Retrieval-Pretrained Transformer: Long-range Language
Modeling with Self-retrieval

Ohad Rubin

Jonathan Berant

The Blavatnik School of Computer Science, Tel Aviv University, Israel
{ohad.rubin, joberant}@cs.tau.ac.il

Abstract

Retrieval-augmented language models (LMs)
have received much attention recently. How-
ever, typically the retriever is not trained
jointly as a native component of the LM, but
added post-hoc to an already-pretrained LM,
which limits the ability of the LM and the re-
triever to adapt to one another. In this work, we
propose the Retrieval-Pretrained Transformer
(RPT), an architecture and training procedure
for jointly training a retrieval-augmented LM
from scratch and applying it to the task of mod-
eling long texts. Given a recently generated
text chunk in a long document, the LM com-
putes query representations, which are then
used to retrieve earlier chunks in the doc-
ument, located potentially tens of thousands
of tokens before. Information from retrieved
chunks is fused into the LM representations
to predict the next target chunk. We train the
retriever component with a semantic objec-
tive, where the goal is to retrieve chunks that
increase the probability of the next chunk,
according to a reference LM. We evaluate
RPT on four long-range language modeling
tasks, spanning books, code, and mathematical
writing, and demonstrate that RPT improves
retrieval quality and subsequently perplexity
across the board compared to strong baselines.

1 Introduction

Large language models (LMs) have had immense
success recently (Brown et al., 2020; Chowdhery
et al., 2022; Zhang et al., 2022; Touvron et al.,
2023), becoming a useful tool across disciplines.
However, their success comes at a computational
cost, due to increasing parameter counts for stor-
ing world knowledge (Fedus et al., 2022) and
growing context lengths that enable access to dis-
tant information, but incur a quadratic complexity
penalty. Retrieval-augmented language modeling
(RALM) alleviates this cost (Khandelwal et al.,
2020; Yogatama et al., 2021; Borgeaud et al.,

2022; Ram et al., 2023), as precise retrieval of
relevant information can reduce memory and
computation requirements. Moreover, RALM is
beneficial for factuality, freshness, and general-
ization without necessitating retraining, simply by
swapping the retrieval index (Guu et al., 2020;
Lewis et al., 2020; Huang et al., 2023).

However, past work on RALM has by and large
not trained the retriever as a first-class component
of the LM. In some cases (Khandelwal et al.,
2020; Yogatama et al., 2021; Borgeaud et al.,
2022), the retriever was used only at test time, or
remained fixed throughout training, preventing it
from adapting to the LM generator. In other cases,
the retriever component was jointly trained but
only after a separate pretraining phase for both
the retriever and LM (Sachan et al., 2021; Izacard
et al., 2022b; Jiang et al., 2022; Bertsch et al.,
2023). Thus, the retriever was not pre-trained
from scratch with the LM, and only a fraction of
the training budget was allocated for joint training.

Recently, Zhong et al. (2022) presented a
retrieval-augmented LM that trains a retriever
from scratch jointly with the LM, but (a) the
retriever was trained to exploit lexical informa-
tion only, and (b) the retrieved information was
not fused at the representation level back into
the LM.

In this work, we present the Retrieval-
Pretrained Transformer (RPT), a retrieval-
augmented LM, where the retriever is a first-class
component, trained jointly from scratch with the
LM. RPT relies on two technical contributions.
First, on the architecture side (see Figure 1), in-
put representations for the retriever are computed
from the LM representations themselves (a con-
cept we dub self-retrieval), and retrieved repre-
sentations are fused back into the LM decoder for
making next word predictions. Second, we train
the retriever with an auxiliary loss function that
encourages retrieving text fragments that increase

1197

Transactions of the Association for Computational Linguistics, vol. 12, pp. 1197-1213, 2024. https://doi.org/10.1162/tacl_a_00693
Action Editor: Francois Yvon. Submission batch: 2/2024; Revision batch: 5/2024; Published 9/2024.
(© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:ohad.rubin@cs.tau.ac.il
mailto:joberant@cs.tau.ac.il
https://doi.org/10.1162/tacl_a_00693

Book or Semantically Similar

Long text

Lexically Similar

Chunk 13 Chunk 201

Lt. John looked
around, "Another

1

1

As akid, Lt. John :

1
: victim, The Crimson

1

1

1

1

1

found a dead dog;
since then, crimson
always unnerved

The killer left a room
full of evidence, a

puzzle for forensics. Murderer strikes

him. again."
4 A st states Query
R [N v Input
Retrieve C I
Fuse — ausa
R 5| Language
______________________ . Model
Pg([CZOZ] |[0201][C13])
ref Predict

Chunk 202

“I bet the forensic

\%
PGRSI C100)

guys would love
______________________ 4 this.”

Training Signal

Target

Figure 1: Retrieval-Pretrained Transformer (RPT) is a
language trained from scratch with a native retrieval
ability that can be applied to long texts (e.g., books).
RPT takes a chunk of text as input, retrieves seman-
tically relevant chunks from the past to better predict
the next chunk, and fuses these retrieved chunks into
its representations. On top of a standard LM loss, the
retriever is trained to retrieve chunks that increase
the probability of the next chunk according to a refer-
ence LM.

the probability of generating the subsequent text.
Specifically, given a recently generated chunk ¢,
the retriever is trained to retrieve chunks ¢; that
increase the probability of Pscoring(Ci+1 | €isct)
according to a reference scoring LM. Figure 1
provides an illustrative example for a case where
a crime scene is described, and a scoring LM
shows the benefit of retrieving a chunk thousands
of tokens away (chunk 13) compared to lexical
retrieval, which leads to a chunk that is only
superficially related (chunk 100). Unlike existing
retrieval-augmented models that use an auxiliary
encoder for retrieval (Izacard and Grave, 2021a;
Izacard et al., 2022b; Sachan et al., 2021), RPT
is able to leverage its internal hidden states for
retrieval after a single pre-training stage, greatly
simplifying joint training.

We apply RPT to the problem of modeling
long documents, such as books, articles, and
code, as those are naturally occurring examples of
long-form content, where the entire index can be
held within memory in a forward-pass.

We evaluate RPT on four language modeling
tasks and find that it improves perplexity across all
tasks, outperforming prior work (Hutchins et al.,
2022; Wu et al., 2022) as well as strong baselines
(Borgeaud et al., 2022; Zhong et al., 2022). More-
over, we show that RPT retrieves high-quality
chunks compared to retrievers that rely on lexi-
cal information. Based on our empirical findings,
we argue RPT can pave the way toward a next
generation of pre-trained LMs, where large cor-
pora are used during pre-training, resulting in
a language models where retrieval is a strongly
embedded component. Our code is publicly avail-
able at https://github.com/OhadRubin
/RPT.

2 Background

To situate our contribution, we review relevant
recent RALM work. We extend this to more re-
lated work in §6.

Early work on RALMs, such as kNN-LM
(Khandelwal et al., 2020), used retrieval to im-
prove language modeling by interpolating the
next-word distribution produced by the LM with
a distribution proposed through a fest-time-only
retrieval mechanism. Borgeaud et al. (2022) later
proposed Chunked Cross-Attention (CCA), where
retrieval is performed also at training time, and
retrieval results are deeply fused into the repre-
sentations produced by a Transformer decoder
through attention. However, the retriever was
trained separately and kept fixed during train-
ing, which prevented it from adapting to the LM
over the course of training.

