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Abstract
Despite the remarkable performance of gen-
erative large language models (LLMs) on
abstractive summarization, they face two sig-
nificant challenges: their considerable size
and tendency to hallucinate. Hallucinations
are concerning because they erode reliability
and raise safety issues. Pruning is a technique
that reduces model size by removing redun-
dant weights, enabling more efficient sparse
inference. Pruned models yield downstream
task performance comparable to the original,
making them ideal alternatives when operat-
ing on a limited budget. However, the effect
that pruning has upon hallucinations in ab-
stractive summarization with LLMs has yet
to be explored. In this paper, we provide an
extensive empirical study across five summa-
rization datasets, two state-of-the-art pruning
methods, and five instruction-tuned LLMs.
Surprisingly, we find that hallucinations are
less prevalent from pruned LLMs than the orig-
inal models. Our analysis suggests that pruned
models tend to depend more on the source
document for summary generation. This leads
to a higher lexical overlap between the gen-
erated summary and the source document,
which could be a reason for the reduction in
hallucination risk.1

1 Introduction

Abstractive summarization is the task of distill-
ing the key information from a document into a
summary that may contain novel text not present
in the original document (Cohn and Lapata, 2008;
Saggion and Poibeau, 2013; Lin and Ng, 2019).
Generative large language models (LLMs) have
demonstrated strong performance on abstractive
summarization (Ouyang et al., 2022; Touvron
etal., 2023; Almazrouei et al., 2023; OpenAI
et al., 2024; Zhang et al., 2024). However, they
face two significant challenges: Their substantial

∗ Equal contribution.
† Work done independently of AstraZeneca.
1https://github.com/casszhao/PruneHall.

size requires extensive computational resources
for training and inference; and they tend to hal-
lucinate, i.e., generate nonfactual contents not
supported by the source document (Zhao et al.,
2020; Xu et al., 2023). Figure 1 shows an il-
lustrative example of hallucinated content in a
generated summary.

On the one hand, hallucinations not only under-
mine the performance of models but also introduce
critical safety risks, ultimately eroding the trust of
end users (Milintsevich and Agarwal, 2023; Tang
et al., 2023a; Narayan et al., 2023; Zhao and Shan,
2024). For example, LLM-generated summaries
in the legal or health domain can contain inaccu-
rate information that poses real-life harms (Zhao
et al., 2022a; Weidinger et al., 2022).

On the other hand, LLMs such as GPT-3.5
(Ouyang et al., 2022), GPT-4 (OpenAI et al.,
2024), and Llama-2 (Touvron et al., 2023) demand
substantial hardware resources. As an indication,
GPT-3 (175B) requires at least five NVIDIA
A100 GPUs with 80GB of memory each for
half-precision inference (Frantar and Alistarh,
2023). This creates barriers for those without
access to costly computational resources, ulti-
mately hindering inclusivity in NLP (Schwartz
et al., 2020; Weidinger et al., 2022). To tackle
this issue, pruning techniques enable efficient
sparse inference by removing redundant weights,
while maintaining comparable performance (Sun
et al., 2024). Pruned models therefore appear as at-
tractive alternatives for abstractive summarization
when computational resources are constrained.

In abstractive summarization, model halluci-
nations are a thoroughly studied subject (Cao
et al., 2020; Durmus et al., 2020; Raunak et al.,
2021; Narayan et al., 2023; Laban et al., 2023).
Similarly, the effect of pruning on model
performance in abstractive summarization bench-
marks was also explored more recently (Dun
et al., 2023; Jaiswal et al., 2024). However, the
relationship between pruning and hallucination
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Figure 1: An example of a hallucination (highlighted
text) in abstractive summarization.

risk has yet to be explored. Given the appeal of
greater efficiency with comparable downstream
performance it is important to establish how trust-
worthy summaries generated from pruned models
are. Therefore, we seek to answer the follow-
ing question: Are hallucinations more or less
prevalent in LLMs after pruning?

To this end, we empirically investigate the risk
of generating hallucinated content in pruned mod-
els across five LLMs, two state-of-the-art pruning
methods, and five summarization datasets. Sur-
prisingly, our results show that pruned models are
less prevalent in hallucinations compared to the
original LLM. To understand this phenomenon,
we further investigate the impact of different spar-
sity levels on hallucination patterns. Our analysis
shows that hallucination risk decreases as spar-
sity increases, regardless of the pruning methods
tested. Furthermore, our results suggest that prun-
ing encourages the model to rely more on the
source document during generation, resulting in
summaries that are lexically more similar to the
source document.

2 Related Work

2.1 Hallucinations in Summarization

In abstractive summarization, a model is expected
to generate a concise summary of the source doc-
ument. However, prior work observed that models
tend to generate hallucinatory content that is not
based on or cannot be entailed from the source
document (Vinyals and Le, 2015; Rohrbach et al.,
2018; Cao et al., 2018; Maynez et al., 2020;
Raunak et al., 2021; Falke et al., 2019; Maynez
et al., 2020; Zhao et al., 2022b; Chen et al.,

2022). For example, Falke et al. (2019) found that
25% of the model generated summaries contain
hallucinated content. On the other hand, auto-
matic summary quality evaluation metrics such
as ROUGE (Lin, 2004) and BERTScore (Zhang
et al., 2020) do not correlate with the degree
of hallucinations appearing in summaries (Zhou
et al., 2021). For instance, Zhou et al. (2021) show
that even if a summary contains a large amount
of hallucinatory content, it can still achieve a high
ROUGE score. This has opened up new research
directions that develop approaches to detect and
evaluate hallucinations (Zhou et al., 2021; Durmus
et al., 2020; Guerreiro et al., 2023; Ji et al., 2023),
as well as mitigate them (Xiao and Wang, 2021;
Choubey et al., 2023; King et al., 2022).

2.2 Measuring Hallucination Risk
Evaluation metrics for measuring hallucina-
tion risk can be broadly categorized as: (a)
entailment-based, (b) question-answering (QA),
and (c) text-generation based. Entailment-based
methods (Kryscinski et al., 2020; Laban et al.,
2022) use pre-trained language models to com-
pute the entailment score between the source and
the generated summary. The higher the entail-
ment score, the more consistent a summary is
with respect to the source. QA methods decom-
pose the task to a question answering problem
(Wang et al., 2020; Deutsch et al., 2021; Durmus
et al., 2020). Finally, text-generation based meth-
ods use off-the-shelf models to quantify the risk
of hallucinations (Yuan et al., 2021; Son et al.,
2022). A representative approach is the Halluci-
nation Risk Measurement (HaRiM+), which uses
the log-likelihoods from a reference-free decoder
model to estimate hallucination risk in a summary
at the token level (Son et al., 2022). More recently,
Laban et al. (2023) examined instruction-tuned
LLMs as reasoners for factual assessments (i.e.,
assessors of hallucination prevalence) in abstrac-
tive text summarization. They demonstrated that
many of these LLMs struggle to compete with
previous entailment-based methods.

