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Abstract
Storytelling is an integral part of human
experience and plays a crucial role in social in-
teractions. Thus, Automatic Story Evaluation
(ASE) and Generation (ASG) could benefit
society in multiple ways, but they are chal-
lenging tasks which require high-level human
abilities such as creativity, reasoning, and deep
understanding. Meanwhile, Large Language
Models (LLMs) now achieve state-of-the-art
performance on many NLP tasks. In this pa-
per, we study whether LLMs can be used as
substitutes for human annotators for ASE. We
perform an extensive analysis of the correla-
tions between LLM ratings, other automatic
measures, and human annotations, and we ex-
plore the influence of prompting on the results
and the explainability of LLM behaviour. Most
notably, we find that LLMs outperform current
automatic measures for system-level evalua-
tion but still struggle at providing satisfactory
explanations for their answers.

1 Introduction

The task of Automatic Story Generation (ASG)
(Li et al., 2013) consists in the creation of a
narrative from a short sentence. Previous re-
search showed that storytelling enables a narrator
to communicate honestly with their audience
(Rowcliffe, 2004) and to provide listeners with
an engaging and instructive experience (Miller
and Pennycuff, 2008). Indeed, the process of
story creation is a salient testimony of human
creativity, requiring both the discovery of inter-
esting ideas and their adept expression through a
carefully-built narrative. Strong automatic story
generating systems could therefore be useful for
a variety of applications, such as gaming (Turner,
2014), education (Lombardo and Damiano, 2012),
mental health (George et al., 2014), and marketing
(Júnior et al., 2023).

Meanwhile, over the last few years, advances
in natural language processing (NLP) have been

spearheaded by the development of large lan-
guage models (LLM) such as GPT-3 (Brown et al.,
2020), LaMDA (Thoppilan et al., 2022), PaLM
(Chowdhery et al., 2023), and LLaMA (Touvron
et al., 2023a). Upon release, these models have
been setting new state-of-the-art performance
standards for a wide array of NLP tasks, e.g., ques-
tion answering, summarization, and translation. In
particular, for ASG, LLMs are now able to pro-
duce convincing stories, so much so that they can
be hard to distinguish from human stories (Clark
et al., 2021). As their performance improves,
they may become valuable assistants to our cre-
ative process; already, writing contests have been
shown to encourage their use (Edilivre, 2023).

The increased availability of LLMs to the
general public underlines the need for reliable
story evaluation methods that can be used to
improve both the performance of ASG mod-
els and our understanding of their strengths and
weaknesses. Since the human annotation of sto-
ries is costly and time-consuming (Celikyilmaz
et al., 2020), Automatic Story Evaluation (ASE)
systems could provide an efficient and scalable
replacement for human evaluation. However, cur-
rent automatic measures have been shown to be
poorly correlated with human judgment for ASG
(Chhun et al., 2022).

In this paper, we investigate whether LLMs
themselves can be used as substitutes for human
annotators for story evaluation. To that end, we
perform several annotation experiments where we
ask different LLMs to rate stories according to
different criteria and to explain their rating. We
show an example in Figure 1 and a schema of our
experiments in Figure 2.

Our contributions are the following:

1. A comparison between LLMs and current
ASE measures. We compute and analyze
the correlations between LLM ratings with
human annotations on criteria specific to
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Figure 1: Example Eval-Prompt and answer from our
experiments. ‘‘Prompt’’ inside the Eval-Prompt refers
to the story-prompt.

story evaluation; we find that, while overall
correlations are moderate to weak, system-
level correlations are very high, suggest-
ing that LLMs can produce reliable model
rankings for ASE.

2. An analysis of the influence of prompt
engineering on LLM performance. We
examine the effects of using different
Eval-Prompts on the consistency and dis-
tribution of LLM ratings. We find that
adding detailed guidelines does not neces-
sarily improve performance and that LLMs
are remarkably self-consistent.

3. Insights on LLM explainability for ASE.
We analyze the explanations provided by
LLMs through different methods, including
a user study, and find that LLMs’ under-
standing of the ASE task is perfectible. Most
notably, they struggle at explaining their
ratings with substantiated claims.

4. An analysis of LLM performance in ASG.
The high system-level correlations of LLMs
with human ratings enable us to use them
to rate other LLMs for ASG. We find that
LLMs perform at least as well as humans
for the generation of short stories, and that
their performance may be explained by their
tendency to produce output that is similar to
their pretraining data.

Our methodology can be found in Section 3.1.
We release our data and code on GitHub.1 Our
data consists of:

• ASE experiments: ∼150k rating and expla-
nation annotations (1,056 stories, 6 criteria,
4 Eval-Prompts, 3 tries, 2 models);

• User study: 1,500 human annotations of
LLM explanations;

• ASG experiment: 384 stories generated by
Llama models with corresponding LLM an-
notations to expand the HANNA dataset of
Chhun et al. (2022).

This paper is structured as follows: In Section 2,
we review the related work. In Section 3, we lay
out our methodology and experimental details. In
Section 4, we perform our analysis of the results.
In Section 5, we discuss the state of LLMs in ASG
and ASE. Finally, in Section 6, we conclude with
practical takeaways for researchers, the limitations
of our work, and future research directions.

2 Related Work

2.1 Human Evaluation

Evaluating stories is a difficult task (McCabe
and Peterson, 1984; Dickman, 2003). In the social
sciences literature, multiple criteria have been sug-
gested, often divided into cognitive and emotional
factors (Bae et al., 2021). However, the consensus
around the criteria to be used in the NLP litera-
ture is still weak (Fan et al., 2018; Guan et al.,
2020; Rashkin et al., 2020; Goldfarb-Tarrant et al.,
2020). Chhun et al. (2022) distill the indicators
used in the social sciences literature into 6 cri-
teria (Relevance, Coherence, Empathy, Surprise,
Engagement, Complexity), which we will use in
our paper as well.

While human evaluation remains the gold
standard of evaluation, it is costly and time-
consuming. We therefore need to develop au-
tomatic measures that can act as substitutes for
human judgment, ideally for each of the crite-
ria. Such automatic measures could be used to
improve language models, e.g., as a loss function
or for chain-of-thought prompting (Wei et al.
2022b)

1https://github.com/dig-team/hanna
-benchmark-asg.
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Figure 2: Schema of the performed ASE experiments. RE, CH, etc. are the considered human criteria (Section 3.1).
‘‘EP’’ means ‘‘Eval-Prompt’’, defined in Section 3.1. For the user study (Section 3.3), we randomly sampled 100
explanations from our experiments.

2.2 Automatic Evaluation

Automatic measures (e.g., BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2020), BARTScore (Yuan et al., 2021)) have
been repeatedly shown to correlate moderately to
poorly with human judgment, especially when ap-
plied to tasks other than the one they were designed
for (Zhang et al., 2004; Novikova et al., 2017;
Colombo et al., 2023). Deutsch et al. (2022) put
forth the particular limitations of reference-free
measures. For ASE, Guan et al. (2020) and Chhun
et al. (2022) also observe weak correlations be-
tween automatic and human ratings, whether they
be reference-based or reference-free. This high-
lights the need for better automatic evaluation
methods. To tackle this issue, this paper inves-
tigates the use of LLMs to annotate stories with
ratings w.r.t. a given criterion.