TRIME (Zhong et al., 2022), like this work,
trained a retrieval-augmented LM from scratch
where the retriever component and the decoder
LM are trained jointly. Our work differs from
TRIME in two aspects: First, TRIME, like
kNN-LM, incorporates information from the re-
triever in a shallow manner through distribution
interpolation, while we adopt CCA as a deeper
fusion mechanism. Second, TRIME takes advan-
tage of lexical clues for supervising the retriever—
that is, given a query, the TRIME retriever learns
to retrieve contexts that will lead to generating
the same token as the query. We, on the other
hand, use a scoring LM to evaluate what text
chunks are relevant for increasing the probability
of the chunk being generated, which leads to more
semantic retrieval. This is similar to EPR (Rubin

1198

https://github.com/OhadRubin/RPT
https://github.com/OhadRubin/RPT

Input Tokens

Encoded neighbors

Chunk
scoring

'
1 Ca

| ¢

I
I
| G

o
O) 5 5 5 5 O O O O O O

(»)=10.8

Figure 2: The architecture of the Retrieval-Pretrained Transformer, where an input of 45 tokens is shown,
consisting of 9 chunks, and causal self-attention is applied over 15 tokens. The left side shows the decoder stack,

Niayers

where the bottom

are standard Transformer decoder layers, and the top ”'T’ layers also include chunked

cross-attention layers that fuse information from retrieved chunks. The right side shows the retriever, which takes
a chunk and retrieves the highest-scoring K chunks that appeared earlier in the document.

et al., 2022), which used this idea for learning to
retrieve prompts for in-context learning, and per-
plexity distillation in Atlas (Izacard et al., 2022b).
However, Atlas does not train the retriever and
LM from scratch and is an encoder-decoder model,
more suitable for knowledge-intensive tasks. We,
conversely, train from scratch and use a decoder
model, more suitable for modeling long texts.

3 Retrieval-Pretrained Transformer

Problem Setup Like RETRO (Borgeaud et al.,
2022), RPT is a chunk-wise retrieval-augmented
LM that divides the input sequence into chunks
for retrieval. Specifically, given a sequence of L
input tokens, (x1, z9, ...,z), we partition it into
a sequence of ¢ = # non-overlapping chunks of
length m, denoted by C = (¢1,¢9,...,¢¢). For
every possible guery chunk, ¢ = ¢;, the model
will retrieve a subset of at most K < ¢ chunks,
R(cY) € C<* = (e1,¢a,...,Ciw), Wwhere C<¥ is
the set of retrievable chunks for c¢;, which ex-
cludes the w chunks to which it already has ac-
cess to through causal self-attention. The goal is
to learn a model that retrieves a chunk subset,
R(c?), that increase the probability of autoregres-
sive generation of the target chunk c* = c; ;.

We present our method in two parts. First,
our architecture (§3.1), which leverages CCA to
fuse retrieved representations into the LM, but
adds a learned retriever component. Second, we
present the training method (§3.2-§3.3), where
the retriever is trained to retrieve chunks useful
for generating a future chunk according to a
reference LM.

3.1 Model Architecture

Figure 2 illustrates our architecture, where the
input has 45 input tokens divided into 9 chunks,
and causal self-attention is applied over w = 3
chunks (15 tokens). The left side depicts the de-
coder stack (‘‘reader’’), and the right side the
retriever. The reader is split into two, where the
bottom % layers (lower decoder) are standard
Transformer decoder layers that take w chunks
as input and output representations that will be
used by the retriever and the top decoder layers.
The top % layers (upper decoder) use
Chunked Cross-Attention (CCA) to fuse infor-
mation from the top- K neighbor chunks retrieved
by the retriever back into the LM. We use standard
CCA layers from RETRO (Borgeaud et al., 2022),
where for each one of the ¢ chunks, queries are
the m token representations of that chunk output

1199

by causal attention, and the keys and values are
the token representations for the top-K neighbor
chunks output by the retriever.'

Next, we describe the retriever component,
along with a neighbor gating mechanism for mod-
ulating the effect of retrieved representations.

Retriever The retriever takes as input the rep-
resentations output by the lower decoder and
produces a similarity score for every pair of
chunks. Given a query chunk c4, the query-based
score for each retrievable chunk c is sq(c) =
(Wgoed, Wie), where Wo, Wi € R™4 are
learned linear projections, and ¢ and ¢ are chunk
representations.

For an m-token long chunk ¢, we compute its
representation ¢ by applying bidirectional atten-
tion over the chunk tokens, followed by mean-
pooling across the time dimension. This maintains
causality, as these representations are only used
during the prediction of the next chunk.

Once scores for all pairs of chunks are com-
puted, the retrieved neighbor chunks R(c%), for
each query chunk, ¢4, consists of its top-K
highest-scoring retrievable chunks. Then, for each
chunk ¢; € R(c%), we concatenate the represen-
tations of the succeeding chunk c;,; to provide
additional context, and the final representation for
all neighbors of all chunks is given by a tensor
C e REXKXZde'Z

Overall (and unlike methods like TRIME and
kNN-LM), the retriever is an integral part of
the LM, where the lower decoder computes rep-
resentations for the retriever (which we dub
self-retrieval), and the upper decoder consumes
representations produced by the retriever.

Neighbor Gating We add a neighbor gating
mechanism to softly select neighbor representa-
tions that are useful for fusing into the upper
decoder. Let C;} € R?m*d be the token repre-
sentations for the £’th neighbor of chunk c;. We
mean-pool across the time dimension to obtain
a vector ¢; for each neighbor chunk. Then, we
enrich the neighbor representation of each chunk
by applying causal attention—a neighbor chunk
representations ¢; j, attends to chunks that precede
it or to neighbors of the same chunk ¢; that are

IFor full details of CCA, see Borgeaud et al. (2022).

2Similar to RETRO, token representations of retrieved
chunks are also augmented through cross-attention over to-
kens of the query chunk, c9.

ranked higher. Finally, for each chunk we obtain
the gated retrieved representation by multiplying
the augmented representations by a gating score:
Cf,k = max{n, o(“5)} - C; x where Wy is a
learned parameter vector, 7 is a small value meant
to maintain gradient flow,? and o is the sigmoid
activation. Finally, in the upper decoder, when

CCA is performed, the keys and values are ng -

3.2 Supervision Signal

For each query chunk % = ¢;, we want to iden-
tify neighbor chunks that will be helpful for gen-
erating ¢* = ¢;,1, and use those neighbor chunks
as supervision signal for the retriever. Similar to
Rubin et al. (2022), we can exploit the fact that
we are producing training data and use informa-
tion from ¢! itself to produce such a score. Unlike
Zhong et al. (2022), who use lexical clues alone,
we will use an independent scoring LM for this
purpose.

Scoring every chunk w.r.t. to all preceding
chunks is quadratic in the number of chunks in
a document, and thus computationally difficult.
Thus, we use a simple, BM25 unsupervised re-
triever (Robertson and Zaragoza, 2009) that takes
as input the concatenation of the chunks (¢4, ct) =
(¢i,ci+1) and returns a set of candidates neigh-
bor chunks, R C C(c%), which have high lexical
overlap with the current and subsequent chunk.
This retriever has access to the tokens that need
to be generated by the LM, which is allowed at
training time.

Let g be an independently trained LM, and let
¢; be the concatenation (c;, ¢j+1). We compute a
score s¢ (¢;) that reflects whether the information
in ¢; is more useful for decoding ¢' compared
to chunks that are close to c4. Specifically, the
target-based score for a candidate chunk is
Proby (ct | ¢j,cjtt, Cq)

s (¢) = log

Proby (¢t | ¢i—a, ¢i1,¢9)

This score is positive when information in ¢; is
more useful for decoding ! than information in
the preceding two chunks (¢;_2,¢;—1).

We apply this scoring function to all chunks,
and define for each query chunk c? the set of
positive chunks ’Rgos, which includes candidates
for which s¢(-) > 0. This should result in helpful
chunks, as each candidate chunk is at least as

3We set p = 0.1 in all of our experiments.

1200

good as the local context. With this ordering at
our disposal, we can apply standard retrieval
training methods.