2.3 Pruning Large Language Models
Model compression is the task of reducing the
memory footprint of a model (Ganesh et al., 2021).
Pruning is a popular technique that removes re-
dundant weights from the model (LeCun et al.,
1989). Weights may be removed individually (un-
structured pruning), according to defined blocks
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(semi-structured pruning), or in relation to model
components (structured pruning) (Blalock et al.,
2020; Mishra et al., 2021; Ma et al., 2023).

As the size of LLMs surpasses billions of param-
eters, pruning techniques that require re-training
become impractical. Instead, post-training com-
pression aims to reduce model size using only
a small calibration dataset (Nagel et al., 2020;
Williams and Aletras, 2023). In this setting,
Frantar and Alistarh (2022) define the layer-wise
compression problem, with the aim of creat-
ing a compressed version of a given layer that
functions as closely as possible to the original.
State-of-the-art post-training pruning techniques,
such as SparseGPT (Frantar and Alistarh, 2023)
and Wanda (Sun et al., 2024), build upon this,
offering layer-wise solutions. SparseGPT in-
troduces an efficient approximation that relies
upon an iterative weight update process us-
ing Hessian inverses, inspired by Optimal Brain
Surgeon (Hassibi et al., 1993). Wanda further
improves upon efficiency by avoiding a weight
update procedure, enabling pruning in a single
forward pass.

In practice, the sparsity induced by pruning
enables substantial improvements in inference
performance across a variety of hardware. On
a CPU, Frantar and Alistarh (2023) demonstrate
a 1.82× speedup with 50% unstructured spar-
sity, using the DeepSparse engine (Neural Magic,
2021). Separately, they observe a 1.54-1.79×
speedup for feed-forward layers on an NVIDIA
Ampere GPU, using 2:4 semi-structured sparsity
(Mishra et al., 2021).

Recent pruning approaches (such as SparseGPT
and Wanda) can be applied to decoder-only
LLMs with minimal impact upon common-sense
reasoning (Sun et al., 2024) or summarization
performance (Jaiswal et al., 2024). Interestingly,
related studies suggest that pruning can reduce
social bias and toxicity (Xu and Hu, 2022) and im-
prove resilience to ‘jailbreaking’ attacks (Hasan
et al., 2024). However, it remains unclear how
pruning affects hallucination risk in LLMs.

3 Methodology

3.1 Models

We experiment with the following publicly avail-
able LLMs: (1) the Llama-2 (Touvron et al.,
2023) model family (7B, 13B, and 70B); (2) Mis-
tral 7B (v0.1) (Jiang et al., 2023); (3) Falcon 7B

(Almazrouei et al., 2023); and (4) the OPT-IML
(Iyer et al., 2023) model family (1.3B and 30B).

We opt for decoder-only instruction-tuned mod-
els due to their efficacy in zero-shot abstractive
summarization tasks (Tang et al., 2023b; Adams
et al., 2023; Laskar et al., 2023).

3.2 Pruning Methods
We consider three different pruning methods:
one standard baseline (layer-wise magnitude) and
two state-of-the-art techniques (SparseGPT and
Wanda). Formally, these pruning methods pro-
vide a saliency score Sij for each element of the
weight matrix Wij in a given layer. The elements
corresponding to the k smallest saliency scores
are the target weights to be pruned, where k is
determined by the sparsity ratio. The primary dis-
tinction between our selected pruning methods
lies in their saliency score calculation metrics. In
a post-training setting, pruning metrics can ad-
ditionally incorporate layer activations, X. The
activations for each layer of the model are com-
puted through performing a forward pass with the
calibration data. We follow Sun et al. (2024) in
using the same calibration data for each model,
specifically 128 examples randomly sampled
from C4 (Raffel et al., 2020).

Magnitude (Hagiwara, 1994; Han et al., 2015)
To offer a lower bound for the performance of
pruned models, we employ layer-wise weight
magnitude pruning. Here, the saliency score is
simply the magnitude of each weight:

Sij = |Wij |
SparseGPT (Frantar and Alistarh, 2023) The
SparseGPT algorithm is an iterative procedure that
offers an efficient approximation to the exact layer
reconstruction. The effective saliency criterion is

Sij =
[
|W|2/diag

(
(XXT + λI)−1

)]
ij

where λ is a dampening parameter to enable
inversion of the Hessian, XXT + λI.2

Wanda (Sun et al., 2024) In contrast, Wanda
avoids a computationally expensive weight update
procedure, instead relying upon only the weight
magnitudes and norm of the input activations:

Sij = |Wij | · ||X||2
This approximates SparseGPT when considering
only diagonal elements of the Hessian for λ = 0.

2We follow Frantar and Alistarh (2023) in usingλ = 0.01.
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# Prompt Template

A Summarize in a single short paragraph the context below:
[document]
The summary is: [summary]

B Summarize in a couple of sentences the document below:
[document]
The summary is: [summary]

C Give me a short summary of the below:
[document]
The summary is: [summary]

Table 1: Each prompt template consists of the task
instructions (italic) and the source [document].
The LLM then generates the [summary].

Sparsity Level Following previous work (Fantar
and Alistarh 2023; Sun et al., 2024), we evaluate
our pruning methods across both semi-structured
and unstructured settings:

• 2:4 semi-structured sparsity: Two weights
in every contiguous block of four must be
zero, providing a total of 50% sparsity. This
sparsity pattern is required to enable hard-
ware acceleration on GPUs (Mishra et al.,
2021).

• 50% unstructured sparsity: To enable com-
parison, we use a sparsity level of 50%
for unstructured pruning, unless otherwise
stated.

We do not explore pruning above 50% sparsity as
language modeling performance collapses shortly
beyond this threshold (Frantar and Alistarh, 2023;
Sun et al., 2024). Maintaining language model-
ing performance is essential for the generation
of high-quality summaries, enabling comparison
between the models and their pruned counterparts.