2.3 Automatic Annotation

LLMs are increasingly being tested for auto-
matic text annotation, e.g., for sentiment analysis
(Qureshi et al., 2022), named entity recognition
(Enkhsaikhan et al., 2021), or event structure mod-
eling (Vauth et al., 2021). Wang et al. (2021)
demonstrate that labeling performed by GPT-3
can achieve the same performance as human
labeling and be up to 96% more cost-efficient.
Ding et al. (2023) show that GPT-3 performs well
for text classification tasks, but struggles with
more complex tasks such as named entity recog-
nition. Chakrabarty et al. (2023) design a test for
creativity and show that LLM-generated stories

pass fewer tests than human stories, and that using
LLMs for ASE yields no positive correlations.

We seek to generalize their findings through
the use of source-available models and a finer
analysis and discussion of LLM performance.

2.4 Prompt Engineering
The importance of designing efficient prompts for
large language models such as GPT-3 has been
extensively investigated in recent years. Reynolds
and McDonell (2021) notably find that zero-shot
prompting can perform similarly to few-shot
prompting, and even exceed it. They explore the
design of metaprompts that prime the language
model to better solve a given problem. Zhou et al.
(2023b) treat the prompt engineering process as
an optimization problem, use search algorithms
guided by LLMs to solve it and attain human-level
performance. Wei et al. (2022a) and White et al.
(2023) review different strategies that have been
applied to augment large language model abilities,
e.g., least-to-most prompting (Zhou et al., 2023a),
ask-me-anything prompting (Arora et al., 2023),
and zero-shot chain-of-thought reasoning (Kojima
et al., 2022).

We choose to investigate whether LLMs per-
form better with simple or detailed guidelines,
and with zero- or one-shot Eval-Prompts.

3 Meta-Evaluation of LLMs for ASE

3.1 Methodology for ASE
The ASG task commonly involves the genera-
tion of a story from a short sentence called a
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prompt (Alabdulkarim et al., 2021), which we
will henceforth call story-prompt.

ASE Definition. Given an evaluation measure
m (e.g., a scoring algorithm, an LLM,. . . ),
a story-prompt i, and a story yi, we define the
ASE task as the production of an evaluation
score m(yi).

In this paper, we choose to use LLMs as ASE
measures. We will refer to the prompt that is fed
to the LLM as the Eval-Prompt, to distinguish
it from the story-prompt. See Figure 1 for an
example of the use of an LLM for story evaluation.

ASE Criteria. We use the criteria introduced
by Chhun et al. (2022), who designed HANNA,
a benchmark for story evaluation. They com-
piled a set of six orthogonal criteria from the
social sciences literature:

1. Relevance (RE, how well the story matches
its prompt),

2. Coherence (CH, how much the story makes
sense),

3. Empathy (EM, how well the reader under-
stood the character’s emotions),

4. Surprise (SU, how surprising the end of the
story was),

5. Engagement (EG, how much the reader
engaged with the story),

6. Complexity (CX, how elaborate the story is).

Methodology. Given the importance of good
prompt engineering (Zhao et al., 2021), we design
four different Eval-Prompts for the generation of
ratings. For each of our Eval-Prompts, we provide
the model with a story-prompt and a correspond-
ing story. Then:

Eval-Prompt 1 (simple rating): we ask the
model to rate the story on a scale from 1 to 5 on
one of the six criteria;

Eval-Prompt 2 (rating with explanation): same
as Eval-Prompt 1, and we ask the model to ex-
plain its answer;

Eval-Prompt 3 (rating with explanation and
guidelines): same as Eval-Prompt 2, and we
provide the model with the detailed guidelines
from the original annotation protocol by Chhun
et al. (2022);

Eval-Prompt 4 (rating with explanation and
human story): same as Eval-Prompt 2, and we
provide the model with the human story associated

with the same story-prompt. We explicitly tell the
model that the human story is given only for
reference purposes.

Different Eval-Prompt examples are shown in
Figure 3.

3.2 Meta-Evaluation Measures
Notations. For S systems and N story-prompts,
let yji be the story generated by system j ∈
{1, . . . , S} for story-prompt i ∈ {1, . . . , N}. For
a (human or automatic) measure m, we de-
note by m(yji ) the score associated to yji . Let
K be a correlation coefficient, e.g., Pearson’s r
(Pearson, 1895), Spearman’s ρ (Spearman, 1961),
or Kendall’s τ (Kendall, 1938). We note hk the
measure provided by the k-th human annotator.

A naive method to compare ratings from two
measures would be to compute how much they
differ from each other for each story, e.g., by cal-
culating the average L1 distance between a given
evaluation method m and the human ratings, e.g.,
1
3

∑3
k=1 L1(m,hk). However, this method suffers

from the central tendency bias—the tendency of
an individual to rate most items on a survey in
the middle of a rating scale—which is often ob-
served in Likert scales (Stevens, 1971) and could
be explained by the participants’ tendency to base
their judgment on a least mean squares estima-
tor rather than a maximum a posteriori estimator
(Douven, 2018). We therefore choose more ro-
bust measures of meta-evaluation: system-level
and overall correlations.

System-level correlation (Ksys
m1,m2). We take

the correlation of the vectors containing the mean
score of all stories for each system, for m1

and m2. This strategy measures how much m1

and m2 agree when comparing different systems.
Formally:

Ksys
m1,m2

� K

(
1

N
Csys

m1
,
1

N
Csys

m2

)
, (1)

where Csys
m �

[
N∑
i=1

m(y1i ), . . . ,

N∑
i=1

m(ySi )

]
.

The segment-level correlation, often used in
conjunction with the system-level one in the
meta-evaluation literature (Ma et al., 2019;
Bhandari et al., 2020), is not adapted to ASE since
stories generated from the same story-prompt are
not required to be similar, while, e.g., translations
of a sentence should look alike. We therefore use
the overall correlation, which we define below.
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Figure 3: Example Eval-Prompts for the Surprise criterion. Eval-Prompt 2 is the same as Eval-Prompt 1 with
‘‘explain your answer’’ added at the end. ‘‘Prompt’’ (bold) refers to the story-prompt.

Overall Correlation (Km1,m2
). We take the

correlation between the full vectors containing
the scores of m1 or m2 for a given story for
every system. Formally:

Km1,m2
� K(Cm1

,Cm2
), (2)

where Cm �
[(

m(yji )
)
(i,j)∈{1,...,N}×{1,...,S}

]
.

Statistical Testing (Section 4.1). Correlations
between two automatic measures on the same
annotated dataset are not independent. As ad-
vised by Graham and Baldwin (2014), we use the
Williams test (Williams, 1959; Moon, 2019) to
evaluate the strength of an increase in dependent
correlations (Steiger, 1980).

Given three features X1, X2, and X3 of a
population of size n, Williams’s t test for whether
the correlation between X1 and X2 equals the
correlation between X1 and X3 is formulated as
follows:

t =
(r12 − r13)

√
(n− 1)(1 + r23)√

2K (n−1)
(n−3) +

(r12+r13)2

4 (1− r23)3
,

where rij is the correlation between Xi and
Xj and

K = 1− r12
2 − r13

2 − r23
2 + 2 r12 r13 r23.