3.3 Training

To train the parameters of the retriever compo-
nent, we adapt the widely used LambdaRank loss
(Burges et al., 2006). The loss for each query
chunk ¢4 (w.r.t. its retrievable chunks) is:

Lret(cq) =
D Ajimax (0,7 — (sq(cr) — sq(c;)))

{4, 1:c1€RPos 51 (E1) > 51(¢5) }

where 7 is a margin hyper-parameter, and Aj; is
the LambdaRank scaling that considers the rel-
ative ranking of each candidate. This loss is
non-zero when for some pair of candidates, the
target-based score disagrees (with margin 7) with
the ranking of the query-based score for can-
didates in Rp.. Optimizing this loss function
allows RPT to distinguish between relevant and
irrelevant chunks. Our final 1oss iS iy + Oret Lrets
where Liy is the standard LM loss and oy 1S
the retrieval loss coefficient, increased linearly in
the first 100K steps. We also increase 7 linearly
during training.

3.4 Important Implementation Details

Scheduled Sampling To reduce train-test mis-
match, we apply scheduled sampling (Bengio
et al., 2015) during training. Namely, after com-
puting the top-K neighbor chunks, we use these
neighbors with probability 1 — pgg, and with prob-
ability pg the top-K scoring candidates from
Rios as input for CCA. We anneal pg from 1
to 0 during the first 90% of training with a co-
sine schedule. This allows the model to gradually
learn to use its own predictions. We report the
effect of this in §5.3.

Sliding Window Attention at Training and In-
ference Time As described in §3, the decoder
takes as input w chunks, each with m tokens as
input, and applies causal attention over them. In
practice, to give the first tokens access to past to-
kens, we use the sliding-window attention mech-
anism (Dai et al., 2019; Beltagy et al., 2020; Ivgi
et al., 2023), where the number of tokens in a
window is 2,048 and the stride is 1,024. Thus,
the input to each window is 2,048 tokens and the

output are the representations for the last 1,024
tokens, which use the keys and values of the pre-
vious 1,024 tokens for contextualization.

Atinference time a similar procedure is applied.
We compute and cache the key and value repre-
sentations for segments of 1,024 tokens, using
these as context for generating or estimating the
probability of the next segment.

Retrieval at Inference Time During training
we encode in each batch sequences of length
16K and retrieve chunks from those encoded
16k tokens. However, at inference time the re-
triever provides access to all tokens from the start
of the document, where we store the key and
lower-decoder representations in a Faiss (Douze
et al., 2024) index on the CPU. For each chunk,
we query the index using the chunk’s query rep-
resentations and retrieve the top- K lower-decoder
representations with the highest dot product.

Additional Details At training time we use se-
quences of length . = 16,384 tokens, which are
split into 4 devices, each consuming 4,096 to-
kens. As mentioned, the decoder stack takes 2,048
tokens as input (in a sliding window approach),
which contains ¢ = 32 chunks of length m = 64.
We employ Rotary Positional embedding (Su
et al., 2024), and train all models for 500K steps
on a TPUv4-64, with an effective batch size of 2'7
tokens resulting in a total training budget of 65
billion tokens.

For all models trained, we use the GPT-NeoX
(Black et al., 2022) tokenizer, which was trained
on the Pile (Gao et al., 2020) and covers the do-
mains we evaluate on (see §4). As our scoring
language model, we use the deduplicated 1.4B pa-
rameter version of Pythia (Biderman et al., 2023),
and score with it the top-20 BM25 candidates.
Our model has 12 layers, hidden dimension d =
1024, and 8 attention heads with a head dimension
of 128. We apply CCA with 2 neighbors, unless
mentioned otherwise. Additional implementation
details are in Appendix A and theoretical
complexity of CCA layers is in Appendix B.

4 Long-Range LM Datasets

We evaluate RPT on four datasets, covering do-
mains such as books, code, and mathematical
writing, which require the ability to recall infor-
mation over long distances. Table 1 and Figure 3

1201

Name Tokens (Train/Test) Median Length
ArXiv 12,000/ 16 16,368
CodeParrot 5,000/5 29,269
PG19 3,000/9 82,659
Books3 25,000/ 35 113,496

Table 1: Number of tokens (in millions) for each
dataset and median document length.

104 ArXiv

104 CodeParrot

5 1 fm
0 i |4 T

%

%

104 PG19
) Mwm
0 . : T T
104 Books3
" mﬁﬁﬁ
0 T ; . .
102 103 104 10° 106 107

Sequence length

Figure 3: Histograms of the distribution over docu-
ment length in tokens across all datasets. The x-axis is
in log scale.

provide statistics on dataset size and the distribu-
tion over document length, showing that docu-
ments are long across all datasets and in particular
PG19 and Books3, where documents typically
contain 10° tokens or more. We briefly review the
datasets.

PG19 Introduced in Rae et al. (2020), PG19
is a widely used long-range language modeling
benchmark containing books from Project Guten-
berg, and covering a wide range of literary gen-
res, styles, and topics. We adopt the exact setup
and data split from prior work (Wu et al., 2022;
Hutchins et al., 2022; Mehta et al., 2023).

Books3 is a corpus of books released as part of
the Pile (Gao et al., 2020), containing a vast collec-
tion of literary works from different domains. To
our knowledge, we are the first to use this corpus
as a long-range language modeling benchmark.*

“We do not release this benchmark due to the copyright
restrictions.

CodeParrot (Wolf et al., 2023) is a corpus of
clean, nearly deduplicated Python code from var-
ious GitHub repositories. Modeling code requires
understanding patterns and contextualizing infor-
mation over long distances, making it a natural
candidate for testing long-range LMs. In our ex-
periments, we follow the approach of Wu et al.
(2022), combining files from the same repository
to construct a corpus with longer sequences, and
create a train/test split (see Table 1).

ArXiv is a corpus of preprint papers extracted
from ArXiv. It consists of mathematical texts that
require maintaining coherence and referring to
previously mentioned information over extended
text. Prior work evaluated long-range LMs on this
corpus (Wu et al., 2022; Hutchins et al., 2022;
Mehta et al., 2023), but did not release their
corpus. Thus, we use the preprocessed corpus and
data splits made available by Azerbayev et al.
(2023).

5 Experiments

We now turn to experiments for comparing RPT
to prior work across our four datasets.

5.1 Experimental Setup

We compare to the following baselines and
oracles.

Transformer-XL. Our simplest baseline is a
standard transformer decoder stack with sliding
window attention. Put differently, we simply re-
move from RPT the retriever component and CCA
layers in the upper decoder. Using sliding window
attention (as described in §3.4) can be viewed as
a variant of Transformer-XL (Dai et al., 2019).
We compare RPT to Transformer-XL in multiple
settings, one where we have the same number of
layers and training steps for both models, and two
more where we tie the number of parameters and
FLOPs between the models.

RETRO We implement a modified version of
Borgeaud et al. (2022), a retrieval-augmented
model, where feed the top- K neighbors retrieved
by BM25 as input to the CCA layers in the up-
per decoder. Concretely, Borgeaud et al. (2022)
performed CCA over the representation from a

SConcurrent work (Doostmohammadi et al., 2023)
showed that training RETRO using BM25 outperforms dense
retrieval methods.

1202

separate bi-directional encoder, while our vari-
ant uses the lower-decoder representations as a
replacement. This makes RPT and RETRO archi-
tectures more similar to one another and allows
evaluation to center on the importance of training
the retriever, which is the focus of our work. Dur-
ing training, we use the query (c4,c'), since we
have access to the target chunk. During inference,
we use cd.

RPT-Lex A version of RPT, where the training
signal is obtained solely from lexical information,
similar to TRIME (Zhong et al., 2022). Explicitly,
the set of positive chunks R for a chunk c4
contains the top-20 chunks that have the highest
BM25 score with (4, c').

RPT-Sem Our full model described in §3.

Block-Recurrent Transformer We use the
official training implementation® of Block-
Recurrent Transformer (Hutchins et al., 2022)
with the default configuration.

Memorizing Transformer We use the official
implementation® of Memorizing Transformers
(Wu et al., 2022), with the default configuration
and a memory size of 32K and 65K tokens.

