
InFoXLLM-R model (Chi et al., 2021) and is trained
to predict direct assessments from WMT17-20
and the MLQE-PE corpus (Fomicheva et al.,
2022).

XCoMET-XL  (Guerreiro et al., 2023), with 3.5B
parameters, is an explainable learned metric
trained to predict both sentence-level quality
scores and MQM-like error spans from the
(source, hypothesis, reference) triplet. It can also
be used for quality estimation by using only the
source and the hypothesis as input, referred to as
xCoMET-QE-XL.

METRICX-23-XL. (Juraska et al.,, 2023) is a
regression-based metric built on top of mT5 (Xue
et al., 2021) and is trained to regress the true
MQM score to predict an error score in the range
[0, 25]. The input to the model is the concate-
nated hypothesis and reference translations.

METRICX-23-QE-XL  (Juraska et al., 2023) is a
reference-free version of MeTRICX-23-XL that in-
stead takes as input the source and the hypothesis.

3.2.2 Document-level

Following Liu et al. (2020), we compute dialogue-
level BLEU (d-BLEU) considering n-grams over
all the turns in a dialogue when comparing against
the reference n-grams. We compute the aver-
age of turn-level ComET-22, CoMET-20-QE, and
CoMETKIWI-22-QE scores within a dialogue to
represent its translation quality. Finally, we also
evaluate SLIDE (Raunak et al., 2023), a document-
level reference-free metric that computes trans-
lation quality by aggregating metric scores over
a block of sentences. Following Raunak et al.
(2023), we use CoMETKIWI-22-QE on a moving
window of block size k = 6 with a stride of 6.

Score
1

Regression Layer

[ N4 ]
hy hy
1 t

Average Pooling Average Pooling
fo(x) T i fo) t ot t

Pretrained Encoder Pretrained Encoder

ttor ot tot t trorot Tt f
N&o .. blog. <sep> Tudo .. cancelamento  No .. ned. <sep> All .. confirmation?
[ ey ey

Context () Source (x) Context (cg) Hypothesis ()

Source: Nao se preocupe, eu
posso cancelar aqui no meu blog.
<sep> Tudo certo, aguardo sua
confirmacéo e se possivel poderia

enviar um email com a
confirmacdo do cancelamento

Hypothesis: No worries, | can
cancel it here in my ned. <sep>
All right, I'll wait for your
confirmation and if possible could
| send you an email with the
purchase confirmation?

Figure 4: ContExT COoMET-QE.

4 Context-Aware Translation Evaluation

Let Agent (A) and Customer (C) represent the
two participants in a bilingual chat. Given a text
x generated by A or C, the goal is to predict
the quality of its translation, g, given an optional
reference translation, y. We extend CoMeT-based
metrics to utilize conversational context as de-
tailed below:

Incorporating Context CoMmET uses pooled
token-level representations extracted from pre-
trained language models (parameterized by fy)
like BERT (Devlin et al.,, 2019) or XLM-R
(Conneau et al., 2020) to encode source sentences
(x), hypotheses (7) and the reference translations
(y) into sentence-level contextual vectors ([fy(z),
fo(9), fo(y)]). The concatenated feature vectors
are then passed through a regression layer to gen-
erate a quality score. Following Vernikos et al.
(2022), we obtain the token-level contextual rep-
resentations of the current source, z, and the
reference (y)/hypothesis (7) sentences by pre-
pending up to k sentences of context preceding
to it. However, only the representations of the
current instance are pooled before passing them
to the regressor module that generates the qual-
ity score. We illustrate this for the reference-free
CoMET-20-QE that uses source and hypothesis to
produce a quality score in Figure 4 for a context
window of size 1. For CoMmET-22, the regression
layer can also access the reference vector (hy).
This simple approach was used to evaluate
document-level translation quality and was shown
to be more effective over sentence-level coun-
terparts (Vernikos et al., 2022), whereas, in our
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METRIC AVERAGE EN-DE En-Fr EnN-Pt
All Imperfect All Imperfect All Imperfect All Imperfect
CHRF 0.531 0.404 0.430 0.253 0.666 0.510 0.496 0.448
BLEU 0.500 0.319 0.363 0.151 0.642 0.426 0.494 0.381
é BERTSCORE 0.545 0.403 0.439 0.250 0.680 0.501 0.516 0.457
$ BLEURT 0.372 0.511 0.398 0411 0.326 0.663 0.393 0.458
E CoMET-22 0.633 0.551 0.578 0.445 0.721 0.634 0.602 0.573
xCoMET-XL 0.402 0.525 0.402 0.432 0.381 0.649 0.422 0.494
METRICX-23-XL 0.622 0.543 0.535 0.404 0.723 0.692 0.609 0.535
o Comer-20-QE 0.379 0.316 0.410 0.294 0.376 0.339 0.351 0.315
E CoMmETKIWI-22-QE 0.300 0.416 0.366 0.416 0.203 0.508 0.331 0.325
&  xCoMer-QE-XL 0.276 0.363 0.349 0.376 0.160 0.383 0.318 0.329
~ METRICX-23-QE-XL  0.447 0.402 0.438 0.371 0.437 0.479 0.466 0.356