3.3 Prompting

LLMs are known to be sensitive to prompt design
(Petroni et al., 2019; Elazar et al., 2021; Fierro
and Søgaard, 2022). To mitigate the effect of
prompt variability, we summarize each document
using three distinct prompt templates (Table 1).
Each template instructs the model to summarize
a given document in a slightly different manner,
offering three summaries for each document. We
then evaluate all three summaries by averaging
the scores.

For each model family, we follow the prompt
formatting used in the original work. In the case
of Llama-2 and Mistral, this includes the use of

Source Reference

Dataset # Mean Max Mean Max

FactCC 311 634.2 1838 17.4 63
Polytope 634 575.1 1781 64.6 128
SummEval 100 407.8 589 65.1 101
Legal Contracts 85 237.8 1106 21.6 61
RCT 53 307.5 447 68.7 174

Table 2: The number of source documents in
each dataset (#), and the mean and maximum
length (in words) for the documents and reference
summaries.

[INST] and [/INST] tokens to delimit user
instructions. For the Falcon and OPT-IML model
families, which were not trained with a specific
prompt format, we use the prompts as is (Table 1).

3.4 Summarization Datasets
We include the following summarization datasets:
(1) FactCC (Kryscinski et al., 2020); (2) Poly-
tope (Huang et al., 2020); (3) SummEval (Fabbri
et al., 2021); (4) Legal Contracts (Manor and Li,
2019); and (5) RCT summaries (Wallace et al.,
2021). FactCC, Polytope, and SummEval are all
different subsets of the CNN/DailyMail news ar-
ticle dataset (Nallapati et al., 2016), covering a
variety of topics. Legal Contracts consists of legal
text snippets from the terms of service for various
products and services. Finally, RCT combines the
abstracts from randomized control trials with their
corresponding human-written conclusions from
systematic reviews, i.e., the conclusions are used
as the target summary. For simplicity, we select
instances in RCT where there is a one-to-one
mapping between abstract and target summary.

We use the test set from each dataset and re-
move any duplicates if any exist. Table 2 provides
detailed dataset statistics.

3.5 Evaluation of Summarization Quality
We evaluate the quality of generated summaries
against the corresponding reference summary, us-
ing a subset of the ROUGE family of metrics
(Lin, 2004) and BERTScore (Zhang et al., 2020).3

From ROUGE, we use two n-gram overlap met-
rics (ROUGE-1 and ROUGE-2) and the longest
sequence overlap metric (ROUGE-L).

3.6 Hallucination Risk Metrics
To automatically evaluate the hallucination risk
in the generated summaries, we use standard

3For FactCC, we use the extracted claim as the reference.
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automatic metrics that compare directly the
source document and the corresponding generated
summary.

HaRiM+ (Son et al., 2022) HaRiM is based on
the idea that over-reliance on decoder context dur-
ing generation leads to hallucinations. Given a
summary and a reference document, HaRiM+ first
uses a pre-trained sequence-to-sequence model
(S2S, an encoder-decoder model) to calculate
the token probabilities in the summary given
the reference document as input. A pre-trained
decoder-only model is used as a secondary model
(Aux) to compute summary token probabilities,
i.e., no input document is provided to summarize.
HaRiM+ therefore uses Aux token probabilities
to regularize S2S token probabilities and detect
hallucinations by:

HaRiM =
1

L

L∑

i=0

(1− pS2S)(1− (pS2S − pAux))

where L is the sequence length, pS2S the pre-
dicted probability of a token generated by the
model given the source document, and pAux the
probability of the same generated token from
the auxiliary model.

HaRiM+ extends HaRiM through adding the
S2S log-likelihood of tokens, and applying a
scaling hyperparameter λH :4

HaRiM+ =
1

L

L∑

i

log(p(yi | y<i;X))−λHHaRiM

Intuitively, a higher HaRiM+ score indicates that
the summary is more likely to be faithful to the
source document, i.e., less likely to contain hallu-
cinations. Son et al. (2022) also showed that the
first sequence-to-sequence model can also act as
a secondary model, with equivalent performance.

SummaC (Laban et al., 2022) This metric uses
an off-the-shelf entailment model to assess the
consistency between a source document and a
generated summary. First, the document and sum-
mary are split into sentences, with the document
sentences (N ) being the hypothesis and the gen-
erated summary sentences (K) being the premise.
The second step is to create an K ×N matrix of
entailment scores from the pre-trained model. A
generated sentence with a low entailment score

4We follow Son et al. (2022) in using λH = 7.

to any of the document sentences is a potential
hallucination.
SummaCZS obtains the row-wise maximum en-
tailment score, which leads to a vector E of size
K. SummaCConv obtains vector E by using a
convolutional model over each row K, to obtain
a single score. In both metrics, each element in
E can be interpreted as the consistency score for
each sentence in the summary. E is averaged to
obtain a single summary consistency score.

Hallucination Risk Ratio (HRR) To compare
the hallucination risk of pruned models relative
to the original, we compute a ratio using any one
of the hallucination risk metrics:

HRR =
Hallucination RiskOriginal

Hallucination RiskPruned

A lower HRR indicates that the pruned model
has a lower hallucination risk than the origi-
nal. This contrasts the hallucination risk metrics,
where a higher score indicates a lower risk for a
given model.

3.7 Human Evaluation
We also conduct a human evaluation task to com-
pare the hallucination prevalence between the
original and pruned models. For this purpose,
we randomly sample 100 distinct source docu-
ments from FactCC, Polytope, and SummEval.
We selected these datasets because they consist
of news articles, making them suitable for human
evaluation without requiring extensive domain ex-
pertise. We recruited three participants who are
native speakers or proficiently fluent in English.
Following Lango and Dusek (2023), we ask them
to answer the following questions for compar-
ing the summaries generated by the original and
pruned models:

Q1. Hallucinations: Which summary contains
more hallucinations (i.e., content that is not
supported by the source document)?

Q2. Omission: Which summary is missing more
crucial information from the document?

Q3. Repetition: Which summary contains more
repetitive information?

Q4. Alignment: Which summary is more seman-
tically aligned with the source document?