Griffin An alternative for long-range model-
ing is to use a hybrid of attention and linear
RNNs (Orvieto et al, 2023; Gupta et al.,
2023). We evaluate Griffin (De et al., 2024), a
state-of-the-art model in this category. We adapt
the official implementation, and supplement our
Transformer-XL baseline with 5 recurrent lay-
ers in the final layers to ensure parameter parity.
We use a state dimension of 2,048, and temporal
dimension of 3.

Oracles For each test chunk, we can exhaus-
tively search and use at test time the best possible
neighbors for a model according to the scoring
LM. This provides an upper bound for the perfor-
mance of RPT-Sem, as it is trained to imitate the
ranking produced by this oracle.

Metrics We use perplexity to evaluate the per-
formance of models. In addition, we use the
target score s¢(+) from the scoring LM to compute
for each chunk a gold ranking over all previous
chunks, and to label chunks as positive/negative

Shttps://github.com/google-research
/meliad.

iff their target score is positive/negative, respec-
tively. With this information, we can evaluate
Precision @k, which is the fraction of top-k chunks
according to the query-based score that are pos-
itive, and Recall@k, which is the fraction of
positive chunks that are in the top-k chunks ac-
cording to the query-based score. We also use the
gold ranking to compute NDCG@FE, which is a
standard retrieval metric (Jarvelin and Kekéldinen,
2002).

5.2 Results

Table 2 shows our main results, which show
that RPT-Sem is comparable or better than
all other baselines in all cases. Using a fixed
retriever (RETRO) improves performance com-
pared to Transformer-XL; RPT-Lex leads to
gains in Books3 but to losses in PG19 com-
pared to RETRO, and RPT-Sem outperforms
Transformer-XL, RETRO, and RPT-Lex on
ArXiv, PG19, and Books3, and has performance
comparable to RETRO on CodeParrot. Even
in the parameters-tied and compute-tied setting,
Transformer-XL still performs substantially worse
than RPT. Compared to Block-Recurrent Trans-
former, Memorizing Transformers and Griffin,
which do not use CCA, performance is again sim-
ilar or better, with significant improvements on
ArXiv and Books3.

CCA enables to dynamically increase the num-
ber of neighbors at inference time. When using 3 or
4 neighbors (instead of 2), performance improves,
which allows compute-performance trade-offs.

Last, oracle models consistently achieve the
best perplexity across all datasets, improving from
2.74—2.69 on ArXiv, 2.15—2.10 on CodePar-
rot, 10.92—10.26 on PG19, and 13.87—12.74
for Books3. This shows that improving retriever
training can further improve performance.

Retrieval Metrics Table 3 presents the retrieval
metrics w.r.t oracle positive chunks. Again, re-
trieval with RPT-Sem outperforms both RPT-Lex
and BM25 in all cases. This shows the importance
of training a retriever, and moreover that us-
ing semantic supervision leads to better retrieval
compared to a lexical signal only.

5.3 Ablations

Table 4 shows the result of an ablation study over
all datasets.

1203

https://github.com/google-research/meliad
https://github.com/google-research/meliad

Model ArXiv Code PG19 Books3 Params Time/update
TRANSFORMER-XL (OUR IMPL.) 3.11 2.30 11.48 15.00 202M 1x

+2 LAYERS 3.07 2.26 11.2 14.52 228M 1.14x

1.5X ADDITIONAL STEPS 3.11 2.26 11.39 14.70 202M 1x
RETRO W. BM25 (OUR IMPL.) 2.94 2.17 11.44 14.60 236M 1.35x
RPT-LEx 2.92 2.23 11.59 14.32 242M 1.51x
RPT-Sem 2.77 2.17 10.96 13.91 242M 1.51x

W. 3 NEIGHBOURS 2.75 2.16 10.92 13.87

W. 4 NEIGHBOURS 2.74 2.15 10.93 13.91
MEMORIZING TRANSFORMER (32K) 2.92 2.18 10.97 14.40 212M 1.82x
MEMORIZING TRANSFORMER (65K) 2.93 2.15 10.99 14.3 212M 2.12x
BLock-RECURRENT TRANSFORMER 2.89 2.73 10.95 14.64 212M 1.56%
GRIFFIN 3.08 2.24 11.26 14.16 240M 1.15x%
RPT-LEX w. ORACLE 2.80 2.12 10.88 13.30 242M 1.51x
RPT-SEm w. ORACLE 2.69 2.10 10.26 12.74 242M 1.51x

Table 2: Test set perplexity for all datasets along with number of parameters and the relative increase in
time per update during training compared with Transformer-XL. Unless specified, models are trained
for 500k steps and use 2 neighbours during inference.

Dataset Precision@2 Recall@10 nDCG@20

BM25 RPT-L RPT-S | BM25 RPT-L RPT-S | BM25 RPT-L_ RPT-S

ArXiv 27% 26% 32% 55% 54% 58% 24% 24% 30%
Code 29% 26% 34% 53% 52% 56% 25% 23% 30%
PG19 22% 22% 28% 55% 55% 61% 18% 18% 23%
Books3 23% 19% 26% 55% 50% 58% 18% 16% 22%
Avg 252% 232% 30.0% | 54.5% 52.7% 58.2% |212% 20.2% 26.2%

Table 3: Test retrieval metrics across datasets.

Model ArXiv Code PG19 Books3
RETRO W. BM25 (OUR IMPL.) 294 217 1144 14.60
w. DPR-STYLE RETRIEVER 297 228 11.7 14.86
RPT-LEx 292 223 11.59 1432
Ww. DPR-STYLE RETRIEVER 284 226 11.11 14.17
RPT-SEm 277 217 1096 1391
W. DPR-STYLE RETRIEVER 298 233 11.62 14.66
RPT-SEM - ONLY TEACHER FORCING ~ 2.91 222 11.54 14.66
RPT-SEM - No TEACHER FORCING 295 226 13.10 14.40
RPT-SEMm - No NEIGHBOR GATING 292 220 11.50 18.68

Table 4: Results of our ablation study.

Only Teacher Forcing We force the model to
attend to gold neighbors according to the scoring
LM, without annealing pys during training. This
leads to a performance drop across all datasets,
and in particular for PG19 and Books3.

No Teacher Forcing Here, we do the opposite
and fix pss = 0 throughout training, i.e., we only
use the predicted neighbors and not gold ones.
This can lead to undertraining of the CCA layers
since they are exposed to low-quality neighbors
at the beginning of training and results drop even
further compared to Only Teacher Forcing.

No Neighbor Gating We disable neighbor gat-
ing which controls the flow of information from
neighbor chunks and analyze the effect on model
performance. We observe a performance reduc-
tion across all datasets, notably on Books3, where
perplexity increases by 4.5 points.

DPR-style Retriever To study the importance
of joint training, we test performance when us-
ing retrievers that are trained separately from the
LM, thereby inducing a train-test mismatch. We
train dense retrievers using the standard DPR
training procedure (Karpukhin et al., 2020) on
each dataset (see Appendix C for training de-
tails), and for each of our CCA models use this
retriever instead of the one it was trained with. In-
terestingly, we observe RPT-Lex can effectively
utilize the DPR-style neighbors giving it a slight
performance improvement on 3 of the 4 datasets.
As expected, the two models trained with
the stronger retrievers suffer from the train-test
mismatch, replacing the BM25 retriever and
RPT-Sem retriever with the DPR-style retriever
causes both models to suffer performance degra-
dation on all datasets, suggesting that the non-
ablated performance is the result of coordination
between the retriever and the language model.

5.4 Analysis

Token Overlap Figure 4 plots the average num-
ber of tokens that overlap between the query/target

1204

ArXiv Books3
22 °
a20
o
318
> ¢ °
o
§ 16
[)
© 14
x x
12
CodeParrot PG19
22
[)
a 20
o
5] 18 : °
g x
S 16
v ()
© 14 i x
12
® RPT-Sem RPT-Lex ®RETRO+BM25 e Query sTarget

Figure 4: We measure the number of unique token
overlap between query/target chunks and the best re-
trieved neighbor.

chunks in the best retrieved neighbor for RETRO,
RPT-Lex, and RPT-Sem. RPT-Sem retrieves para-
graphs with higher overlap with the farget chunk
compared to RPT-Lex. Naturally, BM25 retrieves
chunks with the highest overlap with the query
chunk. However, this does not translate to higher
lexical overlap for the farget chunk.

