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Abstract
Few-shot Aspect Category Sentiment Analy-
sis (ACSA) is a crucial task for aspect-based
sentiment analysis, which aims to detect sen-
timent polarity for a given aspect category in
a sentence with limited data. However, few-
shot learning methods focus on distance met-
rics between the query and support sets to
classify queries, heavily relying on aspect dis-
tributions in the embedding space. Thus, they
suffer from overlapping distributions of aspect
embeddings caused by irrelevant sentiment
noise among sentences with multiple sentiment
aspects, leading to misclassifications. To solve
the above issues, we propose a metric-free
method for few-shot ACSA, which models the
associated relations among the aspects of sup-
port and query sentences by Dual Relations
Propagation (DRP), addressing the passive ef-
fect of overlapping distributions. Specifically,
DRP uses the dual relations (similarity and
diversity) among the aspects of support and
query sentences to explore intra-cluster com-
monality and inter-cluster uniqueness for alle-
viating sentiment noise and enhancing aspect
features. Additionally, the dual relations are
transformed from support-query to class-query
to promote query inference by learning class
knowledge. Experiments show that we achieve
convincing performance on few-shot ACSA,
especially an average improvement of 2.93%
accuracy and 2.10% F1 score in the 3-way
1-shot setting.

1 Introduction

Aspect Category Sentiment Analysis (ACSA)
(Seoh et al., 2021; Cai et al., 2021; Xiao et al.,
2021; Chen et al., 2022a; Li et al., 2022a,b) is a

∗Corresponding author.

fine-grained sentiment analysis task, which aims
to identify sentiment polarity for a given aspect
category in a sentence. For example, given a pre-
defined aspect category ‘‘Staff ’’ and a sentence
‘‘High rates for just ok room but the server keeps
me waiting 1.5 hours’’, ACSA aims to identify
sentiment polarity towards the aspect ‘‘Staff ’’ in
the sentence. Briefly, given an aspect category
and a sentence, an aspect embedding is obtained
from the original sentence to predict the sentiment
polarity of the aspect category in the sentence.

Existing methods mostly rely on sufficient
labeled data for each aspect category. Though
effective, they assume training and testing share a
predefined set of aspects. However, this assump-
tion becomes problematic in real-world scenarios
with many unseen aspect categories. Annotating
abundant data for these emerging aspects poses
a significant challenge, and there is a burden
of retraining models for newly encountered as-
pects. Therefore, generalizing experiences from
seen aspect categories to unseen ones becomes
crucial. This is where few-shot ACSA becomes
indispensable.

Existing few-shot learning methods (e.g., meta-
learning) mostly focus on distance metrics (Yang
et al., 2020; Wang et al., 2021; Lv et al., 2021;
Assran et al., 2022; Liu et al., 2022a). Among
these methods, the prototypical network is a dis-
tance metric method well known because of its im-
pressive performance. The prototypical network
uses the support set to generate a prototype for
each class and then classifies the query by mea-
suring the distance (e.g., Euclidean distance or
cosine similarity) with different prototypes in the
embedding space.
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Support Set

Task ID Aspect Sentence Sentiment

1 Staff
Although he looks fierce, the clerk is actually friendly. Positive
The staff keeps me waiting 2 hours but the decor looks pretty. Negative

2 Price
Promotional activities could boost sales growth. Positive
With low supply, the battery is more expensive. Negative

Query Set

Aspect Sentence Sentiment

Staff The buffet tastes great although the service is slack. Negative

Table 1: An episode consisting of two meta-tasks in a 2-way 1-shot setting during the meta-test phase.
The color highlights the sentiment contexts for aspects ‘‘Staff’’ and ‘‘ Price ’’. Grey words are irrel-
evant contexts, which can be considered as noise. In the query set, the dashed box indicates the input
of the query (i.e., aspect and sentence), whereas the full box denotes its expected output (i.e., senti-
ment label).

Though few-shot learning achieves impressive
progress, there are challenging issues for the few-
shot ACSA task. Specifically, simple distance
metrics struggle to address overlapping distri-
butions of aspect embeddings caused by irrele-
vant sentiment noise in scenarios (e.g., Table 1)
where each sentence may include many aspects
with different sentiment polarities. Generally,
overlapping distributions present an unclear de-
cision boundary among aspect embeddings with
different sentiment polarities, causing misclas-
sifications. Take the example in Figure 1; the
aspects ‘‘Service’’ and ‘‘Price’’ show a closer dis-
tance than ‘‘Service’’ and other aspects, indicat-
ing they tend to have the same sentiment polarity.
However, in reality, they should have opposite
sentiment polarities, resulting in final wrong pre-
dictions. Recent efforts have been devoted to
these issues. Liang et al. (2023) explored ex-
ternal knowledge (e.g., aspect-associated words
and aspect semantics) to alleviate irrelevant sen-
timent noise for enhancing aspect embeddings.
However, maintaining and updating the knowl-
edge base requires domain experts, making it
resource-intensive. Additionally, collecting abun-
dant knowledge for unseen aspect categories lim-
its scalability. Therefore, the mentioned issues are
still a considerable challenge. As the research on
few-shot ACSA is still young, a novel method is
expected to perform on the few-shot ACSA task.

To solve the above issues, we propose a
metric-free method to address the few-shot ACSA

Figure 1: Subfigure(a) shows an over-idealized distri-
bution and an overlapping distribution. Subfigure(b)
gives the reason for the overlapping distribution.

task by modeling Dual Relations Propagation
(DRP). Following the meta-learning formulation,
DRP is designed in a relation graph to explicitly
model the dual relations (i.e., similarity relation1

and diversity relation2) among support and query

1Similarity relation indicates that nodes from the same
sentiment label share similar sentiment features.