Identifying hallucinations in text is challenging
and requires careful reading and attention to nu-
anced facts (Laban et al., 2023). Therefore, we
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Magnitude SparseGPT Wanda

Model – 2:4 50% 2:4 50% 2:4 50%

Falcon 7B 19.93 303.22 482.11 52.11 37.10 85.68 38.93
Llama-2 7B 6.49 78.29 19.07 10.79 7.94 12.46 7.93
Llama-2 13B 5.71 10.73 7.98 8.68 6.80 9.58 6.94
Llama-2 70B 4.30 6.89 5.61 6.51 5.18 6.45 5.23
Mistral 7B 6.32 9.55 7.96 9.21 7.18 9.85 7.26
OPT-IML 1.3B 14.68 166.09 1391.46 24.92 18.03 25.11 17.94
OPT-IML 30B 10.56 246.42 57.88 11.61 10.74 12.44 10.74

Table 3: Perplexity (↓) of original and pruned
models on the held-out set of WikiText.

first perform a calibration run on a held-out set
of ten documents and their generated summaries.
Two of the participants are then presented with
the set of 100 original documents, alongside two
generated summaries: one from a pruned model
and the other from the original model. The or-
der of the documents is shuffled and information
about which model generated the summary is not
disclosed to the participants. Similar to Xu et al.
(2023), we use the third participant as an ad-
judicator for disagreements. The inter-annotator
agreement is computed using Cohen’s kappa IAA
(κ), as the average between the two participants
and the adjudicator.

3.8 Implementation Details
We use the model implementation and weights
available from Hugging Face (Wolf et al., 2020).
We perform experiments using either one or two
NVIDIA A100 (SXM 80GB) GPUs. For the prun-
ing methods, we use the hyperparameters from
Frantar and Alistarh (2023) and Sun et al. (2024).

For summary generation we use greedy de-
coding (i.e., sampling the token with the highest
probability) for better reproducibility. We con-
tinue to sample tokens until we reach either (a)
the end of sequence token, or (b) the maximum
sequence length of the model.

4 Results

4.1 Language Modeling
We first compare language modeling performance
between the original and pruned models. Follow-
ing Frantar and Alistarh (2023) and Sun et al.
(2024), we compute perplexity on the WikiText
test set (Merity et al., 2017), shown in Table 3.

Overall, pruned models consistently generate
text with higher perplexity than their original
counterparts. Unsurprisingly, magnitude pruning
routinely produces the highest perplexity. In many

cases, the increase over the original model (de-
noted by ‘-’) is substantial. For example, we
observe more than a twentyfold increase for
OPT-IML 30B, from 10.56 to 246.42. In con-
trast, SparseGPT and Wanda achieve perplexity
close to the original for the majority of the models.
Surprisingly, Falcon 7B records higher perplex-
ity across all pruning methods, e.g., 85.68 when
applying Wanda from 19.93 without pruning.

Due to the substantial degradation in language
modeling performance, we omit magnitude prun-
ing from further analysis. For the same reason, we
also exclude the Falcon 7B and OPT-IML 1.3B
models.

4.2 Summarization

Table 4 shows summarization performance
(ROUGE-1/2/L & BERTScore) across all
datasets.5 We first observe that the original mod-
els perform comparably for BERTScore across
most datasets. For example, in Legal Contracts,
Llama-2 13B records a BERTScore of 84.75
compared to 84.90 from OPT-IML 30B. We only
observe larger performance deviations in the case
of RCT, with the original Mistral 7B obtaining the
highest BERTScore (88.46) and OPT-IML 30B
the lowest (83.12). This suggests that all LLMs
generate summaries that are equally semantically
similar to the reference summary. Compared to
BERTScore, the scores of the original models
in lexical overlap metrics (ROUGE-1/2/L) differ
largely not only across models, but also across
datasets. For example, Llama-2 7B achieves
the second highest ROUGE-L score in RCT
(33.50) and the lowest score in FactCC (11.51).
Similarly, in RCT, Mistral 7B records an increase
of 34.65 (46.16) for ROUGE-L, making it the
best performing original model for this metric.

Comparing the performance between original
and pruned models, we find that they perform com-
parably in the majority of cases. For SparseGPT,
the summaries score significantly higher (across
all metrics) than those from the original model
in 19 out of 100 comparisons, while they score
significantly lower in 11 out of 100 (bold scores;
paired t-test; p < 0.05). The results are similar
for Wanda, where pruned models perform sig-
nificantly higher in 20 out of 100 comparisons
and significantly lower (underlined scores) in 26

5We obtain comparable results using 50% unstructured
sparsity, which are omitted for brevity.
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Llama-2 7B Llama-2 13B Llama-2 70B Mistral 7B OPT-IML 30B
Dataset Method ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS

FactCC
– 13.99 / 6.41 / 11.51 84.60 15.14 / 6.39 / 12.30 84.39 15.04 / 6.29 / 12.11 84.75 14.83 / 8.21 / 12.70 84.78 23.51 / 12.68 / 20.48 85.71

SpGPT 12.46 / 6.07 / 10.55 84.15 15.34 / 6.62 / 12.75 84.76 14.78 / 6.80 / 12.29 84.68 14.43 / 8.52 / 12.62 84.45 18.52 / 12.05 / 16.89 85.04
Wanda 11.04 / 5.94 / 9.53 80.57 15.64 / 7.32 / 13.09 84.78 15.09 / 6.88 / 12.47 84.72 13.67 / 8.30 / 12.02 84.34 17.91 / 11.68 / 16.38 83.94

Polytope
– 38.92 / 18.19 / 25.86 85.41 38.63 / 17.51 / 25.34 84.91 39.28 / 17.48 / 25.78 85.48 40.27 / 22.69 / 28.65 85.63 33.06 / 22.81 / 27.74 86.54

SpGPT 33.98 / 18.14 / 24.45 84.88 35.99 / 16.74 / 25.01 85.01 38.16 / 18.51 / 25.89 85.31 39.07 / 24.21 / 29.54 85.58 33.39 / 26.32 / 29.02 87.01
Wanda 30.88 / 15.39 / 21.77 83.09 37.33 / 19.29 / 26.68 85.23 38.74 / 18.80 / 26.58 85.42 37.08 / 23.78 / 28.76 85.34 30.14 / 22.72 / 25.85 86.03

SummEval
– 40.39 / 18.73 / 26.61 85.42 40.36 / 18.00 / 25.88 84.78 41.52 / 18.78 / 26.82 85.58 43.94 / 26.34 / 32.04 86.05 51.93 / 36.55 / 41.38 86.94