Williams’s t statistic follows a Student’s
t-distribution with n − 3 degrees of freedom. In
particular, the Williams test takes the correlations
between X2 and X3 into account.

Furthermore, since we perform a large quantity
of tests, we choose to correct p-values for mul-
tiplicity. As advised by Jafari and Ansari-Pour
(2019), we control the false discovery rate using
the Benjamini-Hochberg (BH) method (Benjamini
and Hochberg, 1995) . Givennp-values p1, . . . , pn
sorted in increasing order, the BH method con-
sists in computing adjusted p-values p�k = pk

m
k

and replacing the p-values from largest to smallest.
Following recent recommendations to move

beyond simplistic ‘‘statistical significance’’ tests
(Amrhein et al., 2019; Wasserstein et al., 2019;
McShane et al., 2019), we report all p-values for
transparency. We choose to use a gradual notion of
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evidence for our statistical analysis, as suggested
by Muff et al. (2022).

3.3 Human Evaluation of ASE Explanations

We conduct a user study in which we ask hu-
man raters to identify potential issues in LLM
explanations. Dou et al. (2022) introduced an er-
ror annotation schema called SCARECROW that we
adapted for ASE. We manually reviewed a ran-
dom sample of 20 explanations from Beluga-13B
on Eval-Prompt 3 and selected the most relevant
error types. Then, we randomly sampled another
100 explanations and, for each explanation, we
asked 3 human workers to annotate it w.r.t. the
following five error categories:

1. Poor Syntax: parts of the explanation are
grammatically incorrect or wrongly worded;

2. Incoherence: parts of the explanation are
self-contradictory, logically wrong, or simply
do not make sense and do not fit the other
categories;

3. Wrong Guideline: the explanation does not
respect the provided guidelines;

4. Superfluous Text: parts of the explanation
contain text that repeats itself or generation
artefacts;

5. Unsubstantiated Claims: the explanation
fails to make explicit references to the story
to substantiate its reasoning.

We recruited workers on Amazon Mechanical
Turk. We estimated that a HIT would take around
one minute, so we set the reward at $0.20 per HIT,
so about $12 per hour. To ensure that annotators
spoke fluent English, we restricted access to the
experiment to the UK, the US, Canada, Australia,
and New Zealand.

3.4 Experimental Details

Dataset. We use the HANNA dataset (Chhun
et al., 2022), which contains 1,056 stories gen-
erated from story-prompts from the Writing-
Prompts dataset (Fan et al., 2018), with both
pretrained language models: BERTGeneration
(Rothe et al., 2020), CTRL (Keskar et al., 2019),
GPT (Radford et al., 2019), GPT-2 (Radford
et al., 2019), RoBERTa (Liu et al., 2019), and
XLNet (Yang et al., 2019); and ASG-specific
models: Fusion (Fan et al., 2018), HINT (Guan
et al., 2021), and TD-VAE (Wilmot and Keller,

2021). These stories were annotated with scores
from human raters on the six criteria introduced
in Section 3.1 and 72 automatic measures. We
reproduce the original procedure from Chhun
et al. (2022): for reference-based evaluation mea-
sures (e.g., BLEU), we use the human story from
HANNA as the reference for the generated story.
Because of space constraints, we display only
the evaluation measures that are the most used
in the literature: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), chrF (Popović, 2015),
BERTScore (Zhang et al., 2020), SUPERT (Gao
et al., 2020), BLANC (Vasilyev et al., 2020),
BARTScore (Yuan et al., 2021), BaryScore
(Colombo et al., 2021). The results are similar for
the other automatic measures.

ASG Models. Since the release of the HANNA
dataset, language models have made signifi-
cant advancements. We therefore felt the need
to expand HANNA with more recent models.
We selected Llama-2-7b-chat-hf (Llama-7B)
as a new baseline and 4 high-performing
models (at the time of selection) of differ-
ent sizes on the HuggingFace Open LLM
Leaderboard:2 Platypus2-70B-instruct (Platy-
pus2), Llama-30b-instruct-2048 (Llama-30B),
StableBeluga-13B (Beluga-13B), and Mistral-
7B-OpenOrca (Mistral).

ASE Models. We submit each of the four
Eval-Prompts 3 times on all 1,056 stories on
each of the 6 criteria, and we then extract the
ratings automatically from the generated answer
via a regular expression. Since story evalua-
tion on multiple prompts and multiple criteria
was more computationally demanding, we lim-
ited our experiments to the smaller 13B and
7B models. We used the 4 following mod-
els: Beluga-13B, Mistral, Llama-2-13b-chat-hf
(Llama-13B), and Gpt-3.5-turbo (ChatGPT). We
also ran the ASE experiments with Llama-7B,
which failed at the task too often for the
results to be exploitable, e.g., by generating non-
sensical conversations between itself and the
user. We use (temperature, top p) = (1, 0.95)
for Llama models and (0.7, 1) for ChatGPT
(default suggested values).

Llama2 (Touvron et al., 2023b) models were
trained on a closed ‘‘new mix of data from

2https://huggingface.co/spaces
/HuggingFaceH4/open_llm_leaderboard.
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publicly available sources’’. Beluga-13B and
Mistral-7B are Llama2 models fine-tuned on
Orca-style datasets which contain triplets of ‘‘Sys-
tem message–User query–LLM response’’ for a
large collection of tasks (Mukherjee et al., 2023).
Beluga-13B is fine-tuned on StabilityAI’s closed
internal dataset, while Mistral-7B is fine-tuned on
the open OpenOrca dataset (Lian et al., 2023).
ChatGPT (Brown et al., 2020; Ouyang et al.,
2022) is a closed-source model trained on a closed
internal dataset that includes the CommonCrawl,
Books1 and Books2 datasets.

We used the transformers library (Wolf et al.,
2020) and the OpenAI API for our experiments.

4 Analysis of the Results

Our work aims at answering five important
questions for ASE and ASG:

• ASE1: How do LLMs compare w.r.t. cur-
rent evaluation methods, both human and
automatic?

• ASE2: How does the Eval-Prompt influ-
ence the consistency and distribution of LLM
ratings?

• ASE3: How explainable is the evaluation
performed by LLMs?

• ASG1: Relying on ASE results, how do
LLMs perform at ASG?

• ASG2: How does pretraining data help
predict ASG performance?