2Diversity relation indicates that nodes from different
sentiment labels express contrasting sentiment features.
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nodes. In the relation graph, each node is a
sentence-aspect pair, and its aspect embedding is
considered as the node feature in the embedding
space. Additionally, the dual relations are for-
malized as two undirected edges between a node
pair, and each relation has an associated strength
measure. Briefly, the similarity relation presents
a similarity strength between a connected node
pair, and the diversity relation gives a discrepancy
strength between them. With the relation graph,
the proposed method propagates and aggregates
the dual relations to explore intra-cluster com-
monality and inter-cluster uniqueness, alleviating
irrelevant sentiment noise and enhancing node
and edge features. Also, the dual relations are
transformed from support-query to class-query
to guide query inference by learning sentiment
class knowledge from the relation graph. Exten-
sive experiments show that the proposed method
outperforms strong baselines and obtains signif-
icant performance. Significantly, it surpasses the
latest baseline by 2.93% accuracy and 2.10% F1
score on average in the 3-way 1-shot setting. The
contributions are summarized as follows:

• An effective metric-free method for the
few-shot ACSA task is proposed by model-
ing dual relations propagation. The dual rela-
tions propagation exploits the similarity and
diversity among the support and query sets to
explore intra-cluster commonality and inter-
cluster uniqueness to address the passive ef-
fect of overlapping distributions caused by
irrelevant sentiment noise.

• The proposed method transforms the dual
relations from support-query to class-query
to promote query inference by learning sen-
timent class knowledge.

• Extensive experiments on four benchmark
datasets show that the proposed method out-
performs strong baselines and obtains sig-
nificant performance on few-shot ACSA.

2 Related Work

2.1 Aspect Category Sentiment Analysis

The ACSA task aims to detect sentiment polarity
for a specific aspect mentioned in a sentence.
Generally, it is used in recommendation systems
(Cui et al., 2020; Jannach et al., 2021; Ahmadian

et al., 2022) and intention detection (Hou et al.,
2021; Chen et al., 2022c; Zhou et al., 2022) to
understand the fine-grained sentiment of users. In
recent years, ACSA has attracted the attention of
researchers and developers.

Conventional methods focus on handcraft-
based and attention-based methods. Handcraft-
based methods (Ding et al., 2015; Liu et al., 2015)
utilize handcrafted features to establish the de-
pendency between a specific aspect and its con-
text. Attention-based methods (Su et al., 2021; Wu
et al., 2021; Liu et al., 2021) capture the interac-
tion between an aspect and its context. Recently,
some syntax-aware methods (Tian et al., 2021;
Li et al., 2021b; Xiao et al., 2022; Effland and
Collins, 2023) utilized Graph Neural Networks
(GNN) based on syntactical dependency trees to
exploit syntactic structure information. However,
these methods heavily rely on labeled data and
may fail to solve unseen aspect categories. There-
fore, few-shot learning is of great importance.

2.2 Few-Shot Learning

Few-shot learning (Tsendsuren and Hong, 2017;
Lee et al., 2019b; Zhang et al., 2022a) matches
the human learning process in that the few-shot
learner leverages a few labeled samples to ob-
tain new knowledge based on prior knowledge.
Few-shot learning has achieved promising pro-
cesses in Computer Vision (CV) (Huang et al.,
2021; Hu et al., 2022; Liu et al., 2022b; Ouyang
et al., 2022), Natural Language Processing (NLP)
(Hu et al., 2021; Tan et al., 2022; Chen et al.,
2022b; Gao et al., 2022), etc. Especially in NLP,
a number of research works exist on few-shot
learning, such as few-shot aspect category detec-
tion (Zhao et al., 2023), few-shot named entity
recognition (Fang et al., 2023; Xu et al., 2023; Ma
et al., 2023), few-shot relation extraction (Chen
et al., 2023; Li et al., 2023), etc.

Few-shot learning mainly contains meta-
learning, prompt learning, and data augmentation.
Meta-learning (Sung et al., 2018) leverages prior
experiences to enable the model to obtain learn-
ing abilities and generalize them to new fields.
Prompt learning (Lu et al., 2022) constructs task-
related prompts to guide large language models
to generate task-specific outputs. Data augmen-
tation (Zhang et al., 2020) transforms existing
samples to expand the dataset to promote the
model to learn data patterns and features.
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2.3 Meta-Learning

In recent years, meta-learning has been the main
few-shot learning method due to its impressive
performance, including model-based (Tsendsuren
and Hong, 2017), optimization-based (Lee et al.,
2019b), and metric-based (Assran et al., 2022;
Wang et al., 2021; Lv et al., 2021) methods.
Among them, metric-based methods are the most
popular research line on meta-learning due to their
simplicity and effectiveness. The main idea (Yu
et al., 2022; Zhang et al., 2022b) is to use an epi-
sode paradigm to project support and query sam-
ples to an embedding space and then measure their
distances to predict query labels. However, these
methods heavily rely on aspect distributions in
the embedding space. Therefore, they suffer from
overlapping distributions of aspect embeddings
caused by irrelevant sentiment noise among sen-
tences with different sentiment aspects. Recently,
Hosseini-Asl et al. (2022) proposed a generative
method to explore aspect semantics to capture the
interactions between a specific aspect and its con-
text. More recently, Liang et al. (2023) leveraged
aspect-associated words from an external knowl-
edge base (Cambria et al., 2020) to construct
two auxiliary sentences to enhance aspect em-
beddings. Unfortunately, their improvements are
limited due to the complexity of semantic relations
and knowledge structures. Therefore, these meth-
ods still struggle to handle irrelevant sentiment
noise in scenarios where each sentence contains
different sentiment aspects.

Unlike the mentioned methods, the proposed
method explores the shared features among sam-
ples in a class and diverse features in separate
classes to model the dual relations (similarity and
diversity) among samples. With relation prop-
agation and aggregation, the proposed method
alleviates irrelevant sentiment noise and enhances
sample features to improve performance on the
few-shot ACSA task. Compared to previous meth-
ods, the proposed method works well in scenarios
where each sentence contains different sentiment
aspects.

3 Proposed Method

The overall architecture of the proposed method
is shown in Figure 2. Broadly, the proposed
method includes four components: relation graph
construction, support-query relation propagation,
class-query relation transformation, and training

objective. Here, we present the proposed method
in detail.