SpGPT 38.77 / 23.04 / 27.81 85.36 40.55 / 18.42 / 27.15 85.33 41.58 / 19.69 / 27.65 85.61 43.77 / 28.00 / 33.33 86.03 50.00 / 37.16 / 41.64 86.73
Wanda 37.78 / 23.95 / 28.82 85.12 44.31 / 23.51 / 31.58 86.03 41.57 / 19.44 / 27.67 85.57 45.11 / 29.95 / 34.84 86.22 44.48 / 33.57 / 36.90 86.12

Legal
Contracts

– 18.75 / 6.20 / 13.93 84.73 21.12 / 6.90 / 15.41 84.75 21.66 / 7.07 / 16.19 85.60 17.52 / 6.21 / 13.70 84.78 22.96 / 7.45 / 18.30 84.90
SpGPT 16.84 / 5.98 / 12.80 84.17 18.99 / 6.11 / 14.41 84.90 21.74 / 7.42 / 16.73 85.33 18.56 / 6.90 / 14.51 84.76 21.18 / 7.22 / 17.15 84.49
Wanda 14.22 / 4.94 / 11.14 81.52 18.80 / 6.37 / 14.53 84.41 22.13 / 7.51 / 16.72 85.55 18.14 / 6.37 / 13.83 84.79 19.10 / 6.79 / 15.36 81.86

RCT
– 45.29 / 26.89 / 33.50 86.97 39.87 / 22.01 / 28.56 86.43 37.79 / 20.98 / 28.05 86.25 53.66 / 40.66 / 46.16 88.46 24.62 / 18.20 / 21.33 83.12

SpGPT 50.57 / 37.40 / 43.12 87.89 37.81 / 22.40 / 29.37 86.26 40.19 / 25.35 / 31.97 86.57 56.93 / 47.79 / 52.45 89.17 25.22 / 21.50 / 23.61 77.39
Wanda 38.79 / 28.59 / 33.12 86.06 36.90 / 23.07 / 28.82 86.11 39.61 / 24.79 / 31.60 86.49 59.29 / 50.02 / 54.83 89.40 31.59 / 28.84 / 30.49 70.64

Table 4: ROUGE-1/2/L (↑) and BERTScore (BS; ↑) for the original models (–) and their pruned
counterparts (SparseGPT and Wanda). Values in bold indicate that the pruned model scores significantly
higher than the original while underlined values denote a significantly lower score (paired t-test;
p < 0.05).

Llama-2 7B Llama-2 13B Llama-2 70B Mistral 7B OPT-IML 30B
SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda

Dataset Metric 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50%

FactCC
HaRiM+ 0.98 0.95 0.94 0.95 0.77 0.95 0.69 0.91 0.93 0.96 0.93 0.96 0.93 0.94 0.91 0.94 0.83 0.87 0.87 0.85
SummaCconv 0.64 0.82 0.56 0.81 0.76 0.83 0.64 0.84 0.76 0.92 0.77 0.90 0.79 0.88 0.74 0.86 0.80 0.86 0.84 0.83
SummaCzs 0.47 0.65 0.39 0.65 0.50 0.61 0.41 0.61 0.63 0.86 0.63 0.83 0.76 0.85 0.68 0.82 0.80 0.87 0.85 0.83

Polytope
HaRiM+ 0.97 0.97 0.97 0.97 0.78 0.93 0.71 0.85 0.94 0.96 0.95 1.00 0.95 0.95 0.94 0.96 0.87 0.93 0.92 0.88
SummaCconv 0.67 0.83 0.69 0.83 0.70 0.78 0.65 0.79 0.77 0.93 0.78 0.92 0.78 0.82 0.76 0.84 0.86 0.95 0.91 0.92
SummaCzs 0.64 0.85 0.64 0.75 0.58 0.69 0.56 0.69 0.75 0.88 0.74 0.83 0.76 0.81 0.75 0.84 0.88 0.95 0.92 0.93

SummEval
HaRiM+ 0.88 0.93 0.81 0.93 0.80 0.97 0.69 0.96 0.95 0.98 0.95 0.98 0.93 0.94 0.92 0.95 0.91 0.92 0.90 0.89
SummaCconv 0.55 0.81 0.46 0.76 0.67 0.81 0.59 0.81 0.78 0.96 0.79 0.93 0.79 0.85 0.77 0.87 0.86 0.88 0.83 0.85
SummaCzs 0.49 0.75 0.4 0.68 0.56 0.71 0.49 0.66 0.70 0.92 0.70 0.88 0.79 0.84 0.76 0.88 0.86 0.89 0.85 0.86

Legal
Contracts

HaRiM+ 0.99 0.85 0.90 0.85 0.83 0.88 0.76 0.88 0.87 0.92 0.89 0.95 0.85 0.94 0.89 0.93 0.85 0.89 0.81 0.83
SummaCconv 0.98 0.85 0.93 0.94 0.82 0.81 0.76 0.81 0.79 0.88 0.83 0.91 0.83 0.92 0.92 0.89 0.85 0.88 0.81 0.86
SummaCzs 1.01 0.86 0.96 0.90 0.93 0.86 0.88 0.88 0.85 0.93 0.88 0.95 0.88 0.92 0.93 0.92 0.93 0.96 0.94 1.00

RCT
HaRiM+ 0.92 0.96 0.87 0.92 0.86 0.99 0.80 0.97 0.93 0.96 0.93 0.97 0.93 0.96 0.93 0.95 0.85 0.88 0.83 0.87
SummaCconv 0.69 0.86 0.70 0.88 0.78 0.89 0.79 0.88 0.82 0.92 0.82 0.93 0.82 0.88 0.81 0.87 0.83 0.88 0.79 0.88
SummaCzs 0.71 0.83 0.71 0.82 0.69 0.81 0.70 0.82 0.79 0.90 0.79 0.90 0.84 0.89 0.82 0.89 0.77 0.80 0.77 0.83

Average
HaRiM+ 0.95 0.93 0.90 0.92 0.81 0.95 0.73 0.91 0.92 0.96 0.93 0.97 0.92 0.95 0.92 0.95 0.87 0.90 0.87 0.87
SummaCconv 0.70 0.83 0.67 0.85 0.74 0.82 0.68 0.83 0.78 0.92 0.80 0.92 0.80 0.87 0.80 0.87 0.84 0.89 0.84 0.87
SummaCzs 0.67 0.79 0.62 0.76 0.65 0.74 0.61 0.73 0.74 0.90 0.75 0.88 0.81 0.86 0.79 0.87 0.85 0.90 0.86 0.89

Table 5: Hallucination risk ratio (HRR) between the original and the pruned model (values less than one
are highlighted, indicating that the pruned model has a lower hallucination risk than the original model),
averaged across all data points over the three prompts for each dataset. Bold values denote significant
differences between the pruned and the original model (paired t-test; p < 0.05).

out of 100. We also find that models pruned
with SparseGPT perform more consistently com-
pared to those pruned using Wanda. For example,
Llama-2 7B pruned with SparseGPT records a
BERTScore of 84.17 for Legal Contracts, com-
pared to 81.52 with Wanda, and 84.73 from
the original.