Table 2: CoMmET-22 achieves the highest correlation on average across all Agent language pairs
with METRICX-23-XL as a close competitor in the REF-BASED setup. METRICX-23-QE-XL outperforms

CoMeET alternatives in the REF-FREE setting.

work, we study and extend its applicability to
contextualized sentence-level chat quality estima-
tion. Furthermore, this approach can be utilized
with any metrics that aggregate or use contex-
tualized token-level representations to generate a
sentence-level representation, e.g., BERTSCORE.

Choice of Context We explore the usage of two
types of contextual information for translation
quality estimation. The current text, assuming it is
generated by Customer C, can be preceded by the
context from the same participant or the context
generated by the other participant. For example,
for the source text generated by Customer C at time
t = 7 in Figure 1, the two preceding contextual
sentences (k = 2) are shown:

Context:

Customer att =5

Original: esse link ndo abre
Translation: This link does not open.
Agentatt =06

Original: No worries, | can cancel it
here in my ned.

Translation: N3o se preocupe, eu posso
cancelar aqui no meu blog.

We prepend up to k sentences of source and
translation context to the current source (x) and
the hypothesis (7)/reference (y) separated by a
tag, <sep> in the within setting. For the across
setting, to have the context in the same language
on each side, we prepend the translated context

to the source (x) and the source context to the
hypothesis (y)/reference (y) from the other par-
ticipant. Using our proposed extensions of the
sentence-level metrics (ComMET-22 and CoMET-20-
QE), we study their impact on translation qual-
ity evaluation.

5 Results

We first present the results of the meta-evaluation
of existing automatic MT metrics. Then we dis-
cuss the impact of adding context to a subset
of sentence-level metrics with ablations on how
context impacts translation quality evaluation. Fi-
nally, we present a preliminary study on utilizing
context with LLM-based MT evaluation.

5.1 Meta Evaluation

Tables 2 and 3 show the correlation of human
judgments at the turn-level with automatic metrics
for all the Agent and the Customer language
pairs respectively. ‘‘Imperfect’” translations are
instances marked with an MQM score of <O0.
Table 4 reports the correlation of dialogue-level
metrics with conversation-level translation qual-
ity assessment.

Turn-level Evaluation When considering all
the instances in the corpus (‘‘All’’), CoMET-22
achieves the highest correlation on both settings
(Agent and Customer), outperforming all other
metrics, with METRICX-23-XL as a close compet-
itor. For reference-free evaluation, METRICX-23-
QE-XL and CoMmeT-20-QE achieve the highest
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METRIC AVERAGE DEe-Ex Fr-En Pr-EN
All Imperfect All Imperfect All Imperfect All Imperfect
CHRF 0.427 0.188 0.400 0.201 0411 0.157 0.469 0.205
BLEU 0.396 0.166 0.390 0.154 0.373 0.147 0.425 0.198
é BERTSCORE 0.484 0.280 0.445 0.239 0.467 0.332 0.539 0.269
Elot BLEURT 0.559 0.451 0.540 0.445 0.520 0.464 0.617 0.444
E CoMET-22 0.610 0.517 0.580 0.438 0.588 0.535 0.661 0.578
xCOMET-XL 0.454 0.566 0.357 0.514 0.479 0.588 0.527 0.594
METRICX-23-XL 0.608 0.551 0.589 0.511 0.583 0.544 0.651 0.598
o Comer-20-QE 0.516 0.415 0.554 0.381 0471 0.429 0.523 0.435
E CoMmETKIWI-22-QE 0.438 0.443 0.385 0.463 0.456 0.406 0.473 0.461
&  xCOMET-QE-XL 0.447 0.493 0.388 0.492 0.462 0.479 0.492 0.508
~ METrRICX-23-QE-XL  0.395 0.497 0.383 0.490 0.382 0.431 0.420 0.569

Table 3: On average, on the Customer language pairs, CoMET-22 and METRICX-23-XL achieve the
highest correlation scores and neural learned metrics consistently outperform lexical metrics.