3.1 Problem Formulation
Following the meta-learning formulation, we han-
dle the few-shot ACSA task in an episode
paradigm. Meta-learning takes the meta-task as
the basic unit and constructs episodes to train/test
the model in meta-train, meta-val, and meta-test
phases. An episode consists of meta-tasks, and
each meta-task consists of a support set S and a
query set Q for a specific aspect. Therefore, we di-
vide the aspects into Ttrain, Tval, and Ttest, where
Ttrain ∩ Tval ∩ Ttest = ∅. The segmentation strat-
egy generalizes sentiment knowledge from seen
aspects to emerging unseen aspects. Formally, we
suppose that Λa aspects mentioned in the dataset
are written as:

Ttrain = {τ1, τ2, ..., τΛt}, (1)
Tval = {τΛt+1, τΛt+2, ..., τΛg}, (2)
Ttest = {τΛg+1, τΛg+2, ..., τΛa}. (3)

In the meta-train phase, the model is trained
on Ttrain through episodes. An episode consists
of meta-tasks, and each meta-task is related to
an aspect. Specifically, the meta-learner extracts
a meta-task for each aspect in Ttrain to construct
the episode. For a meta-task, the meta-learner first
utilizes a N -way K-shot setting to construct S ,
i.e., there are N classes (i.e., N sentiment labels),
and each class has K samples. Then, T samples
are randomly selected from the remaining samples
of the N classes to construct the query set Q.
Meta-task aims to use S to classify query samples
and minimize the loss of query prediction. We use
x, a, and y to define the support set and the query
set, where x and a represent the sentence and its
aspect, and y is the sentiment label of the aspect
a (a ∈ Ttrain) in the sentence x. In an episode, S
and Q could be written as:

S := {(xsi , asi , ysi )}, iε[1, |S|], (4)
Q := {(xqi , a

q
i )}, iε[1, |Q|], (5)

where |S| = N×K×Λt, and |Q| = N×T ×Λt.
N is the number of labels, K and T denote the
number of samples for each label. Also, Λt is
associated with the number of meta-tasks and
could be realized as the number of aspects in
Ttrain, as shown in Equation 1.

In the meta-val or meta-test phase, the
meta-learner aims to verify the effectiveness of the
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Figure 2: The overall architecture of the proposed method. The relation graph consists of support (circle) and
query (triangle) nodes, and different colors mark different sentiment polarities of these nodes. In the relation
graph, the arrow direction of edges represents the relation propagation or aggregation. In class-query relation
transformation, emoji nodes (c1, c2, and c3) are considered as sentiment class nodes.

model in Tval/Ttest. Unlike the meta-train phase,
the meta-learner only constructs a fixed support
set S for each aspect based on Tval/Ttest and then
takes the remaining samples in the dataset as the
query set, as shown in Table 1. The meta-learner
aims to use S to predict the labels of query sam-
ples in Q and evaluate the performance of the
proposed method. Finally, we report the corre-
sponding results of the meta-test phase when the
meta-val phase obtains the best results.

3.2 Overall Framework

As shown in Figure 2, the proposed method
includes four components: relation graph con-
struction, support-query relation propagation,
class-query relation transformation, and training
objective. Specifically, the proposed method de-
signs a simple yet effective relation graph. The
relation graph is an undirected, fully connected
graph that aims to model dual relations (i.e., sim-
ilarity and diversity) among support and query
nodes. In the relation graph, each node is a
sentence-aspect pair, and its aspect embedding
(see Equation 7) is considered as the node feature.
Additionally, two edges are used to connect two
nodes, and edge features indicate the similarity
and diversity strength between these two nodes.

With the relation graph, the proposed method
propagates dual relations to enrich node features
from edges to nodes and aggregates dual rela-

tions to update edge features from nodes to edges.
Briefly, the propagation and aggregation of the
dual relations enhance node and edge features
and alleviate irrelevant sentiment noise by explor-
ing intra-cluster commonality and inter-cluster
uniqueness. Besides, the dual relations are trans-
formed from support-query to class-query to pro-
mote query inference effectively.

3.3 Relation Graph Construction

We present the relation graph construction, in-
cluding node initialization and edge initialization,
as shown on the left of Figure 2. The relation
graph is defined as G = (V , E+, E−), where V =
{Vi}Mi=1 denotes the set of nodes, E+ = {E+

ij}Mi,j
and E− = {E−

ij}Mi,j indicate similarity edges and
diversity edges, respectively, and M is the to-
tal number of nodes. Briefly, two edges as dual
bridges are built between two adjacent nodes to
represent the similarity and diversity relations of
the node pair. Besides, vi represents the features
of node Vi, and e+ij and e−ij indicate the features
of edges E+

ij and E−
ij . The following initializa-

tion of nodes and edges is presented in the rela-
tion graph.

3.3.1 Node Initialization

Given a sentence-aspect pair (x, a), the sentence
x with n words is defined as x = {w1, w2, ...,
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wn}, and the aspect a = {s1, s2, . . . , sm} con-
sists of m words. The sentence and aspect are
concatenated to construct ‘‘[CLS], x, [SEP], a,
[SEP]’’ as an input to an encoder (e.g., BERT
[Devlin et al., 2019]) to generate hidden states H .

H = Encoder([CLS, x, SEP , a, SEP ]), (6)

where H ∈ R(n+m+3)×d denotes the hidden
states of the input, and d is the dimension of
hidden states. Then, a mean pooling layer obtains
the aspect embedding as node features.

v(0) = MeanPoolLayer(H), (7)

where v(0) ∈ Rd indicates a node feature pro-
jected to an embedding space in the 0th layer.

3.3.2 Edge Initialization

Between a node pair Vi and Vj , two edges E+
ij

and E−
ij represent the similarity and diversity re-

lations of the two nodes, and the edge features
e+ij and e−ij represent the strength of similarity
and diversity relations. Briefly, e+ij is a proba-
bility that nodes Vi and Vj from the same class,
while e−ij is the probability that they belong to
different classes.

Therefore, node labels could be used to initial-
ize dual-edge features by exploiting intra-cluster
commonality and inter-cluster uniqueness.

e
+(0)
ij /e

−(0)
ij =

⎧⎪⎨
⎪⎩

1/− 1, if yi = yj , {V (0)
i , V

(0)
j } ∈ S

−1/1, if yi �= yj , {V (0)
i , V

(0)
j } ∈ S

0/0, otherwise
(8)

where yi is the label of node V
(0)
i .

In the relation graph, for inter-cluster nodes,
the lower the similarity strength, the greater the
difference between them; conversely, for intra-
cluster nodes, the lower the diversity strength, the
more common features they share.