Comparing across model sizes for Llama-2,
pruning seems to be less impactful as model size
increases. For SparseGPT, we find that the pruned
model is comparable (by any metric) in 15 out of
20 comparisons for Llama-2 7B, 18 out of 20 for
Llama-2 13B, and in all 20 for Llama-2 70B.

These findings suggest that the summarization
performance between pruned and original models
is at least comparable.

4.3 Hallucination Risk

Table 5 shows the HRR (Section 3.6) for all
models and datasets, using each hallucination risk
metric.6

Pruning Reduces Hallucination Risk. In al-
most all cases, irrespective of the pruning method
or sparsity pattern (i.e., 2:4 or 50%), the results
show that pruned models have a lower hallu-
cination risk (i.e., values lower than 1.0). We
find only a single exception, Llama-2 7B pruned
with SparseGPT (2:4) for Legal Contracts, with
a SummaCZS ratio of 1.01. More importantly,

6For reproducibility and transparency, we include the
full results (i.e., absolute hallucination risk scores) in this
link due to space constraints.

1169

https://docs.google.com/spreadsheets/d/e/2PACX-1vRsxweIz9RfIce2k1Kf9geF1RVyKhBucZZkvp0L0B_-S1QIEQA-mc1zJErHLhf4JWfgyNybv-Ea47f-/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRsxweIz9RfIce2k1Kf9geF1RVyKhBucZZkvp0L0B_-S1QIEQA-mc1zJErHLhf4JWfgyNybv-Ea47f-/pubhtml


pruned models record significantly lower HRRs
(paired t-test; p < 0.05). This applies to 284 out
of 300 total comparisons across datasets, models,
pruning methods, and sparsity patterns. For exam-
ple, we observe significantly lower scores across
all metrics for Llama-2 7B with SummEval. In
particular, SummaCZS scores more than halve for
2:4 semi-structured SparseGPT (0.55) and 2:4
semi-structured Wanda (0.49).

These findings seem counter intuitive, con-
sidering that pruned models typically perform
comparably to original models in summarization
(Table 4). As both language modeling and sum-
marization performance remains comparable, we
hypothesize that the parametric knowledge re-
moved by pruning (Namburi et al., 2023) ‘‘forces’’
the model to rely more on the source docu-
ment during generation and in turn reducing
hallucination risk. We examine this further in
Section 5.

Semi-structured Pruning Mitigates Hallucina-
tion Risk. We observe consistently lower HRRs
when pruning with semi-structured sparsity (2:4
pattern), versus unstructured pruning at the same
sparsity level (50%). Semi-structured pruning
records a lower HRR across all three metrics in 59
out of 65 cases with SparseGPT, and in 55 out of 65
cases with Wanda. We note that semi-structured
pruning sometimes produces a substantially lower
HRR than unstructured pruning. For example,
semi-structured pruning for Llama-2 13B with
Wanda records an average SummaCZS HRR of
0.61 versus 0.73 with unstructured pruning.

Unstructured pruning allows weights to be re-
moved in any pattern, enabling pruning according
to the optimal layer-wise solution. In contrast,
semi-structured pruning constrains the solution
space to only the subset that satisfies the de-
sired sparsity pattern (e.g., 2:4, removing two
weights in every contiguous block of four). In-
evitably, even influential weights with relatively
high layer-wise saliency scores may be removed.
As semi-structured pruning deviates from the op-
timal layer-wise solution, a higher proportion of
important weights are therefore removed. This
likely includes relevant parametric knowledge
(Namburi et al., 2023), potentially requiring such
models to rely more on the source document for
generation.

To investigate this, we compute lexical overlap
(using ROUGE-1/2/L) between summaries and

their source documents across all models, datasets
and pruning methods. We find that summaries
from models pruned with 2:4 sparsity result in
higher lexical overlaps in 114 out of 150 compar-
isons (three ROUGE metrics, five datasets, five
models, two pruning methods) compared to mod-
els with 50% unstructured pruning, supporting
our hypothesis.

SummaC and HaRiM+ Moderately Agree.
Considering the average results across datasets,
we observe mixed signals from SummaC-based
HRRs versus HaRiM+ HRRs. For example,
SummaCConv with SparseGPT (2:4) shows that on
average, Llama-2 7B benefits most over the origi-
nal (0.70), followed by Llama-2 13B (0.74). On the
contrary, for HaRiM+with 2:4 sparsity, summaries
from Llama-2 13B appear to yield the largest re-
ductions in hallucination risk on average (0.81
with SparseGPT and 0.73 with Wanda), followed
by OPT-IML 30B (0.86 with both SparseGPT
and Wanda). As the results between hallucina-
tion risk metrics differ, we want to shed light
on how well they agree with each other. There-
fore, we compute Pearson’s correlation coefficient
between all HRR metrics, across all datasets, mod-
els and pruning methods. Unsurprisingly, both
SummaC-based metrics show a strong correlation
between them (0.82 averaged across all datasets,
models and pruning methods). We also find mod-
erate correlations between HaRiM+ and SummaC
metrics (0.45 between HaRiM+ and SummaCZS;
0.53 between HaRiM+and SummaCConv).

This is expected, as each metric group com-
putes hallucination risk with different motivations
(SummaC-based metrics use entailment methods
over the summary and document, while HaRiM+

uses token-level predictive likelihood). This ex-
plains partly the moderate correlation between
them, also highlighting that it can be beneficial to
use HaRiM+ and SummaC in conjunction.