Supervision Quality We train RPT-Sem us-
ing information from the target scoring function
st(+), which we saw leads to model improve-
ments. However, the target scoring function only
provides a reranking of the top-20 candidates ac-
cording to BM25. Thus, a natural question is
how much does the supervision quality improve
through this reranking. Figure 5 shows for every
rank K the maximal target score among the top- K
chunks according to BM25, averaged over chunks
and across our 4 datasets. Clearly, reranking the
top-20 BM25 candidates has a lot of potential,
as the maximal target score is much higher for
the top-20 candidates compared to the top-2. This
hints that longer and better training of the retriever
can further improve the performance of RPT-Sem.

Interestingly, our analysis sheds light on why
RPT-Sem outperforms RETRO clearly on Books3
and PG19 but less so on CodeParrot. The maximal
target score for CodeParrot when k = 2 is already
quite high — around 0.1, which corresponds to
more than 10% improvement in the probability

0.20 4

0.154

0.10 1

0.05 4

Dataset

0.00 @® Books3
ArXiv

@® CodeParrot

® PG19

Average maximum target score across chunks

i é Z:S 4‘1 é é % é é lIO lll 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0
Top-K element according to BM25

Figure 5: The maximal target score sq(-) for the top-K
chunks retrieved by BM25 averaged across chunks and
for all datasets. Since the maximal target score for the
top-20 chunks is much higher than for the top-2, learn-
ing to rerank the top-20 BM25 candidates can lead to
substantial improvements in retrieval quality.

ArXiv Books3

€ x
()
€ 30
>
o ° x x
a 20 .
E 1 x
X 10 H

0

CodeParrot PG19
x x
o
C
[J]
€ 30
>
e]
a 20
E h
X 10 o °
[]
0 H

® RPT-Sem @ RPT-Lex ® RETRO+BM25 e Incorrect s Correct m All

Figure 6: Relative improvement with/without correct
retrieval.

of the target chunk compared to the local con-
text. Conversely, for PG19 and Books3, the target
score when k£ = 2 is closer to 0.

Subgroup Analysis Figure 6 shows the av-
erage relative improvement (across chunks) of
RETRO, RPT-Lex, and RPT-Sem compared to
Transformer-XL, when distinguishing between
cases where a ‘‘gold’’ oracle chunk was retrieved
and cases where no gold chunk was retrieved.

As expected, RPT-Sem leads to improvements
on all datasets, and outperforms other baselines

1205

@flax.struct.dataclass

class FlaxRPTRetrieverEncodedOutput (ModelOutput) :

original hidden_states:
encoded_hidden_states:
attention_mask:
key_chunks: jnp.ndarray = None
query_chunks: Jjnp.ndarray = None
chunk_mask: jnp.ndarray = None

jnp.ndarray =
jnp.ndarray = None

class FlaxRPTModule (nn.Module) :

def _ call_ (...

jnp.ndarray = None
None

hidden_states = self.ln_f (hidden_ states)

if not return_dict:

return (hidden_states,) + upcoder_outputs + lowcoder_outputs

return FlaxRPTModelOutput (

last_hidden_state=upcoder_ outputs.last_hidden_state,
upcoder_hidden_states=upcoder_outputs.hidden_states,
upcoder_attentions=upcoder_outputs.attentions,
lowcoder_last_hidden_state=lowcoder_outputs.last_hidden_state,

-)

def forward_loglikelihood(params, rng, batch, memory) :

outputs,
if ’cache’

lowcoder_state =
in lowcoder_ state:

params [’ cache’]
outputs = jax.tree_map(lambda x:
neighbor_hidden_states,

_forward_loglikelihood_lowcoder (params,

rng, batch)

= lowcoder_state[’cache’]
jax.device_get (x) .astype (np.float32),
neighbor_mask,

outputs)
*_ = memory.add (

input_tokens=batch["input_tokens"],

encoded_hidden_states=outputs.encoded hidden_states,

key chunks=outputs.key_chunks,

query_chunks=outputs.query_chunks,

)

Figure 7: An illustrative example showcasing the top-1 retrieved neighbors for both RPT-Sem and BM25 mod-
els applied to RPT’s code. The variable outputs in the query chunk is a member of the class F1axRPT—
RetrieverEncodedOutput. RPT-Sem successfully retrieves the object’s definition leading to a reduced

loss on the target chunk, in comparison to BM25.

except for RETRO on CodeParrot where per-
formance is similar. Second, cases where a gold
chunk was retrieved indeed typically lead to larger
improvements, but we witness improvements even
in cases where a gold chunk was not retrieved,
which shows that the model can still benefit from
such retrievals.

Qualitative Analysis Examining retrieved
chunks, we observe that the RPT retriever is
highly contextual. When applied on code, it re-
trieves function definitions, variable assignments,
etc., on ArXiv it retrieves definitions of lemmas,
theorems, etc. Figure 7 shows an example, where
we give the codebase used for this paper as input
to our model and present an example query chunk

where RPT produces better retrieval than BM25.
We observe that the preceding context allows
RPT to effectively retrieve a relevant object def-
inition, leading to lower loss.

6 Discussion and Related Work

Relation to Fusion-in-Decoder RPT shares sim-
ilarities with Fusion-in-Decoder (FiD) (Izacard
and Grave, 2021b; Ivgi et al., 2023). While both
RPT and FiD employ cross-attention mechanisms
to integrate the retrieved context within their
models, they differ in two ways: (a) In FiD, re-
trieval is performed only once based on the initial
prompt/query, while RPT continuously performs
retrieval at the chunk level throughout generation.

1206

(b) FiD encodes retrieved neighbors separately us-
ing a bi-directional encoder and only then applies
cross-attention in the decoder. In RPT, the de-
coder computes chunk embeddings and performs
native retrieval, and then chunked cross-attention
is applied to fuse the retrieved context with the
model’s predictions. We view RPT, which uses
lower-decoder encodings, as more natural in the
context of continuous generation (e.g., chatbots or
agents), since the model generates representations
and uses them later as keys, and thus generating
retrieval representations bears zero cost.

Long-range Language Modeling A primary
focus in long-range language modeling has been
addressing the quadratic complexity of attention
in order to develop more efficient mechanisms for
handling long texts. For instance, Transformer-XL
(Dai et al., 2019) processes the input using a
segment-level mechanism while retaining a cache
from previous segments. Longformer (Beltagy
et al., 2020) extends this idea to accommodate
even longer contexts. Several studies previously
viewed retrieval as a long-range problem. Mem-
orizing Transformers (Wu et al., 2022) employed
a single k-NN layer and retrieve cached keys and
values, but they do not back-propagate gradients
through the sparse retrieval operation. Similarly,
Bertsch et al. (2023) demonstrated that this ap-
proach can be used with any existing pre-trained
model and applied it at every attention layer
for long summarization tasks. From an analysis
perspective, past work (Press et al., 2021) demon-
strated that standard LM benchmarks are not ideal
for measuring the long-range capabilities of mod-
els. Sun et al. (2021) discuss various types of
sequences that benefit from having a long context,
and Rae and Razavi (2020) investigate long-range
architectural choices and recommend increasing
long-range capabilities in the upper layers.

