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Abstract

Multi-document summarization entails pro-
ducing concise synopses of collections of
inputs. For some applications, the synopsis
should accurately synthesize inputs with re-
spect to a key aspect, e.g., a synopsis of
film reviews written about a particular movie
should reflect the average critic consensus.
As a more consequential example, narrative
summaries that accompany biomedical sys-
tematic reviews of clinical trial results should
accurately summarize the potentially conflict-
ing results from individual trials. In this
paper we ask: To what extent do modern
multi-document summarization models im-
plicitly perform this sort of synthesis? We
run experiments over opinion and evidence
synthesis datasets using a suite of summariza-
tion models, from fine-tuned transformers to
GPT-4. We find that existing models partially
perform synthesis, but imperfectly: Even the
best performing models are over-sensitive to
changes in input ordering and under-sensitive
to changes in input compositions (e.g., ratio of
positive to negative reviews). We propose a
simple, general, effective method for improv-
ing model synthesis capabilities by generating
an explicitly diverse set of candidate outputs,
and then selecting from these the string best
aligned with the expected aggregate measure
for the inputs, or abstaining when the model
produces no good candidate.

1 Introduction

Multi-document summarization (MDS) models
aim to distill inputs into concise synopses that
preserve key content. Examples of MDS include
summarizing news articles (Dang, 2005; Fabbri
et al., 2019; Gholipour Ghalandari et al., 2020;
Evans et al.,, 2004), answering questions from
multiple sources (Dang, 2006), and producing
overviews of scientific literature (Liu et al., 2018;
Lu et al.,, 2020; Molld and Santiago-Martinez,
2012; Wallace et al., 2021; DeYoung et al., 2021).

We expect summarization models to produce out-
puts consistent with inputs (Kryscinski et al., 2020;
Nan et al., 2021b), e.g., discussing the same types
of entities (Nan et al., 2021a) and allowing one
to answer questions similar in a way that is con-
sistent with individual inputs (Wang et al., 2020;
Scialom et al., 2021).

In some applications models must synthe-
size inputs—i.e., aggregate potentially conflict-
ing information—to yield an accurate synopsis
(Figure 1). Consider the meta-reviews of movies
featured on Rotten Tomatoes,! which provide
a consensus view of individual critic opinions.
These reviews should reflect the mean and range
of sentiment implicit in the input critiques: A
summary of mostly negative reviews (e.g., Gigli)
should communicate that the film was widely
panned; a summary of mixed reviews (The Fifth
Element) ought to convey that critics disagreed and
discuss the main positive and negative attributes.

A more consequential example is summarizing
the evidence presented in clinical trials. Individual
trials will often present conflicting evidence about
whether or not a particular health intervention is
effective. An ideal summary would appropriately
weigh the findings presented in individual studies
and reflect the evidence on balance.

What are the desiderata of multi-document
synthesis? First, summaries produced by mod-
els should be consistent with the input data,
with respect to the latent property of interest.
In the case of Rotten Tomatoes, the sentiment
of the summary should be in line with the ag-
gregate sentiment expressed in the individual
critic reviews. A corollary to this is that models
should be sensitive to changes in the composition
of inputs, e.g., removing most of the negative
reviews from a set of inputs should yield a
summary with a corresponding increase in the
expressed sentiment.

1https ://www.rottentomatoes.com/.
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Synthesizing movie reviews
Narratively challenged, visually
and aurally ing,

The Fifth Element is a staggering

accretion of all the wrong elements ... ... The Fifth Element is
a fantastic piece of pop

— sci-fi that never takes

itself too seriously

The Fifth Element is a bold, bright, loud,
rowdy, lush, extravagant science fiction
space opera ...

Synthesizing reports of clinical trials

There was no significant difference in
the risk of hospitalisation between
hydroxychloroquine and placebo groups

|

|

1

1

! The evidence does not
, > F iiﬁf;;g;zgfquine for
\ The effect size of hydroxychloroquine [ treating COVID-19.
—+Jll— was higher than placebo for COVID-19

1
|

symptomatic infection ... although this
was not statistically significant.