4.1 ASE1: Comparison with Current
Evaluation Measures

4.1.1 Automatic Annotation Consistency
First, we want to verify if LLMs provide stable
answers. The default decoding strategy for LLMs
(both Llama models and ChatGPT) is top-p sam-
pling, which involves random variability in the
generation process. We evaluate how consistent
LLMs are with themselves through an inter-rater
reliability (IRR) estimation. For each task, we in-
terpret the three different LLM ratings as coming
from three different annotators and we use the
intra-class correlation coefficient (ICC), which is
the most relevant one for our case study: Un-
like Cohen’s and Fleiss’s kappas (Cohen, 1960;
Fleiss, 1971) or Krippendorff’s alpha (Hayes and
Krippendorff, 2007), which quantify IRR based on
all-or-nothing agreement, the ICC incorporates the

Crit. Beluga-13B Mistral-7B Human

RE 0.88±0.01 0.86±0.01 0.48±0.30

CH 0.93±0.01 0.90±0.01 0.29±0.28

EM 0.88±0.01 0.87±0.02 0.34±0.09

SU 0.80±0.02 0.63±0.03 0.28±0.12

EG 0.91±0.01 0.87±0.01 0.46±0.12

CX 0.85±0.01 0.78±0.02 0.56±0.08

Table 1: Intra-class coefficients type 2k for
Eval-Prompt 1 ratings with 95% confidence
interval. Higher is better.

magnitude of the disagreement to compute its IRR
estimate, with larger-magnitude disagreements
resulting in lower ICC than smaller-magnitude
disagreements (Hallgren, 2012). We specifically
use the ICC for average random raters (ICC2k)
(Vallat, 2018); with the assumption that the ran-
dom aspect can approximate the random aspect
of the generation.

ICC2k values for Eval-Prompt 1 for
Beluga-13B, Mistral-7B, and human ratings
are displayed in Table 1. Comparing LLM
consistency and human inter-rater agreement
values should be done with caution: Human raters
may have subjective appreciations of the Likert
scale despite guidelines, while LLM consistency
depends mostly on parameters that dictate output
variability, e.g., temperature or top-p. That said,
we reckon that it is still useful to display human
IRR values as a baseline. We observe that LLMs
have very high consistency overall for all criteria;
the lowest value is Mistral-7B’s ICC for Surprise
(0.66), which is still fairly high. Confidence
intervals are also smaller than for human ratings.

4.1.2 Correlations with Human Annotations
Here, we study the Kendall correlations between
LLM and human ratings on corresponding criteria.
For the ‘‘Beluga-13B 1’’ column in Figure 4, the
first value is the correlation between Beluga-13B
Relevance ratings and averaged human Rele-
vance ratings for Eval-Prompt 1, then Coherence
ratings, etc.

Assuming we want an automatic measure to
perform as well as an individual human rater
would, we need a baseline for comparison. There-
fore, we also compute the average correlations
between individual human ratings and average
human ratings, which we compiled into the same
figures for the sake of readability (the ‘‘Human’’
column). Since the individual human rating is
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Figure 4: Overall absolute Kendall correlations be-
tween evaluation measures and human ratings. Higher
is better. The black vertical line separates LLMs (left)
and non-LLMs (right). Coefficient values are multi-
plied by 100 for readability; we will symbolize this
with ‘‘(×100)’’ in the next figures.

included in the average human rating, both mea-
sures are not independent, so the column acts as
an upper-bound.

Overall Correlations (Figure 4). LLM ratings
generally correlate with human ratings similarly
to automatic measures, if not better. Overall,
Beluga-13B is the best performer, achieving
higher correlations (0.25 on average) than both
other LLMs and automatic measures (≤0.18).
The better results (as compared to Llama-13B
(0.16) and Mistral-7B (0.20)) suggest a positive
influence of fine-tuning and model size respec-
tively. The inferior performance of ChatGPT
(0.18) is difficult to explain since OpenAI does
not disclose the details of its architecture, its
training process and, most importantly, its train-
ing data. Nonetheless, an important takeaway is
that current source-available models can effec-
tively compete with closed-source models: this
is good news for NLP research, since obser-
vations made on closed-source models cannot
easily be generalized.

System-level Correlations (Figure 5). First,
we observe that human baseline correlations are
noticeably higher than non-LLM automatic mea-
sures: While human annotators tend to reach a
consensus when ranking systems (averaging cor-
relations of 0.73), non-LLM automatic measures
are moderately to poorly correlated from human
judgment (with values ranging from 0.13 to 0.57).

Meanwhile, Llama models display very high
correlations, with Beluga-13B performing almost

Figure 5: System-level absolute Kendall correlations
(×100) between evaluation measures and human rat-
ings. Higher is better. The white vertical line separates
LLMs (left) and non-LLMs (right).

as well as human raters (0.70 vs 0.73). ChatGPT
shows a somewhat erratic performance (correla-
tions range from 0.07 to 0.73), which is overall
comparable or inferior to Llama models. Also,
LLMs generally outperform other automatic mea-
sures (0.70 for Beluga-13B compared to 0.57 for
BARTScore).

The fact that correlations are sometimes higher
than the baseline can be explained by the subjec-
tive nature of the task: human annotators may
exhibit higher variability in their ratings than
the stable LLMs.

Statistical Testing. Figure 6 shows the
BH-adjusted p-values of the Williams tests for
the increase in correlations with a given criterion
between Beluga-13B average Eval-Prompt 1
ratings (row) and other measures (column).

For overall correlations, there is strong statis-
tical evidence that Beluga-13B correlates better
with human judgment than many non-LLM au-
tomatic measures (p < 0.01 for many tests).
Evidence is more moderate to weak when com-
paring Beluga-13B and other LLMs. For instance,
between Beluga-13B and ChatGPT, p-values
lie between 0.01 and 0.14. While the per-
formance of Beluga-13B still leaves a lot of
room for improvement, it performs better than
non-LLM automatic measures.

For system-level correlations, statistical evi-
dence for better performance appears weaker:
p > 0.11 for all tests. However, one should keep
in mind that the ratings (averaged over more than
1,000 stories) used to compute system-level corre-
lations hold more information than the individual
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Figure 6: BH-adjusted p-values (×100) of the Williams
tests for overall and system-level Kendall correlations.
Lower is better. ‘‘0’’ means p < 0.01.

ratings of the overall correlations. Therefore, while
statistical evidence is weaker, the averaged nature
of the correlations and the significant numeric in-
creases in correlations (0.70 for Beluga-13B vs
0.57 for BARTScore/BERTScore) suggest that
Beluga-13B is more reliable at ordering systems
compared to non-LLM measures.

4.1.3 Takeaways

First, LLMs show very high self-consistency.
Overall correlations remain weak, although LLMs
display marginal improvements over non-LLM
automatic measures, backed with strong statistical
evidence. At the system-level, LLM correlations
with human judgment are high, but statistical evi-
dence is weaker. In conclusion, while LLMs still
cannot be relied upon to evaluate a single story,
they appear more reliable than non-LLM auto-
matic measures for comparing different models
and selecting the best one.

4.2 ASE2: Influence of the Eval-Prompt
In this section, we discuss the influence of the
Eval-Prompt on the consistency and distribution
of the generated LLM ratings.

4.2.1 Influence on Consistency
Here, we analyze the influence of the Eval-
Prompt on LLM consistency. ICC2k values
for Beluga-13B ratings w.r.t. the different
Eval-Prompts are shown in Table 2 (other
LLMs display similar behavior). The influ-
ence of Eval-Prompts appears limited: providing
guidelines (Eval-Prompt 3) tends to decrease
self-consistency for all criteria except Complexity
with a discernible effect (as shown by the confi-
dence intervals), but ICC values remain very high.
LLMs are therefore remarkably consistent in their
grading, no matter the Eval-Prompt.