Efficient Language Modeling Sparse strate-
gies, such as those proposed in Zaheer et al. (2020),
Roy et al. (2021), and Kitaev et al. (2020), simi-
larly to RPT, attend to only a subset of tokens
through clustering or hashing methods, which
are trained by propagating gradients through the
sparse operation. In RPT, sparsity is due to the
retriever top-K operation, which is trained using
high-quality supervision from a reference lan-
guage model. Another approach for efficiently
modeling long text involves compressing the in-

put and attending over the compressed sequence
(Martins et al., 2022; Rae et al., 2020), or learn-
ing to ignore irrelevant tokens (Sukhbaatar et al.,
2021). However, empirically most efficient trans-
former architectures trade off efficiency for qual-
ity. Recently, state-space models (Mehta et al.,
2023; Gu and Dao, 2023; Fu et al., 2023) models
emerged as an efficient alternative, which ap-
proaches Transformer quality. In this paper, we
explore models that are based on classic qua-
dratic Transformer. We argue that the underlying
model is orthogonal to our contribution and can be
replaced by other efficient alternatives and com-
bined with retrieval. We leave this exploration for
future work.

Retrieval-augmented LMs Retrieval-augmented
LMs have emerged as a prominent approach for
efficiently leveraging external knowledge while
generating text. These models can be broadly
divided into those operating at token-level gran-
ularity and those operating at sequence-level gran-
ularity. Token-level methods, such as kNN-LM
(Khandelwal et al., 2020), TRIME (Zhong et al.,
2022), and SPALM (Yogatama et al., 2021), re-
trieve information for individual tokens. Sequence-
level approaches like RAG (Lewis et al., 2020)
utilize pre-trained encoder-decoder models with
pre-trained retrievers for tasks like open-domain
question answering. Similarly, FiD (Izacard and
Grave, 2021b) employs generative encoder-
decoder models that fuse evidence from multiple
passages during the decoding process, closely
related to the CCA mechanism. Recently, Wang
et al. (2023) demonstrated the potential benefits of
conducting retrieval and chunked cross-attention
at each time step, compared with the original
RETRO (Borgeaud et al., 2022) paper, which re-
trieves every m = 64 steps.

Joint Retriever-reader Training Joint training
approaches typically concentrate on transferring
information between a pre-trained reader into a
pre-trained retriever. These methods commonly
involve updating the retriever index during the
training process in the context of knowledge-
intensive tasks, such as open-domain question an-
swering. For instance, REALM (Guu et al., 2020)
utilizes masked language modeling as a learning
signal to update the retriever. EMDR2 (Sachan
et al., 2021) extends FiD by using encoder-
decoder models to back-propagate errors from

1207

the predicted answer to the retriever. Similarly,
Izacard and Grave (2021a) and Jiang et al. (2022)
use attention scores from the reader to supervise
the retriever directly using the attention matrix
as a training signal to enable joint end-to-end
training with the supervision of the downstream
task. Notably, Izacard et al. (2022b) further scale
up these approaches and jointly train a retriever
with an encoder-decoder model, demonstrating
strong few-shot learning capabilities. They also
investigate various retriever updating techniques
to address train-test mismatches in the retrieval
process. We do not encounter the issue of index
update since we compute the entire index through
a forward pass.

Retriever Pre-training Early work on retriever
pre-training relied on the unsupervised Inverse
Cloze Task to pre-train the retriever (Lee et al.,
2019; Guu et al., 2020). It was later shown that
directly using BERT (Devlin et al., 2019) with
a supervised objective is sufficient to get good
performance on standard benchmarks (Karpukhin
etal., 2020). However, this paradigm showed lack-
luster performance on long-tail entities compared
to BM25 (Amouyal et al., 2023; Sciavolino et al.,
2021). Recently, unsupervised pre-training meth-
ods (Gao and Callan, 2022; Ram et al., 2022;
Izacard et al., 2022a) enabled improved perfor-
mance. However, these methods are initialized
from a pre-trained BERT (Devlin et al., 2019)
encoder model, while RPT is a retriever-reader
architecture trained from scratch that outperforms
BM25 without any additional pre-training.

Supervising Retrievers with LLMs EPR
(Rubin et al., 2022) demonstrated that LLMs
could be employed to train a retriever for prompt
retrieval by estimating the probability of an output
given the input and a candidate training example
as the prompt. Similar techniques were applied to
open-domain question answering via re-ranking
retrieval results (Sachan et al., 2022; Ram et al.,
2023) and to supervise retrievers through perplex-
ity distillation (Izacard et al., 2022b). Recently,
Shi et al. (2024) utilized this supervision method
to improve the performance of various LLMs in a
black-box fashion.

7 Conclusion

In this work, we present the Retrieval-Pretrained
Transformer (RPT), a retrieval-augmented LM

where the retriever is trained as a native compo-
nent of the LM to retrieve semantically relevant
chunks for future text prediction. We evaluate
RPT on four long-range language modeling tasks,
including books, code, and mathematical writing.
We demonstrate that by seamlessly integrating the
retriever into the architecture and training process,
RPT benefits from the fusion of retrieved context,
improving over strong retrieval-augmented base-
lines. While this work focuses on retrieval from
long texts, we argue our empirical findings show
that adapting our procedure for general web-based
corpora retrieval is an exciting future direction.
This will require overcoming technical difficul-
ties related to scaling and pretraining corpus con-
struction. We envision RPT will pave the way for
a new generation of pretrained language models
with retrieval deeply integrated throughout their
architecture and training process.

Acknowledgments

This research was supported with Cloud TPUs
from Google’s TPU Research Cloud (TRC) and
The European Research Council (ERC) under the
European Union Horizons 2020 research and inno-
vation programme (grant ERC DELPHI 802800).
Ohad Rubin would like to thank Iz Beltagy for
suggesting the TRC program, and the entire TAU
NLP lab—especially Guy Dar and Itay Itzhak.
This work was completed in partial fulfillment of
the Ph.D. degree of Ohad Rubin.

References

Samuel Amouyal, Tomer Wolfson, Ohad Rubin,
Ori Yoran, Jonathan Herzig, and Jonathan
Berant. 2023. QAMPARI: A benchmark for
open-domain questions with many answers. In
Proceedings of the Third Workshop on GEM.
ACL.

Zhangir Azerbayev, Edward Ayers, and Bartosz
Piotrowski. 2023. Proof-Pile: A pre-training
dataset of mathematical text.

Iz Beltagy, Matthew E. Peters, and Arman
Cohan. 2020. Longformer: The long-document
transformer.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly,
and Noam Shazeer. 2015. Scheduled sampling

1208

for sequence prediction with recurrent neural
networks. In Proceedings of NeurIPS.

Amanda Bertsch, Uri Alon, Graham Neubig, and

Matthew R. Gormley. 2023. Unlimiformer:
Long-range transformers with unlimited length
input. In Proceedings of NeurIPS.

Stella Biderman, Hailey Schoelkopf, Quentin

Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu
Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar
van der Wal. 2023. Pythia: A suite for analyz-
ing large language models across training and
scaling.

Sidney Black, Stella Biderman, Eric Hallahan,

Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell,
Jason Phang, Michael Pieler, Usvsn Sai
Prashanth, Shivanshu Purohit, Laria Reynolds,
Jonathan Tow, Ben Wang, and Samuel
Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In
Proceedings of the BigScience Workshop.
https://doi.org/10.18653/v1/2022
.bigscience-1.9

Sebastian Borgeaud, Arthur Mensch, Jordan

Hoffmann, Trevor Cai, Eliza Rutherford,
Katie Millican, George van den Driessche,
Jean-Baptiste Lespiau, Bogdan Damoc, Aidan
Clark, Diego de Las Casas, Aurelia Guy,
Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones,
Albin Cassirer, Andy Brock, Michela Paganini,
Geoffrey Irving, Oriol Vinyals, Simon
Osindero, Karen Simonyan, Jack W. Rae,
Erich Elsen, and Laurent Sifre. 2022. Improv-
ing language models by retrieving from trillions
of tokens. In Proceedings of ICML.

Tom B. Brown, Benjamin Mann, Nick Ryder,

Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and

1209

Dario Amodei. 2020. Language models are
few-shot learners. In Proceedings of NeurlIPS.

Christopher J. C. Burges, Robert Ragno, and

Quoc Viet Le. 2006. Learning to rank with
nonsmooth cost functions. In Proceedings of
NeurlPS.