Figure 1: Two multi-document summarization tasks where models must implicitly synthesize inputs to produce
accurate summaries. Left: Summarizing film reviews with varying sentiment to yield a critics consensus. Right:
Summarizing trials that have evaluated a particular medical invention.

In this work we evaluate neural MDS mod-
els with respect to these criteria. To this end we
use a meta-reviews dataset from Rotten Tomatoes
(Leone, 2020) and a dataset of systematic reviews
(meta-analyses) summarizing the evidence about
medical interventions (Wallace et al., 2021). For
the former we probe the degree to which generated
meta-review sentiment agrees with the expected
aggregate sentiment score; for the latter we evalu-
ate whether the generated summary indicates that
the input evidence suggests, on balance, that the
intervention under consideration was effective.

Our main contributions are:

1. To the best of our knowledge, this is the
first work to investigate implicit synthesis
in summarization, and the degree to which
modern models are capable of this.?

2. We show that ‘‘off-the-shelf’’ neural MDS
models are somewhat inconsistent and insen-
sitive with respect to performing synthesis in
summarization.

3. We propose and evaluate a simple, general
method of generating a diverse set of output
candidates (Vijayakumar et al., 2016) and
then selecting from these based on agreement
with an expected aggregate measure (based
on inputs), with promising results.

2 Synthesis and Summarization

In standard multi-document summarization, we
assume inputs (X;,y;); Xi = {@i1, ..., x,}-
We then typically train a summarization model
with parameters 6, to consume X; and yield

2Shah et al. (2021a) study a low-resource health and
nutrition setting, in which they extract relational tuples, apply
a manual rule set for aggregation, and then generate a surface
form following this result. See Section 6 for a discussion of
Opinion Summarization work which considers synthesis as a
target but not measure of summarization performance.

summaries ¢; as similar as possible to targets
y;- In a supervised setting, the standard ob-
jective estimates a f to maximize target token
log-probabilities. Assuming the input documents
x;j in X; have been linearized (i.e., concatenated,
with special tokens demarcating individual inputs)
into an input string =, this objective takes the
form: 1) log po(yitlyir, - - - Yig—1), &), where
Dy s a probability assigned to the token at position
t in the target y; by a summarization model with
parameters 6. By myopically focusing on encour-
aging the model to produce tokens mimicking the
targets, this objective aligns with standard (but
flawed) measures of automated summary quality
like ROUGE (Lin, 2004), which quantify n-gram
overlap between targets y; and outputs g;.

We are interested in settings in which there
is an additional, latent property z;; implicit in
the constituent input texts x;;. For example,
z;j might reflect the sentiment in critique j
of the film indexed by ¢. Summaries should
synthesize this aspect, i.e., the generated sum-
mary y; should implicitly convey an aggregated
z; which reflects a synthesis or aggregation G
over Z; = {z,...%)x, }. That is, we assume
zi = G(Z;). In both cases considered here—
summaries of film critiques and synopses of
clinical trials evidence—(G can reasonably be
assumed to be a (weighted) mean, G(Z;) =
| )}i| Z‘J)i’ll «;jz;j. That is, summaries should
roughly reflect the average sentiment and reported
treatment effect in the cases of movie reviews and
clinical trial reports, respectively.

We investigate the following questions. (1) Do
model summaries §; reflect the anticipated aggre-
gate aspect of interest? That is, how well calibrated
is the aspect communicated in the generated sum-
mary (z;3) compared to the expected z;? (2) Do
these same results apply to other (not solely trans-
former) MDS architectures? (3) Can we improve
the ability of summarization models to synthesize
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Figure 2: Movie Reviews: Actual vs. Predicted Sentiments on generated summaries. Human outputs replace LED

(upper left) for comparison.

by explicitly incorporating synthesis targets z; into
the decoding process?