4.4 Human Evaluation

Table 6 shows human evaluation results for
the questions presented in Section 3. To offer
a fair selection of models, we use summaries
generated by the pair that benefited the most
(Llama-2 7B) and the least (Mistral 7B) in
terms of hallucination risk (i.e., the largest and
smallest improvements in Table 5). We then
select the corresponding summaries from the
pruned counterpart, specifically SparseGPT (2:4)
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Halluc. Omiss. Repet. Align.
Model Q1 (↓) Q2 (↓) Q3 (↓) Q4 (↑)

Llama-2 7B 31 5 0 28
w/ SparseGPT 14 18 9 21

IAA (κ) 0.82 0.63 0.62 0.53

Mistral 7B 12 9 0 31
w/ SparseGPT 10 13 5 23

IAA (κ) 0.87 0.61 0.67 0.59

Table 6: Human evaluation results. Values denote
the number (out of 100) of summary preferences
by participants for the corresponding category.
Bold denotes the best performing model per
question.

which obtained the most consistent summarization
performance (Section 4.2).

Original Models Hallucinate More. Sum-
maries generated by the original Llama-2 7B
model contain hallucinations in 31 cases (out
of 100) compared to 14 with SparseGPT applied.
In comparison, the results for Mistral 7B also
suggest that 10 (out of 100) summaries from
Mistral 7B pruned with SparseGPT contain hal-
lucinations, compared to 12 summaries generated
using the original model (i.e., a smaller difference
compared to Llama-2 7B).

This aligns well with our initial expectations and
HRR results (Table 5), as Mistral 7B benefits less
from pruning in terms of hallucination risk com-
pared to Llama-2 7B. For example, considering
SummaCZS for SummEval, Llama-2 7B pruned
with SparseGPT approximately halves the hallu-
cination risk (0.49) compared to 0.79 with Mistral
7B. From analyzing human evaluation results, we
found that the large difference between pruned
and original Llama-2 7B is predominantly driven
by major factual errors (discussed in Section 6).

Original Models Omit and Repeat Slightly
Less. With substantial (0.61–0.80) agreement
between participants, the results agree that both
original models had no repetitions in their sum-
maries and omitted less important information
compared to pruned model summaries (e.g., nine
instances with Mistral 7B compared to 13 with its
pruned version with SparseGPT).

Comparing how well the summaries semanti-
cally align with the source document, the results
show a preference towards the original mod-
els (with moderate agreement; 0.40–0.60). For

example, 28 (out of 100) summaries of the
original Llama-2 7B were selected as more
aligned compared to 21 summaries when pruned
with SparseGPT.

5 Impact of Pruning Sparsity on
Hallucination Risk

To better understand previous observations and
test our hypothesis (i.e., sparsity likely encour-
ages models to focus more on the source document
during generation), we analyze hallucination risk
across different sparsity levels. We additionally
track the lexical overlap (using ROUGE-1/2/L)
and semantic overlap (using BERTScore) between
the generated summary and the source document.
Our hypothesis is: If lexical overlap positively cor-
relates with sparsity levels, it suggests that pruned
models may rely more on the source document for
generation.

Figure 2 shows the summarization performance
ratio (ROUGE-1/2/L and BERTScore; ratio com-
puted as pruned over original) and HRR (↓) for
five LLMs and two pruning methods, across in-
creasing levels of unstructured sparsity (10% to
50%). We only consider unstructured sparsity,
since the 2:4 semi-structured pattern enforces a
fixed sparsity level of 50%. The ratio for each
metric is averaged across datasets for brevity,
with error bars indicating standard deviation. For
summarization performance, a ratio higher than
1.0 indicate that the pruned model performs better
than the original, whereas a HRR lower than 1.0
indicates that summaries from the pruned model
have a lower hallucination risk.

Hallucination Risk Reduces as Sparsity In-
creases. Results consistently show that hallu-
cination risk reduces as sparsity levels increase,
across all models and pruning methods. For ex-
ample, with Llama-2 13B and Wanda, SummaCZS

HRR reduces from 0.98 at 10% sparsity, to 0.90 at
30% to finally 0.73 at 50%. Moreover, OPT-IML
30B displays a remarkably linear improvement
(i.e., with SparseGPT the HRR is 1.00 at 10%
sparsity, 0.95 at 30% and 0.90 at 50%, for all hal-
lucination risk metrics). These findings suggest
that increasing sparsity to moderate levels (up to
50%) does indeed appear to reduce hallucination
risk in generated summaries.

Semantic and Lexical Overlaps Differ. Ob-
serving the lexical (ROUGE) and semantic
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Figure 2: Ratio between a pruned model and the original across five sparsity levels, three hallucination risk metrics
(lines with circled markers; lower means pruned is better) and four summary generation performance metrics
(gray dotted lines; higher means pruned is better). The ratio for each metric is averaged across all datasets, with
error bars indicating standard deviation.

(BERTScore) similarity ratios between document
and generated summary across sparsity levels,
the outcomes are mixed. In almost all cases for
both pruning methods, BERTScore results remain
comparable to the original model (close to 1.0)
up to 50% sparsity, with minimal deviation across
datasets. This shows that summaries from pruned
models are as semantically similar to the source
document as those from original models, across
all sparsity levels.

However, there is a stark contrast with
ROUGE-1/2/L. For Llama-2 models, ROUGE-
based ratios appear to decrease until 30% sparsity,
then increase substantially and peak above 1.0
(the original model baseline) at 50% sparsity. For
Mistral 7B and OPT-IML 30B, we observe that
ROUGE-based ratios increase above 1.0 (higher
than original) from a lower sparsity (20%). As
summaries from pruned models remain as se-
mantically similar to the source document as
those from original models, their higher lexical
overlap with the source document indicates that
pruned models focus more on the input document
to generate a summary.

Higher Lexical Overlap, Lower Hallucination
Risk. Surprisingly, we observe an inversely
proportional relationship between ROUGE-based
ratios and HRRs. We hypothesize that a higher
lexical overlap with the source document is a pos-
sible reason for the lower hallucination risk. To

ROUGE-1/2/L

Model SparseGPT Wanda

Llama-2 7B −0.69 / −0.89 / −0.90 −0.45 / −0.86 / −0.79
Llama-2 13B −0.70 / −0.77 / −0.84 −0.72 / −0.78 / −0.85
Llama-2 70B −0.39 / −0.86 / −0.84 −0.69 / −0.86 / −0.86
Mistral 7B −0.91 / −0.97 / −0.97 −0.88 / −0.96 / −0.97
OPT-IML 30B −0.70 / −0.93 / −0.89 −0.93 / −0.94 / −0.93

Table 7: Averaged Pearson’s correlation co-
efficient (r) between hallucination risk and
ROUGE-based metrics (calculated between the
generated summaries and the source documents)
across sparsity levels. Bold values indicate
significant correlations (p < 0.05).

assess this, we calculate Pearson’s correlation co-
efficient, averaged across sparsity levels between
all HRR and ROUGE-based metrics (Table 7,
significant correlations in bold; p < 0.05).