Aakanksha Chowdhery, Sharan Narang, Jacob

Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury,
Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou,
Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan
Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wel,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. Palm:
Scaling language modeling with pathways.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime

Carbonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-XL: Attentive language
models beyond a fixed-length context. In Pro-
ceedings of ACL. https://doi.org/10
.18653/v1/P19-1285

Soham De, Samuel L. Smith, Anushan Fernando,

Aleksandar Botev, George Cristian-Muraru,
Albert Gu, Ruba Haroun, Leonard Berrada,
Yutian Chen, Srivatsan Srinivasan, Guillaume
Desjardins, Arnaud Doucet, David Budden, Yee
Whye Teh, Razvan Pascanu, Nando De Freitas,
and Caglar Gulcehre. 2024. Griffin: Mixing
gated linear recurrences with local attention for
efficient language models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285

understanding. In Proceedings of NAACL-HLT.
https://doi.org/10.18653/v1/N19
-1423

Ehsan Doostmohammadi, Tobias Norlund, Marco
Kuhlmann, and Richard Johansson. 2023.
Surface-based retrieval reduces perplexity of
retrieval-augmented language models. In Pro-
ceedings of ACL. https://doi.org/10
.18653/v1/2023.acl-short.45

Matthijs Douze, Alexandr Guzhva, Chengqi
Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas
Hosseini, and Hervé Jégou. 2024. The faiss
library.

William Fedus, Barret Zoph, and Noam Shazeer.
2022. Switch transformers: Scaling to trillion
parameter models with simple and efficient
sparsity. Journal of Machine Learning Re-
search, 23:1-39.

Daniel Y. Fu, Tri Dao, Khaled Kamal Saab,
Armin W. Thomas, Atri Rudra, and Christopher
Re. 2023. Hungry hungry hippos: Towards lan-
guage modeling with state space models. In
Proceedings of ICLR.

Leo Gao, Stella Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa
Nabeshima, Shawn Presser, and Connor Leahy.
2020. The pile: An 800gb dataset of diverse
text for language modeling.

Luyu Gao and Jamie Callan. 2022. Unsupervised
corpus aware language model pre-training for
dense passage retrieval. In Proceedings of ACL.
https://doi.org/10.18653/v1/2022
.acl-long.203

Albert Gu and Tri Dao. 2023. Mamba: Linear-
time sequence modeling with selective state
spaces.

Ankit Gupta, Harsh Mehta, and Jonathan
Berant. 2023. Simplifying and understanding
state space models with diagonal linear rnns.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong
Pasupat, and Ming-Wei Chang. 2020. Realm:
Retrieval-augmented language model pre-
training. In Proceedings of ICML.

Yangsibo Huang, Daogao Liu, Zexuan Zhong,
Weijia Shi, and Yin Tat Lee. 2023. knn-adapter:

Efficient domain adaptation for black-box
language models.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu,
Ethan Dyer, and Behnam Neyshabur. 2022.
Block-recurrent transformers. In Proceedings
of NeurIPS.

Maor Ivgi, Uri Shaham, and Jonathan Berant.
2023. Efficient Long-Text Understanding with
Short-Text Models. In Transactions of the
Association for Computational Linguistics,
volume 11, pages 284-299. https://doi
.org/10.1162/tacl_a_00547

Gautier Izacard, Mathilde Caron, Lucas Hosseini,
Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. 2022a. Unsu-
pervised dense information retrieval with
contrastive learning. Transactions on Machine
Learning Research.

Gautier Izacard and Edouard Grave. 2021a. Dis-
tilling knowledge from reader to retriever for
question answering. In Proceedings of ICLR.

Gautier Izacard and Edouard Grave. 2021b.
Leveraging passage retrieval with generative
models for open domain question answering. In
Proceedings of FACL. https://doi.org
/10.18653/v1/2021.eacl-main.74

Gautier Izacard, Patrick Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick,
Jane Dwivedi-Yu, Armand Joulin, Sebastian
Riedel, and Edouard Grave. 2022b. Atlas:
Few-shot learning with retrieval augmented lan-
guage models. Journal of Machine Learning
Research, 24:1-43.

Kalervo Jarvelin and Jaana Kekildinen. 2002.
Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Sys-
tems, 20:422-446. https://doi.org/10
.1145/582415.582418

Zhengbao Jiang, Luyu Gao, Zhiruo Wang, Jun
Araki, Haibo Ding, Jamie Callan, and Graham
Neubig. 2022. Retrieval as attention: End-to-
end learning of retrieval and reading within a
single transformer. In Proceedings of EMNLP.
https://doi.org/10.18653/v1/2022
.emnlp-main.149

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov,

1210

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.acl-short.45
https://doi.org/10.18653/v1/2023.acl-short.45
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.1162/tacl_a_00547
https://doi.org/10.1162/tacl_a_00547
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.18653/v1/2022.emnlp-main.149
https://doi.org/10.18653/v1/2022.emnlp-main.149

Dangi Chen, and Wen-tau Yih. 2020. Dense
passage retrieval for open-domain question an-
swering. In Proceedings of EMNLP. https://
doi.org/10.18653/v1/2020.emnlp-main
.550

Urvashi Khandelwal, Omer Levy, Dan Jurafsky,
Luke Zettlemoyer, and Mike Lewis. 2020.
Generalization through memorization: Nearest
neighbor language models. In Proceedings of
ICLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm
Levskaya. 2020. Reformer: The efficient trans-
former. In Proceedings of ICLR.

Kenton Lee, Ming-Wei Chang, and Kristina
Toutanova. 2019. Latent retrieval for weakly
supervised open domain question answering.
In Proceedings of ACL. https://doi.org
/10.18653/v1/P19-1612

Patrick S. H. Lewis, Ethan Perez, Aleksandra
Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis,
Wen-tau Yih, Tim Rocktischel, Sebastian
Riedel, and Douwe Kiela. 2020. Retrieval-
augmented generation for knowledge-intensive
NLP tasks. In Proceedings of NeurlPS.

Pedro Henrique Martins, Zita Marinho, and
Andre Martins. 2022. oo-former: Infinite
memory transformer. In Proceedings of ACL.
https://doi.org/10.18653/v1/2022
.acl-long.375

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and
Behnam Neyshabur. 2023. Long range lan-
guage modeling via gated state spaces. In Pro-
ceedings of ICLR.

Antonio Orvieto, Samuel L. Smith, Albert Gu,
Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. 2023. Resurrecting
recurrent neural networks for long sequences.
In Proceedings of ICML.

Ofir Press, Noah A. Smith, and Mike Lewis.
2021. Shortformer: Better language modeling
using shorter inputs. In Proceedings of ACL.
https://doi.org/10.18653/v1/2021
.acl-long.427

Ofir Press and Lior Wolf. 2017. Using the output
embedding to improve language models. In
Proceedings of EACL. https://doi.org
/10.18653/v1/E17-2025

Jack Rae and Ali Razavi. 2020. Do trans-
formers need deep long-range memory? In
Proceedings of ACL. https://doi.org
/10.18653/v1/2020.acl-main.672

Jack W. Rae, Anna Potapenko, Siddhant M.
Jayakumar, Chloe Hillier, and Timothy P.
Lillicrap. 2020. Compressive transformers for
long-range sequence modelling. In Proceed-
ings of ICLR.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor
Muhlgay, Amnon Shashua, Kevin Leyton-
Brown, and Yoav Shoham. 2023. In-context
retrieval-augmented language models. Trans-
actions of the Association for Computational
Linguistics, 11:1316-1331. https://doi.org
/10.1162/tacl a 00605

Ori Ram, Gal Shachaf, Omer Levy, Jonathan
Berant, and Amir Globerson. 2022. Learning
to retrieve passages without supervision. In
Proceedings of NAACL-HLT. https://doi
.org/10.18653/v1/2022.naacl-main.193