4.2.2 Influence on Ratings
We show the average Likert ratings per LLM
per Eval-Prompt on Table 3. Compared to
Eval-Prompt 1, Eval-Prompt 2 seems to have
limited influence on the ratings for all mod-
els, often leading to overlapping confidence
intervals. Eval-Prompt 3 causes a statistically
discernible decrease in ratings for Beluga-13B
and Llama-13B, and a discernible increase for
ChatGPT. Eval-Prompt 4 has a similar effect,
with the decrease also observable with Mistral-7B.
The significantly lower ratings of ChatGPT partly
stem from the fact that it was not asked to rate the
new Llama-generated stories, which were gener-
ally highly-rated.

Overall, it seems that more detailed Eval-
Prompts (3 and 4) tend to decrease the ratings
for Llama-models while having an opposite effect
for ChatGPT. We tried to separate ratings per
generative model or per criterion but were unable
to identify a more specific pattern: We therefore
chose to show only the aggregated results for the
sake of clarity.

4.2.3 Influence on Correlations
Here we analyze the influence of Eval-Prompts
on correlations between LLM ratings and human
ratings.

Overall Correlations (Figure 7). Eval-Prompt
2 overall correlations are very close to Eval-
Prompt 1 correlations for all models: simply
asking for an explanation has limited in-
fluence on correlations. Eval-Prompt 3 tends
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Criterion Eval-Prompt 1 Eval-Prompt 2 Eval-Prompt 3 Eval-Prompt 4

Relevance 0.88±0.01 0.90±0.01 0.85±0.02 0.92±0.01

Coherence 0.93±0.01 0.94±0.01 0.87±0.01 0.93±0.01

Empathy 0.88±0.01 0.88±0.01 0.83±0.02 0.91±0.01

Surprise 0.80±0.02 0.79±0.02 0.70±0.03 0.85±0.01

Engagement 0.91±0.01 0.92±0.01 0.79±0.02 0.93±0.01

Complexity 0.85±0.01 0.86±0.01 0.85±0.01 0.89±0.01

Table 2: Intra-class coefficients type 2k for Beluga-13B ratings with 95% confidence interval. Higher
is better.

LLM Eval-Prompt 1 Eval-Prompt 2 Eval-Prompt 3 Eval-Prompt 4

Beluga-13B 3.48±0.04 3.38±0.03 3.06±0.03 3.28±0.04

Llama-13B 3.48±0.03 3.52±0.03 3.21±0.02 2.82±0.03

Mistral-7B 3.47±0.03 3.51±0.03 3.46±0.03 3.28±0.03

ChatGPT* 1.52±0.03 1.47±0.03 1.62±0.02 1.60±0.03

Table 3: Average Likert ratings per LLM per Eval-Prompt. The asterisk signals the fact that ChatGPT
was only asked to rate the original HANNA dataset without Llama-generated stories. Higher is better.

Figure 7: Overall absolute Kendall correlations (×100)
between LLMs and human ratings for different
Eval-Prompts. Higher is better. B-13B = Beluga-13B,
L-13B = Llama-13B, M-7B = Mistral-7B and Chat =
ChatGPT.

to decrease correlations for all models: Provid-
ing guidelines makes the model less accurate,
counter-intuitively. Eval-Prompt 4 (providing a
human story for reference) has a similar effect.

System-level Correlations (Figure 8). Eval-
Prompt 2 has limited effect on correlations again,
except for Beluga-13B for whom it seems to
increase correlations. Eval-Prompt 3 decreases
correlations, with a marked effect in Llama-13B.
Finally, Eval-Prompt 4 seems to cause a small
increase in correlations, contrary to its decreasing
effect on overall correlations.

4.2.4 Takeaways
First, regardless of Eval-Prompt complexity,
LLMs behave consistently when prompted multi-
ple times. Asking for an explanation (Eval-Prompt

Figure 8: System-level absolute Kendall correlations
(×100) between LLMs and human ratings for different
Eval-Prompts. Higher is better. B-13B = Beluga-13B,
L-13B = Llama-13B, M-7B = Mistral-7B and Chat =
ChatGPT.

2) has negligible effect on ratings, while more
complex Eval-Prompts (3 - providing guidelines
and 4 - providing a reference human story) have a
more discernible influence (positive or negative).
As for correlations with human ratings, providing
guidelines (Eval-Prompt 3) consistently seems to
lower correlations, whereas providing a human
story for reference (Eval-Prompt 4) has opposite
effects for overall or system-level correlations.

4.3 ASE3: Explainability of Ratings

In this section, we analyze to what extent the ex-
planations provided by LLMs are consistent w.r.t.
their ratings, e.g., whether they differ from cri-
terion to criterion, whether they are semantically
relevant and, for Eval-Prompt 3, whether they
are compliant with the provided guidelines. We

1131



Figure 9: UMAP projection of Beluga-13B explana-
tions.

will focus on Beluga-13B since it had the best
correlations with human judgment, as shown in
Section 4.1.

4.3.1 Visualization of Explanation
Embeddings

First, we want to ascertain whether Beluga-13B
provides different explanations for each of the
human criteria. We gather the explanations pro-
vided by Beluga-13B on human stories for each
criterion and use the SentenceTransformers
library (Reimers and Gurevych, 2019) to com-
pute their corresponding embeddings. We then
use a 2D UMAP projection (McInnes et al.,
2018) (with parameters n neighbors = 300 and
metric = euclidean) to visualize how the em-
beddings are distributed. Figure 9 shows the
visualization of the UMAP projection: Beluga’s
explanations are overall well-separated w.r.t. their
corresponding criteria.

4.3.2 Keyword Analysis

Since Beluga’s explanations seem to vary from
one criterion to another, we evaluate whether they
make sense from a semantic point of view. We
use the YAKE! keyword extractor, which signifi-
cantly outperforms other state-of-the-art methods
(Campos et al., 2020): We show selected 3-gram
keywords from the top-30 per criterion in Table 4.
The results are consistent with Figure 9: keywords
are overall different for each criterion. We can
also see here that they are semantically relevant.

Crit. Keywords

RE story, prompt, roughly matches, target, weak
relationship, connection, weak

CH story, coherence, make sense, difficult to
understand, clear narrative structure

EM empathy, emotions, understand the characters,
depth, emotional connection

SU story, surprise, ending, predictable, rate,
unexpected, twist, completely obvious

EG story, mildly interesting, engagement, difficult,
found, characters, fully engage

CX story, characters, intricate plot, difficult to
understand, straightforward, depth

Table 4: Selected keywords from Beluga-13B
explanations w.r.t. a specific criterion.

Error Type Rate AC1

Poor Syntax 0.02 0.93 0.97 1.00
Incoherence 0.11 0.73 0.81 0.89
Wrong Guideline 0.13 0.85 0.90 0.96
Superfluous Text 0.20 0.55 0.66 0.78
Unsubstantiated Claims 0.31 0.47 0.60 0.74

Table 5: Error rates of Beluga-13B Eval-Prompt 3
on a sample of 100 explanations. Lower is better.