3.4 Support-Query Relation Propagation

The relation graph promotes the modeling of
support-query relations. As shown in Figure 2,
the component includes dual relations propaga-
tion and aggregation, which aims to learn discrim-
inative node and edge features.

3.4.1 Dual Relations Propagation

The dual relations propagation enriches node
features from dual edges to nodes by learning
neighborhood knowledge. Specifically,

ṽ
(l)
i = [

∑

j

e
+(l−1)
ij

∑
k e

+(l−1)
ik

v
(l−1)
j ;

∑

j

e
−(l−1)
ij

∑
k e

−(l−1)
ik

v
(l−1)
j ],

(9)

v
(l)
i = W1ReLU(MLP (ṽ

(l)
i ) + v

(l−1)
i ) + b1, (10)

where v
(l)
i represents the ith node feature in the

lth layer. ṽ(l)i utilizes normalized dual-edge fea-
tures to merge similarity and diversity node fea-
tures. MLP (∗) is a multi-layer perception, and
ReLU(∗) is an activation function. [∗; ∗] denotes
the concatenation between two vectors. W1 and
b1 are trainable parameters.

3.4.2 Dual Relations Aggregation

The dual relations aggregation uses the latest
node features to update edge features to learn ro-
bust dual relations. Specifically,

B = LayerNorm(MLP (v
(l)
i − v

(l)
j )), (11)

ẽ
+(l)
ij = MLP (ReLU(B +max(v

(l)
i , v

(l)
j ))),

(12)

ẽ
−(l)
ij = MLP (ReLU(B +min(v

(l)
i , v

(l)
j ))),

(13)

where LayerNorm(∗) is a layer normalization,
and max(∗, ∗) and min(∗, ∗) are element-wise
operations. ẽ+(l)

ij and ẽ
−(l)
ij denote the similarity

and diversity edge features between nodes V
(l)
i

and V
(l)
j in the lth layer. Then, dual-edge fea-

tures are normalized by other edges connected to
the node.

ê
+(l)
ij =

ẽ
+(l)
ij

∑
k ẽ

+(l)
ik

, ê
−(l)
ij =

ẽ
−(l)
ij

∑
k ẽ

−(l)
ik

, (14)

e
+(l)
ij =

ê
+(l)
ij

||[ê+(l)
ij ; ê

−(l)
ij ]||2

, e
−(l)
ij =

ê
−(l)
ij

||[ê+(l)
ij ; ê

−(l)
ij ]||2

,

(15)

where || ∗ ||2 denotes L2 norm.
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During relation propagation, the sentiment la-
bel of a query node can be predicted by final edge
voting with support labels. However, edge voting
makes the prediction difficult because the rela-
tion graph contains many edges. Therefore, the
proposed method transforms support-query rela-
tions into class-query relations to promote query
inference effectively.

3.5 Class-Query Relation Transformation

As shown in Figure 2, the proposed method
transforms dual relations from support-query to
class-query by learning sentiment class knowl-
edge, which models the relations between a query
and different sentiment classes to promote query
inference further.

3.5.1 Class Node Generation

First, the proposed method generates class node
features from the features of support and query
nodes by space projection.

P = softmax(W2V
(l) + b2), (16)

V (l)
c = P TV (l), (17)

where V (l) ∈ RM×d denotes the original node set
in the lth layer, and V

(l)
c ∈ RG×d indicates the

sentiment class node set. M and G are the num-
ber of original nodes and sentiment class nodes,
respectively. In Figure 2, we use ci to represent
each class node feature vector. Additionally, P is
a probability matrix with size M ×G from orig-
inal nodes to sentiment class nodes. W2 and b2
are trainable parameters. The softmax(∗) function
ensures that elements in each row of P are in
the range [0, 1], and the sum of elements in each
row is 1.

3.5.2 Dual Relations Transformation

The dual relations transformation from support-
query to class-query is written as:

E+/−(l)
c = P TE+/−(l)P, (18)

where E+/−(l) is the similarity/diversity relation
adjacency matrix with size M ×M for support
and query nodes. E+/−(l)

c is the similarity/diver-
sity relation adjacency matrix with size G×G
for class and query nodes. Therefore, the label of

a query can be predicted by the sentiment label of
the class with the strongest similarity to the query.

3.6 Training Objective

During the meta-train phase, we suppose there
are k sentiment classes. Given a query qi, the
strength score of the similarity relation between
it and sentiment classes is defined as Zi =

{zi1, zi2, ..., zik} ∈ Rk, i.e., zij = e
+(l)
ij (j ∈

{1, 2, ..., k}). The one-hot label of qi is defined as
yi = {yi1, yi2, . . . , yik} ∈ {0, 1}k, where yij = 1
indicates qi belongs to jth class. For training, we
define the positive set Ωpos

i = {zij ∈ Zi|yij = 1}
and the negative set Ωneg

i = {zij ∈ Zi|yij = 0}.
For the query qi, the contrastive training ob-

jective (Su et al., 2022) minimizes the following
loss function.

Li = log(1+
∑

zik∈Ω
neg
i

zij∈Ω
pos
i

ezik−zij +
∑

zik∈Ω
neg
i

ezik−r+
∑

zij∈Ωpos
i

er−zij )

= log(ere−r+
∑

zik∈Ω
neg
i

ezik
∑

zij∈Ωpos
i

e−zij +e−r
∑

zik∈Ω
neg
i

ezik

+ er
∑

zij∈Ωpos
i

e−zij )

= log((er +
∑

zik∈Ω
neg
i

ezik )(e−r +
∑

zij∈Ωpos
i

e−zij ))

= log(er +
∑

zik∈Ωneg
i

ezik ) + log(e−r +
∑

zij∈Ω
pos
i

e−zij ),

(19)

where r is an anchor. The optimization objective
Li is to ensure that the scores in Ωpos

i are greater
than r and the scores in Ωneg

i are less than r. We
set r = 0 to promote the strength of the simi-
larity relation in intra-cluster are positive and in
inter-cluster are negative.

Given a query set Q, the overall training ob-
jective is as follows.