We note a strong significant inverse correlation
(Pearson’s r < −0.8) for both pruning methods
for ROUGE-2/L across almost all models (exclud-
ing Llama-2 13B) and r < −0.4 for ROUGE-1.
This suggests that a higher lexical overlap could
be responsible for the reduced hallucination risk,
while increasing sparsity appears responsible for
an increasing lexical overlap. In particular, we
find an almost perfect negative relationship be-
tween ROUGE-based ratios and HRRs (−0.97
with SparseGPT) for Mistral 7B. This corrob-
orates findings from the study by Durmus et al.
(2020), which shows that summaries with a higher
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Source Document Generated Summary

FactCC #205 Hallucination (Q1)
What do we have for the contestant on ‘‘The Price Is Right’’?
A brand-new car! Whoops. [. . . ] model Manuela Arbelaez
accidentally revealed the correct answer [. . . ]

The contestant on ‘‘The Price Is Right’’ accidentally revealed the
correct answer to a guessing game for a new Hyundai Sonata
[. . . ]

SummEval #86 Omission (Q2)
[. . . ] Patrick Kluivert has made a winning start in World Cup
qualifying as coach [. . . ] The Caribbean island team advanced
to the second qualifying round in CONCACAF for the 2018
tournament [. . . ]

Patrick Kluivert [. . . ] has successfully led Curacao to the second
qualifying round in CONCACAF for the 2018 tournament. [. . . ]

SummEval #33 Repetition (Q3)
[. . . ] auction at Sotheby’s on Wednesday. While the 13 letters
were expected to bring in anywhere from $300,000 to $600,000,
[. . . ] estimated to bring in anywhere from $300,000 to $600,000,
but [. . . ]

[. . . ] The 13 letters were expected to bring in anywhere from
$300,000 to $600,000, but received no bids. [. . . ] The letters were
estimated to be worth between $300,000 and $600,000. [. . . ]

FactCC #136 Alignment (Q4)
Deion Sanders is such a dad. The NFL legend called out Deion
Sanders Jr. on Twitter for saying he only eats ‘‘hood doughnuts.’’
In response, the elder Sanders [. . . ] reminded his son he has a
trust fund, a condo and his own clothing line called ‘‘Well Off’’
[. . . ]

Deion Sanders Jr. is a Southern Methodist University wide re-
ceiver and aspiring entrepreneur who loves ‘‘hood doughnuts’’
and has a trust fund, condo, and clothing line called ‘‘Well Off.’’
[. . . ]

Table 8: Examples of errors in generated summaries corresponding to the human evaluation questions
and the context from the source document.

lexical similarity to the source document are less
likely to contain hallucinations.

6 Qualitative Analysis

Following the human evaluation (see Sections 3.7
and 4.4), we review specific cases, highlighting
issues with the summaries generated by pruned
models in Table 8.

Hallucinations. Our analysis of the human eval-
uation task results suggests that hallucinations in
the summaries from both Llama-2 7B and Mistral
7B are either: (a) additional information not sup-
ported by the source document, or (b) modified or
misplaced information from the source document
(e.g., FactCC #205).

Omissions. Omission is a category where we
found a few instances of disagreement be-
tween the participants. In general, participants
agree in clear cases like SummEval #86 (e.g.,
‘‘2018 tournament’’ should be ‘‘2018 World
Cup’’). Comparatively in disagreements, omit-
ted information is more nuanced and difficult to
detect, such as important details from the source
document (e.g., missing dates).

Repetitions. Interestingly, we find that sum-
maries containing repetitions occur when the
source document also contains repeating informa-
tion (e.g., the price range ‘‘$300,000 to $600,000’’
duplicated in SummEval #33).

Alignment. The generated summaries that are
less aligned to the source document do not nec-
essarily contain any hallucinations, omissions,
or repetitions. However, we found that they do
not entirely convey the original meaning of the
source document. For example in FactCC #136,
the source describes Deion Sanders Jr. being
publicly scolded by his father for downplaying
his wealthy lifestyle. However, this particular
piece of information is not conveyed in the
generated summary.

7 Conclusion

We conducted an extensive study to assess the
hallucination risk of LLMs after pruning. We
experimented with two state-of-the-art pruning
methods applied to five instruction-tuned LLMs.
We measured the hallucination risk using three
established automatic metrics, in addition to a
human evaluation. Our results show that as
models are pruned to moderately high sparsity
levels, the risk of generating hallucinating con-
tent decreases. Our analysis suggests that pruned
models tend to generate summaries that have a
greater lexical overlap with the source docu-
ment, offering a possible explanation for the lower
hallucination risk.

In future work, we plan to explore the rela-
tionship between hallucination risk and model
quantization (Dettmers et al., 2022; Frantar et al.,
2023) and also expand to tasks such as open-book
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question answering (Ciosici et al., 2021) and
machine translation (Guzmán et al., 2019). Fi-
nally, an interesting direction is to investigate the
relationship between hallucination risk and expla-
nation faithfulness (Chrysostomou and Aletras,
2022; Zhao and Aletras, 2023).
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Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki,
Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alex Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute
Peres, Michael Petrov, Henrique Ponde de
Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell,
Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya

1178

https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/2023.findings-emnlp.349
https://doi.org/10.18653/v1/2023.findings-emnlp.349
https://doi.org/10.1162/tacl_a_00583
https://doi.org/10.1162/tacl_a_00583


Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted,
Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sastry,
Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard,
Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler,
Maddie Simens, Jordan Sitkin, Katarina Slama,
Ian Sohl, Benjamin Sokolowsky, Yang Song,
Natalie Staudacher, Felipe Petroski Such,
Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek,
Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, C. J. Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng,
Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah
Wong, Lauren Workman, Sherwin Wu, Jeff
Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah
Yoo, Kevin Yu, Qiming Yuan, Wojciech
Zaremba, Rowan Zellers, Chong Zhang, Marvin
Zhang, Shengjia Zhao, Tianhao Zheng, Juntang
Zhuang, William Zhuk, and Barret Zoph.
2024. GPT-4 technical report. arXiv preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo
Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, Ryan Lowe. 2022. Train-
ing language models to follow instructions with
human feedback. Advances in Neural Informa-
tion Processing Systems, 35:27730–27744.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
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