4.3.3 User Study on LLM Explanations

We display the results of our user study (designed
in Section 3.3) in Table 5. We also display the
IRR, which we computed using Gwet’s agreement
coefficient 1 (AC1) (Gwet, 2008; Fergadis and
Scheffler, 2022). Gwet’s AC1 is known to perform
well for IRR estimation on binary classification
tasks such as our user study: it was designed to
be more stable and less affected by prevalence
and marginal probability than Cohen’s kappa,
and this was confirmed by practical experiments
(Wongpakaran et al., 2013).

We can see that Beluga-13B produces
near-impeccable syntax, at least according to
annotators (2% of ‘‘Poor Syntax’’). It also does
a good job at producing coherent text (11%
of ‘‘Incoherence’’), and mostly understands
the guidelines (13% of ‘‘Wrong Guideline’’).
However, it tends to repeat itself somewhat
(20% of ‘‘Superfluous Text’’) and, most notably,
tends not to substantiate its claims with direct
references to the story (31% of ‘‘Unsubstanti-
ated Claims’’). Overall, annotators tend to agree
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Model RE CH EM SU EG CX Average

Human 3.37±0.12 3.55±0.11 3.42±0.11 3.11±0.13 3.58±0.10 3.48±0.10 3.42±0.06

Platypus2-70B 4.09±0.05 4.31±0.05 3.92±0.06 3.69±0.07 4.19±0.05 3.88±0.05 4.01±0.03

Llama-30B 4.19±0.05 4.38±0.04 4.04±0.06 3.63±0.09 4.31±0.05 3.98±0.05 4.08±0.03

Beluga-13B 4.06±0.08 4.10±0.06 3.75±0.08 3.54±0.08 3.90±0.08 3.69±0.07 3.84±0.05

Mistral-7B 4.12±0.05 4.25±0.05 3.86±0.06 3.56±0.08 4.11±0.05 3.82±0.04 3.95±0.03

Llama-7B 4.07±0.06 4.24±0.05 3.90±0.06 3.58±0.06 4.09±0.05 3.79±0.05 3.95±0.03

GPT-2 2.57±0.13 2.36±0.11 2.72±0.11 2.59±0.14 2.67±0.12 2.89±0.12 2.63±0.07

HINT 1.57±0.10 1.31±0.07 1.59±0.10 1.49±0.10 1.58±0.09 1.43±0.08 1.49±0.06

Table 6: Average Beluga-13B ratings for Eval-Prompt 1 with 95% confidence interval. Higher is better.

Model RE CH EM SU EG CX Average

Human 3.48±0.11 3.50±0.10 3.69±0.08 3.24±0.11 3.42±0.10 3.45±0.07 3.46±0.05

Platypus2-70B 4.26±0.08 4.31±0.08 4.05±0.07 3.46±0.10 3.94±0.06 3.55±0.07 3.93±0.03

Llama-30B 4.15±0.10 4.29±0.07 4.02±0.07 3.46±0.09 3.94±0.06 3.65±0.07 3.92±0.03

Beluga-13B 4.07±0.09 4.14±0.07 3.98±0.07 3.50±0.09 3.74±0.08 3.59±0.07 3.84±0.03

Mistral-7B 4.15±0.10 4.22±0.08 4.02±0.07 3.51±0.11 3.94±0.07 3.67±0.07 3.92±0.04

Llama-7B 4.13±0.10 4.14±0.09 3.90±0.08 3.48±0.09 3.78±0.08 3.56±0.08 3.83±0.05

GPT-2 2.40±0.10 2.37±0.09 2.74±0.10 2.85±0.11 2.60±0.09 2.88±0.09 2.64±0.05

HINT 2.12±0.11 2.13±0.08 2.23±0.10 2.28±0.11 2.05±0.08 2.05±0.09 2.15±0.06

Table 7: Average Mistral-7B ratings for Eval-Prompt 1 with 95% confidence interval. Higher is better.

with one another, as showed by the high values of
Gwet’s AC1.

The substantial rate of ‘‘Unsubstantiated
Claims’’ and the fact that 40% of all Eval-Prompt
3 ratings are not supported by an explana-
tion—despite the Eval-Prompt explicitly asking
for it—beg the question of whether Beluga-13B
truly understands the given task. We discuss this
question further in Section 5.

Takeaways. LLM explanations seem to be
specific to each considered human evaluation cri-
terion; however, a finer analysis with a user study
reveals that LLMs often struggle with following
guidelines and substantiating their explanations.

4.4 ASG1: LLM Performance in ASG
In this section, we discuss the performance of
LLMs at the ASG task compared to human
and previous models’ performance, as we ex-
panded the HANNA dataset with stories generated
from more recent models. Since Beluga-13B and
Mistral-7B display very high system-level corre-
lations with human ratings (see Figure 5), we use
their ratings as proxy for human ratings. Table 6
and Table 7 show the average Beluga-13B and
Mistral-7B ratings for Eval-Prompt 1 per model
per criterion for a few HANNA models (GPT-2,
HINT) and the Llama models.

We observe that LLMs perform remarkably
well, getting higher ratings than older models
(GPT-2) and even human stories. Beluga-13B
and Mistral-7B both seem to prefer the outputs
from larger LLMs (Platypus2-70B, Llama-30B)
to their own outputs, suggesting that the LLM
grading process cannot be explained simply by
a proxy for perplexity. Interestingly, in both
tables, Mistral-7B gets slightly higher ratings
than Beluga, with some differences being sta-
tistically discernible, which could be explained by
differences in fine-tuning data.

Takeaways. Larger models (Platypus2-70B,
Llama-30B) exhibit the best ASG performance,
with LLM ratings at least equal to those of
human stories. However, our setting involves
short stories of between 500 and 1,000 words;
generating longer stories may prove more diffi-
cult since maintaining large-scale coherence may
become an issue.

4.5 ASG2: Influence of Pretraining Data on
ASG Performance

In this section, we verify whether the LLM pre-
training data contains the WritingPrompts dataset
to check for model contamination, as advised by
Magar and Schwartz (2022), and to what extent
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Model Contamination (%)

Platypus2-70B 0.80
Llama-30B 1.80
Beluga-13B 4.40
Mistral-7B 2.50
Llama-7B 10.10

Table 8: Predicted contamination rates of the
WritingPrompts sample.

ASG performance is related with data exploitation,
e.g., through reproduction of training examples.

We use the MIN-K% PROB detection method (Shi
et al., 2024), which is based on the hypothesis that
unseen data will contain more outlier words with
low probability than seen data. Furthermore, it
does not require additional training. Given a sen-
tence and an LLM’s probability distribution of
the next token, MIN-K% PROB selects the top-k%
of tokens with the highest negative log-likelihood
and computes their average log-likelihood. We
can then detect if the sentence was included
in pretraining data by thresholding this average.
We follow Shi et al. (2024) and use k = 20 for
our two experiments.

Model Contamination. We sample 1,000 sto-
ries from the WritingPrompts dataset (Fan et al.,
2018), from which the HANNA human stories
come. Table 8 shows the predicted contamina-
tion rates of the WritingPrompts sample. Since
they are very low, this strongly suggests that the
WritingPrompts sample was not included in the
pretraining data of the evaluated models. We can
reasonably surmise that the same applies to the
whole WritingPrompts dataset.