L =
1

|Q|

|Q|∑

i=1

Li, (20)

where |Q| is the number of queries.
During the meta-test phase, we use the simi-

larity strength score Zi (Zi = {zi1, zi2, ..., zik} ∈
Rk) between the query qi and different sentiment
classes to predict the label ŷi of qi. The higher the
similarity score, the closer the distance.

ŷi = argmax
j

zij , {zij > 0|zij ∈ Zi}. (21)
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Datasets Rest I Res II Lap Mams

#Asp. 4 8 12 8
#Pos. 2596 1825 1499 2415
#Neu. 583 105 112 3863
#Neg. 1145 823 950 2606

Table 2: Statistics of four datasets. #Asp. denotes
the number of aspect categories in datasets. #Pos.,
#Neu., and #Neg. indicate the number of positive,
neutral, and negative sentiment polarities.

4 Experiments

4.1 Experimental Setup

Datasets. Extensive experiments are conducted
on four datasets: Rest I, Rest II, Lap, and Mams.
These four datasets were collected by Liang et al.
(2023) for the few-shot ACSA task. Rest I and
Rest II originate from the restaurant domain, with
Rest II providing a fine-grained aspect (entity
#attribute) compared to Rest I (entity). Lap is
obtained from the laptop domain to explore per-
formance in other domains. For these three data-
sets, most sentences contain only one or multiple
aspects with the same sentiment polarity. There-
fore, Mams presents a more complex scenario,
where each sentence includes many aspects with
different sentiment polarities. The detailed sta-
tistics are presented in Table 2. Our code and
data are available at https://github.com
/sentiments-Ananda/FSACSA.

Evaluation Metric. Following previous meth-
ods (Li et al., 2021a; Liang et al., 2023), we use
accuracy and F1 score to evaluate and compare
the performance of the proposed method.

Implementation Details. The proposed method
is implemented with PyTorch (version 1.10.0).
The uncased English version of BERT is our en-
coder for H (see Equation 6). In practice, the
bottom layers of large language models are un-
necessary (Lee et al., 2019a). Thus, we freeze
the first six layers of BERT to reduce trainable
parameters. We conduct experiments on a single
GPU (RTX 3090 Ti) with CUDA version 11.3.
The model is trained by the AdamW optimizer.
To ensure a fair comparison, we follow Liang
et al. (2023) to obtain experiment results by us-
ing a four-fold cross-validation. For example, a

dataset has eight aspects, and these aspects are
divided into four folds. We take each fold as the
testing set and the others as the validation and
training sets, and the splitting proportion is 1:1:2
for testing, validation, and training. The sche-
matic diagram of the four-fold cross-validation is
shown in Figure 3. Therefore, we can obtain four
experiment results, and the average of these four
experiment results is calculated to evaluate the
performance of the proposed method.

4.2 Baselines

We compare the proposed method with a series
of strong baselines to evaluate performance on
the few-shot ACSA task.

• Question-Driven (Sun et al., 2019): For an
aspect, it designs the corresponding ques-
tion prompt to guide a large language model
(e.g., BERT) to identify sentiment polarity
towards the aspect. For example, the prompt
is ‘‘The polarity of the aspect safety is pos-
itive’’, and then the large language model
outputs a probability value of yes as the
matching score to determine if the sentiment
of safety is positive. Although the method
achieves impressive performance, it heavily
relies on the quality of prompts. It is hard
to find a great prompt to obtain the best
performance.

• MIMLLN (Li et al., 2020): In a sentence,
it first extracts some aspect-associated words
to depict the context of a specific aspect.
Then, the method combines the sentiment
information of these words to predict the
overall sentiment polarity towards the aspect.
Though effective, it focuses on the sentiment
of individual words and fails to capture the
entire semantic content.

• CapsNet (Jiang et al., 2019): It designs a
capsule-guided routing method to model the
interactions between an aspect and its con-
texts. Specifically, the method constructs a
set of capsules by linear transformation and
squashing activation (Sabour et al., 2017).
These capsules use aspect-associated words
to construct a sentiment matrix to learn some
sentiment knowledge for a specific aspect.
Then, the method utilizes the sentiment ma-
trix to learn the relationship between an
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Figure 3: The schematic diagram of four-fold cross-validation.

aspect and its contexts for predicting the
sentiment label of the aspect.

• Relation Network (Sung et al., 2018): In
the meta-learning formulation, a neural net-
work computes the similarity scores between
each query sample and all support samples.
The similarity score represents the relation
strength between the query sample and differ-
ent support samples. Therefore, the method
leverages the support label that exhibits the
highest similarity to the query to deduce the
label of a query sample.

• Induction Network (Geng et al., 2019): It
performs a matrix transformation on support
samples to generate a class embedding for
each sentiment label. Then, a neural tensor
network (Geng et al., 2017) computes the
similarity scores between each query and all
class embeddings to determine which class
matches the query.

• MTM (Deng et al., 2020): It designs a
meta-pretraining strategy for a large language
model (e.g., BERT) to learn task-agnostic
general features that extract linguistic proper-
ties to benefit downstream few-shot learning
tasks. Then, task-specific parameters are
fine-tuned on the large language model for
the few-shot ACSA task to enable predic-
tions aligning with its specific requirements.

• AFML (Liang et al., 2023): It uses an exist-
ing knowledge-based method (Liang et al.,

2021) to collect highly aspect-associated
words from an external knowledge source
(e.g., SenticNet [Cambria et al., 2020]). Then,
it constructs two auxiliary sentences by mask-
ing aspect-associated words and masking
non-aspect words in the original sentence.
Finally, it combines these two auxiliary sen-
tences and the original sentence to enhance
the features of a specific aspect and highlight
the significant contextual sentiment clues
of the specific aspect to promote the senti-
ment prediction of the aspect.

• T5 (Raffel et al., 2020): It adopts an encoder-
decoder architecture, where the few-shot
ACSA task could be formulated as a text-to-
text problem. Specifically, the encoder part
encodes a sentence into hidden states, and
the decoder part takes the encoder outputs
and a specific aspect as inputs to identify the
sentiment polarity of the aspect. In experi-
ments, we use T5-base to evaluate the per-
formance of T5 for the few-shot ACSA task.