METRIC ExneDE EnsFr  ENsPT-Br
DIAL-BLEU 0.657 0.845 0.708
COMET-22 0.705 0.936 0.844
CoMmET-20-QE 0.583 0.583 0.462
CoMETKIWI-22-QE  0.568 0.819 0.647
SLIDE (6, 6) 0.611 0.823 0.656

Table 4: Dialogue-level Evaluation of Metrics.

correlation with human judgments when evaluat-
ing translations out of English and into English
respectively. However, there is a big gap between
the best-performing metric for the reference-
free and reference-based evaluation on average
across all Agent (6(ComeT-22,METRICX-23-QE-
XL): 0.186) and Customer (6(CoMmET-22,COMET-
20-QE): 0.094) language pairs.

There is no clear winner for imperfect trans-
lations: most metrics suffer a drop in correlation
for this subset compared to ‘‘All’’ translations ex-
cept XCoMET-XL and XCoMET-QE-XL. xCoMET-XL.
consistently achieves better correlations on this
subset than ‘‘ALL’’ data. This could be due to an
over-prediction of errors via the metric for chats.

Neural reference-based metrics consistently
outperform lexical metrics in most settings, spe-
cifically when evaluating translations into En-
glish. However, when assessing the translation
quality in out-of-English language pairs (Agent),
reference-based lexical metrics achieve better cor-
relations with human judgments than reference-
free metrics, suggesting room for improvement
for reference-free evaluation for assessing trans-
lations in languages other than English.

Dialogue-level Evaluation CoMET-22 outper-
forms lexical metric b-BLEU in evaluating trans-
lations at the conversation-level. Interestingly,
SLIDE (6, 6) achieves close correlation scores to
CoMET-22 showing its efficacy in evaluating dia-
logues when references are unavailable.

5.2 Context-Aware Translation Evaluation

We consider the context-aware extensions of
reference-based CoMET-22 and reference-free
CoMET-20-QE. For each of these metrics, we study
the impact of adding contextual information as
detailed in § 4 in both within or across partici-
pants settings. For reference-free CoMET-20-QE,
we additionally consider the setup where we use
the machine-translated hypothesis instead of the
reference as context. This is to mimic the real-
word chat scenario where references are generally
unavailable. We hypothesize that noisy context
can still provide useful information in estimating
the quality of the current (source, translation) pair.

5.21

Figure 5 shows results of adding up to last
nine sentences as context to the above config-
urations averaged across customer (‘‘Average
Customer’’) and agent (‘‘Average Agent’’) lan-
guage pairs.

Main Results

Context is not helpful when references are
available. Reference-based CoMET-22 on aver-
age across all language pairs does not benefit
(Agent) or hurts (Customer) correlation with the
added context information. This could be because
most of the necessary information to resolve any
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Agent and Customer settings: adding context helps improve metrics performance in out-of-English reference-free
settings (Agent) but is detrimental for into-English (Customer) evaluation.
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Figure 6: Context helps the most in improving the assessment of shorter (source length < 20) and potentially
ambiguous ‘‘Agent’’ (English) source sentences in across setting.

ambiguity is ideally already included in the ref-
erence. Adding more context could potentially
introduce ambiguity or inconsistency that is not
present in the reference text, hurting the evalua-
tion process.

Adding context negatively impacts the eval-
uation of translations into English. For all
customer directions, adding context almost al-
ways hurts the metric’s correlation with human
judgments. Even in the reference-free scenario,
translation evaluation into English does not ben-
efit from the added context. We hypothesize that
this could be due to how contextual ambiguities
are expressed in English compared to other lan-
guages and how the QE metric handles context in
these languages. We leave further investigation to
future work.