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends in Informa-
tion Retrieval, 3(4):333-389. https://doi

.org/10.1561/1500000019

Aurko Roy, Mohammad Saffar, Ashish Vaswani,
and David Grangier. 2021. Efficient content-
based sparse attention with routing trans-
formers. Transactions of the Association for
Computational Linguistics, 9:53-68. https://
doi.org/10.1162/tacl.a 00353

Ohad Rubin, Jonathan Herzig, and Jonathan
Berant. 2022. Learning to retrieve prompts for
in-context learning. In Proceedings of NAACL-
HLT. https://doi.org/10.18653/v1
/2022 .naacl-main.191

Devendra Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle
Pineau, and Luke Zettlemoyer. 2022. Improving
passage retrieval with zero-shot question gen-
eration. In Proceedings of EMNLP. https://
doi.org/10.18653/v1/2022.emnlp-main
.249

Devendra Singh Sachan, Siva Reddy, William
L. Hamilton, Chris Dyer, and Dani Yogatama.
2021. End-to-end training of multi-document

1211

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/2022.acl-long.375
https://doi.org/10.18653/v1/2022.acl-long.375
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/E17-2025
https://doi.org/10.18653/v1/E17-2025
https://doi.org/10.18653/v1/2020.acl-main.672
https://doi.org/10.18653/v1/2020.acl-main.672
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.1162/tacl_a_00605
https://doi.org/10.18653/v1/2022.naacl-main.193
https://doi.org/10.18653/v1/2022.naacl-main.193
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249

reader and retriever for open-domain question
answering. In Proceedings of NeurIPS.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk
Lee, and Dangi Chen. 2021. Simple entity-
centric questions challenge dense retrievers.
In Proceedings of EMNLP. https://doi.org
/10.18653/v1/2021.emnlp-main. 496

Weijia Shi, Sewon Min, Michihiro Yasunaga,
Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen tau Yih. 2024. Replug:
Retrieval-augmented black-box language mod-
els. In Proceedings of NAACL-HLT. https://
doi.org/10.18653/v1/2024.naacl-long
.463

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024.
Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568.
https://doi.org/10.1016/7j.neucom
.2023.127063

Sainbayar Sukhbaatar, Da Ju, Spencer Poff,
Stephen Roller, Arthur Szlam, Jason Weston,
and Angela Fan. 2021. Not all memories are
created equal: Learning to forget by expiring.
In Proceedings of ICML.

Simeng Sun, Kalpesh Krishna, Andrew
Mattarella-Micke, and Mohit Iyyer. 2021. Do
long-range language models actually use long-
range context? In Proceedings of EMNLP.
https://doi.org/10.18653/v1/2021
.emnlp-main.62

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziére, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Boxin Wang, Wei Ping, Peng Xu, Lawrence
McAfee, Zihan Liu, Mohammad Shoeybi, Yi
Dong, Oleksii Kuchaiev, Bo Li, Chaowei Xiao,
Anima Anandkumar, and Bryan Catanzaro.
2023. Shall we pretrain autoregressive language
models with retrieval? A comprehensive study.
In Proceedings of EMNLP. https://doi.org
/10.18653/v1/2023.emnlp-main. 482

Thomas Wolf, Loubna Ben Allal, Leandro von
Werra, Li Jia, and Armel Zebaze. 2023. A
dataset of Python files from Github.

Yuhuai Wu, Markus Norman Rabe, DeLesley
Hutchins, and Christian Szegedy. 2022. Mem-
orizing transformers. In Proceedings of ICLR.

Dani Yogatama, Cyprien de Masson d’Autume,
and Lingpeng Kong. 2021. Adaptive semi-
parametric language models. Transactions of
the Association for Computational Linguistics,
9:362-373. https://doi.org/10.1162
/tacl _a_ 00371

Manzil Zaheer, Guru Guruganesh, Kumar
Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontaién, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. 2020. Big bird: Transformers for lon-
ger sequences. In Proceedings of NeurlIPS.

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi
Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit
Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. 2022. Opt: Open pre-trained
transformer language models.

Zexuan Zhong, Tao Lei, and Danqi Chen.
2022. Training language models with mem-
ory augmentation. In Proceedings of EMNLP.
https://doi.org/10.18653/v1/2022
.emnlp-main.382

Juntang Zhuang, Tommy Tang, Yifan Ding,
Sekhar C. Tatikonda, Nicha C. Dvornek,
Xenophon Papademetris, and James S. Duncan.
2020. Adabelief optimizer: Adapting step-
sizes by the belief in observed gradients. In
Proceedings of NeurIPS.

A Additional Implementation Details

Models are implemented in JAX with a dropout
rate of 0.05, and the AdaBelief (Zhuang et al.,
2020) optimizer with a weight decay of le-8, co-
sine decay to 0.1 of max learning rate, global
gradient norm clipping of 1, and tied input em-
bedding (Press and Wolf, 2017). Grid search
determined 7 values: 128 for Books3, 4 for
PG19, 2 for CodeParrot, and 8 for ArXiv. We
set ager = le — 9 for all datasets and a base learn-
ing rate of 5e — 3, using the validation set for
hyperparameter selection.

1212

https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2024.naacl-long.463
https://doi.org/10.18653/v1/2024.naacl-long.463
https://doi.org/10.18653/v1/2024.naacl-long.463
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2023.emnlp-main.482
https://doi.org/10.18653/v1/2023.emnlp-main.482
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.18653/v1/2022.emnlp-main.382
https://doi.org/10.18653/v1/2022.emnlp-main.382

B Computational Complexity

The per token computational complexity of an
attention layer in a transformer model with
dimension d, |Q| queries and |K| keys is
2-d- (K| |Q| + |K|-d+|Q| - d) flops.” By
setting N = |Q| = |K| and adding the cost the
feed-forward layer, we get that the per token
cost for a transformer block when d > N is
2d(N + 2d) + 8d* ~ 12d? flops. For CCA, the
cost is dependent on the chunk size C, and num-
ber of neighbors k. Setting |K| = 2Ck and
|Q| = C, and assuming d > Ck, the cost per
token for a CCA layer is 2d(2Ck + 2dk + d) =
(4k + 2) - d? flops. Our per token overhead for
a € [0,1] of the blocks including CCA is

~ a(% + £). In our experiments, we use CCA
in 5 of the 12 layers so a = 1% and k = 2,

and get that CCA contributes an overhead of
approximately 1.29x. Using similar logic, the

"For a query matrix Q € RI®*? and a key/value matrix
K € RIEIX? it consists of the following operations: mul-
tiplication with Wg, Wx, and Wy, for the queries, keys,
and values, each costing |Q| - d?, |K| - d2, and | K| - d? flops
respectively. Computing the attention matrix and multiplying
it by the values each requires |Q| - |K| - d flops. Finally,
multiplying by the output matrix is an additional |Q)| - d?
flops.

constant cost for the retriever component is the
two linear projections, the two additional bidirec-
tional attention layers, and the query augmenta-
tion layer resulting in nlalycrs . (% + %), or a final
overhead of 1.49x which is in line with our ef-
fective measured runtime overhead of 1.51x (see

Table 2).

C DPR-style Retriever Training Details

We followed the training recipe of DPR
(Karpukhin et al., 2020) in training a BERT-base
retriever with contrastive loss. The DPR objective
requires positive and hard negatives to converge
successfully, and here we use the top-1 scoring
BM25 chunk as the positive example and the
chunk ranked 5th by BM25 as the hard negative
example. To ensure a fair comparison, we train
our contrastive retriever on 16x more examples
than the original DPR recipe describes.

1213

	Introduction
	Background
	Retrieval-Pretrained Transformer
	Model Architecture
	Supervision Signal
	Training
	Important Implementation Details

	Long-Range LM Datasets
	Experiments
	Experimental Setup
	Results
	Ablations
	Analysis

	Discussion and Related Work
	Conclusion
	Additional Implementation Details
	Computational Complexity
	DPR-style Retriever Training Details