• MetaAdapt (Yue et al., 2023): Based on
meta-learning, it proposes a few-shot domain
adaptation method. The method divides a
dataset into a source domain and a target
domain, and it constructs the support set
in the source domain and the query set in
the target domain. Then, it leverages the
support set to train the model to obtain gra-
dients and evaluates the model on the query
set to get second-order gradients w.r.t. the
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Models

Rest I Rest II

3-way(%) 2-way(%) 3-way(%) 2-way(%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Relation Network (Sung et al., 2018) 53.25 70.36 70.72 87.13 58.32 73.50 78.72 82.25
MTM (Deng et al., 2020) 53.93 57.15 66.23 69.10 63.12 63.71 72.13 73.87
Induction Network (Geng et al., 2019) 72.03 74.75 82.77 85.96 76.53 78.17 82.70 83.55
MIMLLN (Li et al., 2020) 74.63 74.07 87.19 87.32 79.21 78.46 81.26 81.97
Question-Driven (Sun et al., 2019) 74.66 74.79 87.52 86.83 78.69 79.84 82.63 83.31
CapsNet (Jiang et al., 2019) 75.18 73.92 87.10 87.15 78.72 80.11 81.57 82.18
MetaAdapt (Yue et al., 2023) 65.06 74.74 87.69 86.42 70.20 79.44 82.68 83.58
T5 (Raffel et al., 2020) 77.01 78.15 81.61 85.85 81.26 82.36 85.48 87.57
AFML (Liang et al., 2023) 77.13 77.53 88.12 88.79 81.56 81.95 83.89 84.15
Our method 78.17 78.64 88.75 87.74 81.58 84.18 87.22 86.85

Table 3: Comparison of accuracy on Rest I and Rest II.

Models

Lap Mams

3-way(%) 2-way(%) 3-way(%) 2-way(%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Relation Network (Sung et al., 2018) 57.15 69.03 80.80 85.91 37.20 36.91 58.32 62.19
MTM (Deng et al., 2020) 51.99 53.22 66.15 68.19 37.58 36.26 58.33 57.90
Induction Network (Geng et al., 2019) 70.01 70.53 87.18 86.43 38.20 35.46 62.75 59.31
MIMLLN (Li et al., 2020) 68.79 70.03 87.03 86.18 36.52 37.43 62.30 63.17
Question-Driven (Sun et al., 2019) 70.30 68.82 86.17 87.15 36.08 35.44 63.17 61.05
CapsNet (Jiang et al., 2019) 71.53 69.82 86.82 86.73 37.12 36.98 61.61 63.75
MetaAdapt (Yue et al., 2023) 60.76 69.45 87.36 87.52 42.03 43.60 62.04 64.48
T5 (Raffel et al., 2020) 74.72 75.12 89.18 89.42 46.09 47.38 68.82 72.31
AFML (Liang et al., 2023) 72.96 73.80 88.17 88.67 40.07 40.35 65.57 66.30
Our method 76.05 75.51 88.21 87.75 47.66 45.86 69.77 68.56

Table 4: Comparison of accuracy on Lap and Mams.

original parameters. Additionally, it com-
putes the similarity between the original and
second-order gradients to select more ‘infor-
mative’ support samples. These selected sup-
port samples are used to reweight the support
set to optimize the model performance in
the query set. Therefore, the model can opti-
mally adapt to the target distribution with the
provided source domain knowledge.

5 Analysis & Discussion

5.1 Overall Performance

We conduct extensive experiments with 3/2-way
and 1/5-shot settings on Rest I, Rest II, Lap,
and Mams datasets. The results are reported in
Tables 3, 4, 5 and 6, where the best scores are
highlighted in bold, and the runner-up scores
are marked by underline, with the following
observations.

(1) Overall, the proposed method outperforms
most baselines. Additionally, we also observe that
two strong baselines, AFML and T5, achieve com-
petitive results, but their overall performance is
much worse than our proposed method. Specifi-
cally, in terms of accuracy, the proposed method
improves upon the strong baseline AFML up to
an average of 0.43%, 2.07%, 0.98%, and 4.89%
on Rest I, Rest II, Lap, and Mams, respectively.
Compared to T5, the proposed method achieves
an average of 2.67% and 0.79% accuracy im-
provements on Rest I and Rest II, respectively.
Although T5 obtains competitive performance on
Lap and Mams, it only outperforms our proposed
method by a margin of 0.23% and 0.68% in accu-
racy. More specifically, as for accuracy, in Table 3
and Table 4, T5 obtains convincing performance
on five scenarios due to the advantage of abun-
dant pre-trained knowledge in its encoder-decoder
architecture, but it has worse results than our pro-
posed method on the other 11 scenarios. Therefore,
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Models

Rest I Rest II

3-way(%) 2-way(%) 3-way(%) 2-way(%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Relation Network (Sung et al., 2018) 52.19 60.75 67.28 83.41 52.87 61.34 71.34 78.95
MTM (Deng et al., 2020) 53.83 53.79 63.54 65.19 61.14 60.05 70.47 71.45
Induction Network (Geng et al., 2019) 60.89 60.51 79.62 81.34 63.08 62.41 80.49 80.64
MIMLLN (Li et al., 2020) 61.24 61.53 82.08 83.44 64.21 63.20 78.84 79.51
Question-Driven (Sun et al., 2019) 62.69 62.52 83.93 83.40 64.18 64.61 80.03 80.15
CapsNet (Jiang et al., 2019) 60.84 60.82 82.44 83.01 65.78 64.29 81.22 79.85
MetaAdapt (Yue et al., 2023) 58.36 61.22 82.42 82.20 62.02 62.43 81.40 82.20
T5 (Raffel et al., 2020) 55.12 63.15 75.55 80.14 59.12 61.33 84.25 85.05
AFML (Liang et al., 2023) 64.05 62.87 74.53 74.68 66.19 63.58 81.74 81.28
Our method 64.49 63.30 86.06 85.16 67.62 66.51 85.03 84.55

Table 5: Comparison of F1 score on Rest I and Rest II.