Adding context improves correlation for
ComET-20-QE in reference-free out-of-English
settings. Reference-free CoMET-20-QE signifi-

cantly benefits from the added context on average
across all ‘‘Agent’” settings. The correlation
increases as the context increases. Specifically,
using complete contextual information from
both participants in the same language as the
current participant (across) is key to getting the
most out of the added contextual information.
Shorter segments (< 20 characters) benefit the
most from the added context as depicted in
Figure 6. The above trend holds when using either
reference-based or hypothesis-based contexts,
which is promising.

5.2.2 Ablation Analysis

We use the across participant setting with a con-
text window of 2 for CoMeT-20-QE, as this setup
led to the most improvement in correlation. In
addition, we use the hypothesis as the context
instead of the reference for all the analysis, mim-
icking the real-world scenario where references
are unavailable. With this setup, we first study
whether adding context improves correlation for
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Figure 7: Adding context improves correlation with
human judgments across most error types (except Date
and Time Format) and all severity levels.

specific error types and severity levels. We then
evaluate the impact of adding noise to the con-
text with the proposition that unrelated or partial
context should hurt the metric’s performance.

Breakdown by Error Types and Severity We
bucket sentences by the MQM error typology
and filter error types with at least 20 instances.
Figure 7 shows the correlation with human judg-
ments for each error type bucket and across
severity levels. Including contextual information
improves correlation with human judgments on
several error types as well as all error severity
levels. However, adding context hurts Spelling,
Date, and Time Format errors, possibly because
adding context might introduce noise and not
provide any useful information to identify such
errors which are solely based on linguistic or for-
matting rules.

Impact of Noisy or Partial Context To vali-
date that complete and correct context is necessary

NoIsE T0? AVG-AGENT
No CoNTEXT - 0.379
CONTEXT - 0.420
Swapr SOURCE 0.364
TRANSLATION 0.296
Bota 0.299
Drop (RanDoM) SOURCE 0.402
TRANSLATION 0.326
Botn 0.346
Drop (PAIR) SOURCE 0.389
TRANSLATION 0.399
BotH 0.325

Table 5: Corrupting context hurts correlation.

for meaningful improvement in metrics’ perfor-
mance, we inject two types of noise into the
context: Swap, where we use unrelated context
from a different instance; and Drop where we
drop one of the two (source, translation) pairs
(“‘pair’’) or unpaired sentences from the preced-
ing context (‘‘random’’). We additionally con-
sider injecting these noises into either the source,
the translation, or both.

Table 5 shows that adding either kind of
noise to the context leads to a drop in correlation
relative to the ‘‘Context’’ baseline, often even
performing worse than using any contextual in-
formation (‘‘No Context’’). Unrelated context
(““‘Swap’’) has a more adverse impact on the
metric’s performance compared to changing the
context via dropping partial information. Fur-
thermore, dropping paired contextual sentences
results in a larger drop in correlation than drop-
ping unrelated source-translation instances. This
further solidifies our argument that complete and
related context is key to utilizing context for chat
translation quality estimation.

Impact on Contextually Ambiguous Sentences
Given that shorter sentences benefit the most
from the added context (Figure 6), we further
investigate whether this is indeed due to the
increased ambiguity in texts. We use MuDa
(Fernandes et al., 2023b) to identify translation
pairs with specific discourse phenomena (formal-
ity, pronouns, verb form, lexical consistency) for
English-German. This enables us to mark in-
stances that potentially require context for dis-
ambiguation. Figure 8 shows that the sentences
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Figure 8: Adding context improves correlation on con-
textually ambiguous sentences (character length < 20)
for English-German.

with marked discourse phenomena benefit the
most from the added context. On the other hand,
adding context to sentences without marked dis-
course phenomena hurts correlation. We leave the
detailed exploration of when to rely on context
for quality estimation to future work.