Data Reproduction. We use the BooksMIA
dataset (Shi et al., 2024), which contains 9,870
samples of books labeled 0 if included in the
Books3 dataset (commonly used for pretrain-
ing LLMs) or 1 if released in or after January
2023. Since the BooksMIA data is labeled, we
compute the area under the ROC curve (AUC) ob-
tained with MIN-K% PROB thresholding. Results
are shown on Table 9.

We observe that the AUC detection score is
higher for larger models, e.g., it is easier to detect
if a book was in the pretraining data of a larger
LLM. The definition of the MIN-K% PROB measure
also means that larger LLMs tend to produce text
that is more similar to their pretraining data, such

Model AUC (%)

Platypus2-70B 92.1
Llama-30B 81.3
Beluga-13B 70.1
Mistral-7B 51.2
Llama-7B 55.1

Table 9: AUC detection score on the BooksMIA
dataset.

as fiction books, which could help explain their
better ASE ratings.

Takeaways. The better performance of larger
LLMs for ASG may be partially explained by
their tendency to generate text that is more similar
to their pretraining data, e.g., existing novels.

5 Discussion on LLM Performance

Our work is part of the ongoing research on the
general ability of LLMs for understanding and
thinking.

Mahowald et al. (2024) distinguish formal (the
statistical features of language) and functional lin-
guistic competence (the ability to use language
in the world) and show that LLMs are very suc-
cessful on formal linguistic tasks but struggle at
functional linguistic tasks. Bubeck et al. (2023) ar-
gue that LLMs do display impressive performance
at a wide variety of tasks but lack ‘‘slow thinking’’
capabilities, referring to the System 1–System 2
dichotomy introduced by Kahneman (2011).

Thus, the high performance of LLMs at ASE
should be interpreted with caution: we hypothesize
that the ‘‘rating’’ part of our story evaluation
experiments could be linked to formal linguistic
competence and the fast, automatic System 1,
while the ‘‘explanation’’ part would correspond
to functional linguistic competence and the slow,
conscious System 2.

This analogy would explain the good correla-
tions of LLM ratings with human ratings: The
internal criterion of LLMs for story evaluation
may be formal quality (vocabulary, syntax, gram-
mar), regardless of the criterion mentioned in the
Eval-Prompt. Indeed, the six criteria from Chhun
et al. (2022) are mostly orthogonal but not com-
pletely independent: Their correlation with one
another may be related to the general ‘‘System 1’’
tendency of human raters to favor stories that dis-
play better formal qualities. In that sense, LLMs
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may reflect a human bias towards easy, intuitive
thinking. By contrast, the less convincing perfor-
mance of LLMs at explaining their ratings may
highlight their weaker System 2 capabilities as
argued by Mahowald et al. (2024) and Bubeck
et al. (2023).

6 Conclusions

6.1 Practical Takeaways

1. Used with prompts based on specific crite-
ria, LLMs are currently the best proxy
for human evaluation of story genera-
tion (Section 4.1.2). In particular, LLMs
display very high system-level correlations
with human judgment.

2. LLMs are remarkably self-consistent
(Section 4.1.1), exhibiting very high intra-
class coefficient values;

3. LLMs understand the ASE task only
partially (Section 4.3.3): They struggle
to explain their answers with substantiated
claims.

4. For ASE, providing detailed guidelines
(Eval-Prompt 3) did not lead to im-
proved correlations with human ratings
(Section 4.2.3). Providing a human story
for reference (Eval-Prompt 4) yields mixed
results.

5. LLM stories have at least equal ASE rat-
ings to human stories (Section 4.4), with
larger LLMs exhibiting the best performance.

6. Pretraining data helps explain LLM per-
formance at ASG (Section 4.5): The higher
ratings of larger LLMs may be due to their
ability to produce output similar to existing
books.

6.2 Limitations and Future Directions

The ASE task is a very subjective one: LLM
performance at ASE and ASG must be seen as a re-
flection of average preferences and may therefore
include biases, e.g., from their pretraining data.

Furthermore, we performed most of our ex-
periments in a zero-shot setting without further
training; it would be interesting to compare our
results with future work involving fine-tuning or
reinforcement learning with human feedback on
data specific to ASE.

Also, we did not conduct our experiments with
LLMs that were optimized for long inputs and
outputs, such as GPT-4.

Finally, we mainly used source-available
LLama models and found that they performed
at least as well as ChatGPT, a proprietary model.
We encourage the NLP community to favor the
use of such models, as the growing presence of
closed models hinders research transparency and
reproductibility.
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Clavel, and Pablo Piantanida. 2021. Automatic
text evaluation through the lens of Wasserstein
barycenters. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 10450–10466,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.
https://doi.org/10.18653/v12021
.emnlp-main.817

Daniel Deutsch, Rotem Dror, and Dan Roth. 2022.
On the limitations of reference-free evaluations
of generated text. In Proceedings of the 2022
Conference on Empirical Methods in Natural
Language Processing, pages 10960–10977,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics. https://
doi.org/10.18653/v1/2022.emnlp
-main.753

Robert Dickman. 2003. The four elements of every
successful story. Reflections - Society for Orga-
nizational Learning, 4(3):51–58. https://doi
.org/10.1162/15241730360580212

Bosheng Ding, Chengwei Qin, Linlin Liu,
Yew Ken Chia, Boyang Li, Shafiq Joty, and
Lidong Bing. 2023. Is GPT-3 a good data
annotator? In Proceedings of the 61st Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers),
pages 11173–11195, Toronto, Canada. As-
sociation for Computational Linguistics.
https://doi.org/10.18653/v1/2023
.acl-long.626

Yao Dou, Maxwell Forbes, Rik Koncel-
Kedziorski, Noah A. Smith, and Yejin
Choi. 2022. Is GPT-3 text indistinguishable
from human text? Scarecrow: A framework
for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 7250–7274,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.acl-long.501

Igor Douven. 2018. A Bayesian perspective
on Likert scales and central tendency. Psy-
chonomic Bulletin & Review, 25:1203–1211.
https://doi.org/10.3758/s13423
-017-1344-2, PubMed: 28752379

Edilivre. 2023. Concours de nouvelles 2023.
Accessed: 2023-10-12.

Majigsuren Enkhsaikhan, Wei Liu, Eun-Jung
Holden, and Paul Duuring. 2021. Auto-labelling
entities in low-resource text: A geological
case study. Knowledge and Information
Systems, 63:695–715. https://doi.org
/10.1007/s10115-020-01532-6

Angela Fan, Mike Lewis, and Yann Dauphin.
2018. Hierarchical neural story generation. In
Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 889–898,
Melbourne, Australia. Association for Compu-
tational Linguistics. https://doi.org
/10.18653/v1/P18-1082

Aris Fergadis and Benedikt Scheffler. 2022.
Chance-corrected agreement coefficients.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological
Bulletin, 76(5):378. https://doi.org/10
.1037/h0031619

Yang Gao, Wei Zhao, and Steffen Eger. 2020.
SUPERT: Towards new frontiers in unsuper-
vised evaluation metrics for multi-document
summarization. In Proceedings of the 58th
Annual Meeting of the Association for Com-
putational Linguistics, pages 1347–1354,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2020.acl-main.124

Daniel R. George, Heather L. Stuckey, and
Megan M. Whitehead. 2014. How a creative