Models

Lap Mams

3-way(%) 2-way(%) 3-way(%) 2-way(%)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Relation Network (Sung et al., 2018) 49.10 53.35 80.61 80.59 34.79 35.36 56.00 60.79
MTM (Deng et al., 2020) 50.11 51.47 62.23 64.69 36.96 35.21 52.23 50.65
Induction Network (Geng et al., 2019) 54.67 54.79 83.92 84.56 37.15 34.54 60.08 58.78
MIMLLN (Li et al., 2020) 53.71 53.66 84.59 83.87 36.03 36.92 59.41 60.59
Question-Driven (Sun et al., 2019) 54.80 54.43 84.75 84.21 35.79 34.66 60.37 60.13
CapsNet (Jiang et al., 2019) 54.30 53.26 83.53 83.39 35.92 35.12 58.63 62.65
MetaAdapt (Yue et al., 2023) 50.28 53.34 85.72 86.35 35.64 35.57 60.31 63.70
T5 (Raffel et al., 2020) 53.63 55.37 87.43 88.12 38.53 41.46 66.48 70.53
AFML (Liang et al., 2023) 54.75 52.06 85.92 86.27 38.46 34.09 64.36 65.33
Our method 58.91 56.49 86.15 87.52 40.84 38.82 66.54 66.48

Table 6: Comparison of F1 score on Lap and Mams.

our proposed method performs better than T5
for the few-shot ACSA task overall. Regarding
F1 score, the proposed method improves upon
AFML by 0.23%–11.53% on Rest I, Rest II, Lap,
and Mams. The proposed method improves upon
T5 by an average of 6.26%, 3.49%, and 1.13% F1
scores on Rest I, Rest II, and Lap, respectively.
Although T5 obtains competitive results for the
2-way setting on Lap, its average performance
is much worse due to the low F1 score for the
3-way setting. As for F1 score, although T5 also
obtains convincing performance on five scenarios
in Table 5 and Table 6, our proposed method still
outperforms the other 11 scenarios. The results
demonstrate the effectiveness of the proposed
method for the few-shot ACSA task. The proposed
method learns the similarity and diversity relations
among support and query samples to alleviate ir-
relevant sentiment noise and effectively predict
query labels by exploiting intra-cluster common-
ality and inter-cluster uniqueness.

(2) For all mentioned methods, the performance
of the 3-way setting on Rest I is inferior to those
on Rest II. This is because Rest II provides a
more fine-grained aspect (i.e., entity#attribute),
whereas Rest I only gives a general aspect (i.e.,
entity). For the 3-way setting, the proposed method
surpasses the strong baseline AFML by an average
improvement of 1.07% accuracy and 0.43% F1
score on Rest I and 1.12% accuracy and 2.18%
F1 score on Rest II. Besides, in the 3-way setting,
the proposed method surpasses the strong base-
line T5 by an average improvement of 0.82%
accuracy and 4.76% F1 score on Rest I and 1.07%
accuracy and 6.84% F1 score on Rest II. The
results indicate that our proposed method performs
better when given fine-grained aspects.

(3) Compared to generative model T5, the
proposed method achieves accuracy/F1 improve-
ments on Rest I, Rest II, Lap, and Mams. In
experiments, the proposed method is based on
the BERT-base model and freezes half of the
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Figure 4: The impact of DRP on Rest I, Rest II, Lap, and Mams datasets based on the accuracy metric.

parameters. However, the T5 model has large
amounts of parameters due to the advantage of
its encoder-decoder architecture. To ensure a fair
comparison, we freeze the encoder of the strong
baseline T5 (i.e., T5-base) to compare perfor-
mance with our proposed method. Although T5
obtains some competitive results due to its abun-
dant pre-trained knowledge, it performs worse
than our proposed method in most experiments.
Significantly, our proposed method improves
upon T5 by 10.51% at most and an average of
6.26% F1 score on Rest I. Additionally, our pro-
posed method achieves an average of 6.36% F1
score improvements in the 3-way 1-shot setting.
The results denote that T5 performs poorly on the
few-shot ACSA task due to irrelevant sentiment
noise in the above complex few-shot scenario.
In short, our proposed method alleviates irrel-
evant sentiment noise to improve performance
in few-shot scenarios by exploring intra-cluster
commonality and inter-cluster uniqueness.

5.2 Impact of Dual Relations Propagation
DRP is used to enhance similarity and diver-
sity relations among samples by exploiting intra-
cluster commonality and inter-cluster uniqueness.
To verify the impact of DRP, we design two
cases to evaluate the performance of the proposed
method. The first case uses cosine distance be-
tween a node pair to replace the learning of dual

relations to evaluate the importance of dual re-
lations propagation and aggregation. In another
case, the proposed method only learns the simi-
larity relation among samples to analyze whether
dual relations are essential. Thus, we redefine
the relation graph G = (V , E+) and use E+ =
{E+

ij}Mi,j instead of dual edges to evaluate the
proposed method.

The experimental results are presented in
Figure 4 for the Rest I, Rest II, Lap, and Mams
datasets. We can observe that DRP performs best
in these two cases. Specifically, DRP better en-
hances the similarity and diversity relations among
samples than simple cosine distances among
those to promote query inference to improve per-
formance. Also, DRP obtains more convincing
results than single similarity relation propagation
because DRP considers contrastive enhancement
between similarity and diversity relations. Fur-
thermore, most results of the cosine distance are
better than the single similarity relation propaga-
tion. This indicates that single similarity relation
propagation is weak in few-shot scenarios. Be-
sides, the performances of all methods are worse
in the 3-way setting than those in the 2-way set-
ting due to sentiment complicity. However, DRP
can still achieve the best results in Figure 4. The
experimental results verify the effectiveness of
DRP in the proposed method, revealing it is vital
to guarantee good performance.
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Figure 5: The impact of relation propagation layers.

Figure 6: Experimental results of ablation study.

5.3 Impact of Propagation Layer

To investigate the impact of the DRP layer, we
evaluate the proposed method with one to eight
layers on Rest I, Rest II, Lap, and Mams. Figure 5
shows the performance of the proposed method
with increasing the number of layers in 3-way
1-shot and 2-way 1-shot scenarios. In terms of
a 3-way 1-shot scenario, DRP with two layers
obtains the best results on Rest II while DRP
with three layers performs best on Rest I, Lap,
and Mams. In terms of a 2-way 1-shot scenario,
DRP with two layers obtains the best results on
Rest I and Mams. The results indicate that DRP
plays a positive effect during relation propagation
with increasing layers, but excessive layers result
in low performance due to over-fitting. In short,
the results demonstrate the effectiveness of DRP
within limited layers.