5.3 LLM-based Contextual
Quality Estimation

Motivated by the recent surge of interest in us-
ing LLMs like GPT (Achiam et al., 2023) for
text evaluation, specifically in MT (Kocmi and
Federmann, 2023b; Fernandes et al., 2023a; Lu
et al., 2023; Kocmi and Federmann, 2023a), we
also explore their potential in assessing the trans-
lation quality of machine translated chats. To bet-
ter elicit the reasoning and in-context learning
capabilities of these LLMs, we prompt GPT-4’
to identify and categorize errors in machine-
generated translations instead of asking for an
overall score for translation quality like direct
assessment.3

We present CoNTEXT-MQM, a context-informed
LLM-based quality estimation metric for chat
translation evaluation. We adopt the MQM-style
prompting techniques to elicit the reasoning ca-
pabilities of the LLM (Fernandes et al., 2023a;
Kocmi and Federmann, 2023a) and modify it
to utilize contextual information: Following Sec-
tion 5.2, we include the past £k = 8 bilingual

Tgpt—-4-0613, accessed on February 26, 2024.
80ur initial experiments with open-sourced LLMs sug-
gested limited ability of the models to do well on this task.

source sentences as context and one in-domain
in-context example as shown in Figure 9. We per-
form our evaluation on a subset of 1000 English-
German sentences sampled uniformly from the
dataset and contrast our metric with the evaluation
prompting technique that does not utilize any con-
textual information, LLM-MQM (No CoNTEexT).”

The results are presented in Table 6: Add-
ing context positively impacts correlation for
LLM-based evaluation of machine-translated chats.
CoNTEXT-MQM improves correlation with human
judgments, outperforming both non-contextual
LLM-MQM (All: +0.013, Imperfect: 0.048)
as well as Comet-22 (All: +0.091, Imperfect:
+0.107). The improvement is larger on the im-
perfect translations, suggesting that context helps
identify errors better on these (source, transla-
tion) pairs. These initial results show the potential
of using LLMs for evaluating chat translation
quality with contextual information. Exploring
alternative prompting strategies to integrate con-
text in LLMs merits further investigation in fu-
ture research endeavors.

6 Related Work

Automatic MT Metrics Designing automatic
metrics to assess translation quality has been an
active area of research over the past decade. Met-
rics shared tasks organized at WMT have signif-
icantly facilitated research where recent metrics
like BLEURT (Sellam et al., 2020) or COMET
(Rei et al.,, 2020b) based on neural architec-
tures and trained with human assessments are
shown to consistently outperform lexical metrics.
Recent work has also focused on developing
document-level evaluation metrics acknowledg-
ing that sentences often do not occur in isolation
in the wild and the correctness of translation is
dependent on the context (Voita et al., 2019).
Document-level metrics like SliDe (Raunak et al.,
2023) or BlonDe (Jiang et al., 2022) use discourse
information to assess the translation quality at the
paragraph level. However, these metrics haven
been primarily evaluated for assessing the qual-
ity of news-like data.

Chat Translation Quality Estimation Li et al.
(2022) introduce the erroneous chat translation

We did not conduct a full-scale evaluation due to the
high cost of accessing the GPT-4 API. The cost for running
the experiments on English-German was ~ $300.
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System: You are an annotator for the quality of machine translation. Your task is to identify errors and
assess the quality of the translation.

The categories of errors are: accuracy (addition, mistranslation, omission, untranslated text), fluency
(character encoding, grammar, inconsistency, punctuation, register, spelling), style (awkward), terminol-

ogy (inappropriate for context, inconsistent use), non-translation, other, source error or no-error.

Each error is classified as one of three categories: critical, major, and minor.

comprehension of the text.

Critical errors inhibit

Major errors disrupt the flow, but what the text is trying to say is still

understandable. Minor errors are technically errors, but do not disrupt the flow or hinder comprehension.

{k Few Shot Incontext Examples}
User: Context: “‘{context}

{sender} source (source_lang):

"y

1113 999

{source_seg}

1113 999

{target_lang} translation: “‘{target_seg}

Based on the conversation context between the agent and the customer, the current source by "sender"
in {source lang} and its machine translation in {target lang} surrounded with triple backticks, identify

error types in the translation and classify them.

Figure 9: Contextual Prompt for Chat Quality Estimation.

All Imperfect

LLM-MQM (No CoNTEXT) 0.642 0.512
CoNTEXT-MQM 0.655 0.560
CoMET-22 0.564 0.453

Table 6: CoNTEXT-MQM outperforms CoMET-22
and non-contextual LLM-MQM on English-
German Chat Quality Estimation.

detection task and propose an error detection
model that classifies a given translation in a
bilingual two-utterance chat as either correct or
erroneous. However, their approach requires train-
ing a metric on chat data, whereas, in our work
we benchmark existing metrics for chat quality
estimation and study the impact of conversation
context on quality estimation via existing metrics.
Menezes et al. (2023) propose a new frame-
work for identifying contextual errors in conversa-
tional datasets. They expand the MQM categories
to account for errors introduced due to contextual
triggers. They further show that these errors are
indeed critical and that current metrics fall short
in detecting them. Our evaluation instead targets
estimating chat translation quality regardless of
the specific errors and is aimed at providing a
more general view of the ability of existing metrics
to assess the quality of machine-translated chats.