1137

https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.18653/v1/2023.findings-ijcnlp.16
https://doi.org/10.18653/v1/2023.findings-ijcnlp.16
https://doi.org/10.18653/v1/2021.emnlp-main.817
https://doi.org/10.18653/v1/2021.emnlp-main.817
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.1162/15241730360580212
https://doi.org/10.1162/15241730360580212
https://doi.org/10.18653/v1/2023.acl-long.626
https://doi.org/10.18653/v1/2023.acl-long.626
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.3758/s13423-017-1344-2
https://doi.org/10.3758/s13423-017-1344-2
https://pubmed.ncbi.nlm.nih.gov/28752379
https://doi.org/10.1007/s10115-020-01532-6
https://doi.org/10.1007/s10115-020-01532-6
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124


storytelling intervention can improve med-
ical student attitude towards persons with
dementia: A mixed methods study. Dementia,
13(3):318–329, https://doi.org/10
.1177/1471301212468732, PubMed:
24770946

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty,
Ralph Weischedel, and Nanyun Peng. 2020.
Content planning for neural story generation
with Aristotelian rescoring. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 4319–4338, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.emnlp-main.351

Yvette Graham and Timothy Baldwin. 2014.
Testing for significance of increased correla-
tion with human judgment. In Proceedings of
the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 172–176, Doha, Qatar. Association for
Computational Linguistics. https://doi
.org/10.3115/v1/D14-1020

Jian Guan, Fei Huang, Zhihao Zhao,
Xiaoyan Zhu, and Minlie Huang. 2020.
A knowledge-enhanced pretraining model for
commonsense story generation. Transactions of
the Association for Computational Linguistics,
8:93–108. https://doi.org/10.1162
/tacl a 00302

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu,
Wenbiao Ding, and Minlie Huang. 2021. Long
text generation by modeling sentence-level and
discourse-level coherence. In Proceedings of
the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th
International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 6379–6393, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2021.acl-long.499

Kilem Li Gwet. 2008. Computing inter-rater
reliability and its variance in the pres-
ence of high agreement. British Journal of
Mathematical and Statistical Psychology,
61(1):29–48. https://doi.org/10.1348
/000711006X126600, PubMed: 18482474

Kevin A. Hallgren. 2012. Computing inter-rater
reliability for observational data: An overview
and tutorial. Tutorials in Quantitative Methods

for Psychology, 8(1):23. https://doi.org
/10.20982/tqmp.08.1.p023, PubMed:
22833776

Andrew F. Hayes and Klaus Krippendorff.
2007. Answering the call for a standard reli-
ability measure for coding data. Communi-
cation Methods and Measures, 1(1):77–89.
https://doi.org/10.1080/19312450
709336664

Mohieddin Jafari and Naser Ansari-Pour. 2019.
Why, when and how to adjust your P val-
ues? Cell Journal (Yakhteh), 20(4):604–607.
https://doi.org/10.22074/cellj
.2019.5992

João Ricardo de Oliveira Júnior, Ricardo
Limongi, Weng Marc Lim, Jacqueline K.
Eastman, and Satish Kumar. 2023. A story
to sell: The influence of storytelling on
consumers’ purchasing behavior. Psychology
& Marketing, 40(2):239–261. https://doi
.org/10.1002/mar.21758

Daniel Kahneman. 2011. Thinking, Fast and
Slow. Farrar, Straus and Giroux.

Maurice G. Kendall. 1938. A new measure of
rank correlation. Biometrika, 30(1/2):81–93.
https://doi.org/10.2307/2332226

Nitish Shirish Keskar, Bryan McCann, Lav R.
Varshney, Caiming Xiong, and Richard Socher.
2019. CTRL: A conditional transformer lan-
guage model for controllable generation. ArXiv
preprint, abs/1909.05858v2.

Takeshi Kojima, Shixiang Shane Gu, Machel
Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models
are zero-shot reasoners. In Advances in Neural
Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Boyang Li, Stephen Lee-Urban, George Johnston,
and Mark Riedl. 2013. Story generation with
crowdsourced plot graphs. Proceedings of the
AAAI Conference on Artificial Intelligence,
27(1):598–604. https://doi.org/10
.1609/aaai.v27i1.8649

Wing Lian, Bleys Goodson, Eugene
Pentland, Austin Cook, Chanvichet Vong, and
‘‘Teknium’’. 2023. OpenOrca: An open dataset
of GPT augmented FLAN reasoning traces.

Chin-Yew Lin. 2004. ROUGE: A package for
automatic evaluation of summaries. In Text

1138

https://doi.org/10.1177/1471301212468732
https://doi.org/10.1177/1471301212468732
https://pubmed.ncbi.nlm.nih.gov/24770946
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.3115/v1/D14-1020
https://doi.org/10.3115/v1/D14-1020
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.1348/000711006X126600
https://doi.org/10.1348/000711006X126600
https://pubmed.ncbi.nlm.nih.gov/18482474
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/10.20982/tqmp.08.1.p023
https://pubmed.ncbi.nlm.nih.gov/22833776
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664
https://doi.org/10.22074/cellj.2019.5992
https://doi.org/10.22074/cellj.2019.5992
https://doi.org/10.1002/mar.21758
https://doi.org/10.1002/mar.21758
https://doi.org/10.2307/2332226
https://doi.org/10.1609/aaai.v27i1.8649
https://doi.org/10.1609/aaai.v27i1.8649


Summarization Branches Out, pages 74–81,
Barcelona, Spain. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. ArXiv
preprint, abs/1907.11692v1.

Vincenzo Lombardo and Rossana Damiano. 2012.
Storytelling on mobile devices for cultural
heritage. New Review of Hypermedia and Mul-
timedia, 18(1-2):11–35. https://doi.org
/10.1080/13614568.2012.617846

Qingsong Ma, Johnny Wei, Ondřej Bojar, and
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Cercas Curry, and Verena Rieser. 2017. Why
we need new evaluation metrics for NLG. In
Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2241–2252, Copenhagen, Denmark.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D17
-1238

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo
Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul F.
Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions
with human feedback. In Advances in Neural
Information Processing Systems, volume 35,
pages 27730–27744. Curran Associates, Inc.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. BLEU: A method for
automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania,
USA. Association for Computational Linguis-
tics. https://doi.org/10.3115/1073083
.1073135

1139

https://doi.org/10.1080/13614568.2012.617846
https://doi.org/10.1080/13614568.2012.617846
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.1016/j.tics.2024.01.011
https://doi.org/10.1016/j.tics.2024.01.011
https://pubmed.ncbi.nlm.nih.gov/38508911
https://doi.org/10.1007/BF01068179
https://doi.org/10.1007/BF01068179
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1080/00031305.2018.1527253
https://doi.org/10.1080/00031305.2018.1527253
https://doi.org/10.1016/j.tree.2021.10.009
https://doi.org/10.1016/j.tree.2021.10.009
https://pubmed.ncbi.nlm.nih.gov/34799145
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Karl Pearson. 1895. VII. Note on regression
and inheritance in the case of two parents.
Proceedings of the Royal Society of London,
58(347–352):240–242. https://doi.org
/10.1098/rspl.1895.0041
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