5.4 Ablation Study

To investigate the significance of the proposed
method, we conduct an ablation study on the most
competitive Mams dataset to compare perfor-

mance. Due to the complexity of Mams, we
can observe convincing differences in ablation
experiments. Experimental results are shown in
Figure 6, where the comparison results are pre-
sented in Figure 6a, and the gap values are reported
in Figure 6b, with the following observations.

(1) In the ‘‘w/o Class’’, we remove the rela-
tion transformation from support-query to class-
query and only use support-query relations to
induce the labels of query samples. The perfor-
mance is significantly reduced when removing
the class-query relation transformation mecha-
nism. This fact indicates that modeling the rela-
tions between a query and classes can promote
query inference. Therefore, the class-query rela-
tion transformation plays an important role in the
performance of the proposed method.

(2) In the ‘‘w/o ContraLoss’’, we remove
the training objective mentioned in Section 3.6
and use a cross-entropy loss instead. When the
proposed training objective is removed, the per-
formance drops considerably. The negative effect
suggests that the proposed training objective has
a positive role in capturing dual relations features.
The proposed training objective promotes the
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Figure 7: Visualization of relation strength from sentiment classes to query samples. From top to bottom, the
illustration shows 3-way 5-shot scenarios on Rest I, Rest II, Lap, and Mams datasets. Each scenario includes
90 query samples, with positive samples for the first thirty, neutral samples for the middle thirty, and negative
samples for the last thirty. Briefly, the scenario of each dataset is described by a heat map with a size of 3 ∗ 90.
The heat map shows the relation strength among positive, neutral, and negative classes and samples with dif-
ferent sentiments. Dark color denotes higher relation scores, while light color denotes lower those.

model to explore intra-cluster commonality and
inter-cluster uniqueness to learn discriminative
dual relations for query inference. Therefore, the
training objective has considerable importance.

(3) In the ‘‘w/o DirNet’’, we replace the learn-
ing of diversity relation with a simple mechanism.
Specifically, we set the strongest relation score to
1 and replace e−(l)

ij with (1− e
+(l)
ij ) as the diversity

score to analyze the necessity of the diversity net-
work in Equation 15. For example, if the similar-
ity score is 0.7, we set 0.3 as its corresponding
diversity score, i.e., there are 0.7 similarity rela-
tion and 0.3 diversity relation between a sample
pair. Experimental results demonstrate that the
diversity network provides more supplementary
information and encourages DRP to learn more
robust dual relations features among samples.
Therefore, the learning of the diversity relation
is essential for the few-shot ACSA task.

Obviously, the absence of any method part
can decrease performance. In short, the whole
model consistently surpasses all ablation studies
and achieves the best performance.

5.5 Relation Strength Visualization
The relation strength between query samples and
sentiment classes is visualized to verify the per-
formance of DRP compared with conventional
distance metrics (e.g., cosine distance). Specifi-
cally, we use similarity relation score and cosine
distance to draw heat maps in Figure 7. The exper-
imental results are conducted on Rest I, Rest II,

Lap, and Mams datasets. It is easy to find the
following observations.

(1) For Rest I, Rest II, and Lap, the proposed
method significantly improves positive and neg-
ative class results. Regarding the neutral class,
these two methods are weak in the relation draw-
ing between query samples and the neutral class
because many queries with neutral sentiment
are predicted to be positive and negative. How-
ever, the proposed method performs better than
the conventional distance metric. The proposed
method learns discriminative relation features to
improve performance on the few-shot ACSA task
by modeling the dual relations among samples.

(2) Mams provides a more complex scenario
where each sentence contains many aspects with
different sentiment polarities. Inevitably, there are
overlapping distributions of aspect embeddings
caused by irrelevant sentiment noise among sen-
tences with multiple sentiment aspects. Therefore,
the conventional distance method mainly classi-
fies everything into the neutral class, failing to
identify sentiment features. Relatively, the pro-
posed method learns valuable features to classify
different sentiment classes compared with the con-
ventional distance method, but it still has a weak
relation strength between query samples and sen-
timent classes. Therefore, in the following work,
we could focus on refining the feature extraction
and exploring additional domain knowledge to
enhance the relation strength between query sam-
ples and sentiment classes for query inference.
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6 Conclusion & Future Work

We propose an effective metric-free method for
the few-shot ACSA task, which explicitly models
the associated relations among aspects of query
and support samples, addressing the passive ef-
fect of overlapping distributions caused by ir-
relevant sentiment noise in aspect distributions.
Specifically, the proposed method designs a fully
connected relation graph to model the dual rela-
tions (similarity and diversity) among support and
query nodes in the embedding space. With the re-
lation graph, the proposed method uses the dual
relations among nodes to explore intra-cluster
commonality and inter-cluster uniqueness to al-
leviate irrelevant sentiment noise and enhance
aspect features, eliminating the passive effect of
overlapping distributions. Additionally, the dual
relations are transformed from support-query to
class-query to guide query inference by learn-
ing sentiment class knowledge from the relation
graph. Experiments show that the proposed
method outperforms strong baselines and obtains
significant performance.

The proposed method is not limited to few-shot
ACSA, and it can be applied to more complex
tasks, e.g., fake news detection, text classifica-
tion, and intention detection, since it could better
enhance semantic textual similarity and diversity
with ground truth texts. Therefore, we will extend
our method to these tasks in follow-up work.

7 Limitations

The proposed method obtains convincing perfor-
mance compared with baselines but still has a
few limitations.

(1) The neutral classification for the few-shot
ACSA task is still a considerable challenge. The
neutral classification lacks opinion sentiment con-
texts, making it susceptible to irrelevant sentiment
noise, resulting in wrong classifications, as shown
in Figure 7. Therefore, we want to attract more
researchers and developers to pay more attention
to the challenge of neutral classification.

(2) We follow the meta-learning formulation to
perform few-shot ACSA. For meta-learning, the
meta-task structure could generalize experiences
from seen aspects to newly encountered aspects
but requires annotating a few samples to construct
the support set from the newly encountered aspects
for query inference. Therefore, we could focus

on reducing shots per class in the sample set,
eliminating the burden of data annotation.
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