Contextual Machine Translation In many
scenarios, translation requires leveraging infor-
mation beyond the sentence level to resolve inter-

sentence dependencies and improve translation
quality. Incorporating context to generate high-
quality translations has been explored for con-
versation and news documents, with approaches
ranging from simply concatenating the context
to the original input (Tiedemann and Scherrer,
2017) to more complex options (Jean et al., 2017;
Maruf et al., 2018, 2019). However, despite hav-
ing access to context, contextual MT models still
struggle to effectively use it (Fernandes et al.,
2021), and most MT metrics fail to capture this
due to a lack of utilization of context in the eval-
uation metrics themselves. Hence, we instead use
context to assess the translation quality of a given
(source, target) pair and show that it benefits the
evaluation of non-English translations.

7 Conclusion and Discussion

Estimating translation quality in diverse domains
is crucial to ensure that the metrics employed
in MT evaluation accurately reflect the MT sys-
tem’s quality across various types of content. We
show that the nature and the type of errors in the
conversational context are different from the gen-
erally evaluated news domain. Hence, designing
robust metrics that can capture these errors is
very important. Our work presents a step in that
direction by systematically benchmarking exist-
ing automatic MT metrics on machine-translated
chats. Given the highly contextual nature of the
chat domain, we extend and evaluate context-
based reference-free and reference-based metrics.
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Best Practices Given our findings, we rec-
ommend the community adopt the following
practices:

1. When references are available: As
CoMET-22 achieved the best correlation
across the board among all the settings, we
recommend using COoMET-22 as the primary
evaluation metric in this scenario. We further
recommend using error-predicting metrics
like METRICX-23-XL or xCOMET-XL for
finer-grained analysis of the severity of the
errors.

2. When references are unavailable: In the
more realistic scenario where references are
unavailable, we recommend using COMET-
20-QE as is for evaluating translations in
into English and the context-aware COMET-
20-QE for evaluating translations in out
of English settings respectively at the turn
level. For dialogue-level evaluation, SLIDE
would be the most reliable among existing
alternatives.

Alternatively, our proposed reference-free
ConNTEXT-MQM metric based on GPT-4, can
also be used as it outperformed reference-based
CoMET-22 on the small-scale preliminary evalua-
tion (§ 5.3). Though, in the light of recent studies
showing potential biases with LLM-based evalua-
tion — LLMs might favor their own outputs — we
recommend using LL.M-based evaluation only in
scenarios where the evaluating LLM does not gen-
erate the translations (Panickssery et al., 2024).

Is Context Useful and Under What Conditions?
Our experiments and analysis shed some light on
how and when the context can be helpful. No-
tably, we show that context adds little information
in the presence of a reference translation or when
evaluating translation quality into English. How-
ever, adding context improves quality assessment
across error types for reference-free evaluation in
out-of-English settings, especially when it pro-
vides useful information for ambiguity resolution
and is correct and complete. However, there re-
main several open questions and directions for
future work:

1. Improving Detection of MT errors: As il-
lustrated by our results, although ComEeT-22

achieves high correlations with human judg-
ments, there is a drop in correlation for
imperfect segments, suggesting a need for
designing a metric that can do well at esti-
mating quality for both perfect and imperfect
translations.

2. Better Reference-free Evaluation: Our find-
ings show that reference-free learned metrics
lag behind reference-based ones in evaluat-
ing the translation quality of bilingual chats.
This presents opportunities to develop ef-
fective evaluation methods lacking reference
translations.

3. Optimizing Context Utilization: We imple-
mented a simple approach to utilize context
from both participants in both learned met-
rics and for LLM-based MT evaluation.
However, it remains to be investigated how
context can be utilized in other ways and
when the metric should rely on the contextual
information.

Our work, hence, opens avenues for integrating
context-based signals in chat quality assessment
and chat translation as well as paves the way for
a more finer-grained analysis of the type, nature,
and selection of contextual signals.
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