We propose a simple inference-time proce-
dure to explicitly preference output candidates
that align with the expected aggregate property
of interest (e.g., average sentiment), and report
promising results under both automatic and man-
ual evaluation. This strategy naturally lends itself
to cautious summarization, i.e., approaches where
the model can abstain from generating an output
if it does not produce any candidates that reflect
the anticipated aggregate measure.

2.1 Movie Reviews

We first consider a dataset made up of movie
reviews and associated meta-reviews summariz-
ing these from Rotten Tomatoes. An in-house
staffer (at Rotten Tomatoes) summarizes movie
critic reviews® into meta-reviews (Barnes, 2017).
These meta-reviews synthesize the input reviews,
reflecting the aggregate critic reception of a film.
Each meta-review is associated with a numeri-
cal ‘““Tomatometer’’ score, which is an overall
measure of the fraction of reviews that were
positive (according to Rotten Tomatoes staffers)
for the corresponding film (so here the target
aggregation function G would be this fraction).
The Rotten Tomatoes dataset we use comprises
9,095 movies with meta-reviews constructed from
244,000 individual reviews (Table 2).

3Written by designated *‘top-critics’’, critics recognized
for quality and quantity of reviews in recognized publications.

Measuring Sentiment in Movie Reviews. We
need to measure the property of interest in texts;
for this we use a measurement model g—here
we fine-tune a BERT model (Devlin et al., 2019)
using the continuous (fine-grained) sentiment tar-
gets provided in the SST dataset (Socher et al.,
2013).* We fine-tuned this model on the SST
dataset for 3 epochs with a learning rate of Se-5
using the HuggingFace library (Wolf et al.,
2020) with no hyperparameter tuning. While the
raw text of the SST dataset is in-domain (i.e.,
movie reviews), the targets themselves are not.’
When applying this fine-tuned ¢ to the movie
meta-reviews, we find a reasonably strong cor-
relation between our sentiment estimates and the
““true’’ meta-review sentiment (‘‘Tomatometer’’
score): The R? (centered) is 0.696, mean squared
error (MSE) is 0.022, and Pearson’s r is 0.836
(Figure 2, upper left).®

2.2 Biomedical Systematic Reviews

Our second dataset is a collection of system-
atic reviews from the Cochrane Collaboration.’

“We use the continuous measurements from the original
SST dataset, not the two or five class projections of those
underlying measurements.

5SST is itself based on a collection of Rotten Tomatoes
critic reviews (Pang and Lee, 2005). We verified that the SST
text fragments do not overlap with our target reviews by man-
ually checking any (fragment, review) pair with substantial
(> 75%) overlap for one quarter of all reviews.

6 In creating both synthesis measures g, we have isolated
them from our original datasets to not artificially favor human
references as in-domain over machine generations.

7 An international non-profit dedicated to helping health-
care providers make evidence-based decisions.
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Study

Predicted Effect

Input: ..Ibuprofen was twice as likely as acetaminophen to abort migraine

no significant difference

within 2 hours. In the intent-to-treat analysis, children improved twice as often

with ibuprofen and acetaminophen as with placebo...

Input: ...Children’s ibuprofen suspension at an OTC dose of 7.5 mg/kg is

significant difference

an effective and well-tolerated agent for pain relief in the acute treatment of

childhood migraine, particularly in boys...

Target: ..Low quality evidence from two small trials shows that ibuprofen

no significant difference

appears to improve pain freedom for the acute treatment of children with
migraine. We have only limited information on adverse events associated with

ibuprofen in the trials included in this review...

Table 1: Systematic review example (from Cochrane). The statistical meta-analysis result ‘‘significant
difference’’ and RobotReviewer finding ‘‘no significant difference’” disagree. In the case of
Systematic Reviews, RobotReviewer serves as both the estimator of z;; and G.

Movie Reviews

Systematic Reviews

Train Dev Test Train Dev' Test
Number of metareviews 7251 932 912 1675 360 397
Avg metareview length 32.0 32.6 324 101 107 111
Total number of inputs 195033 24336 24474 11054 1238 2669
Avg number of inputs 26.9 26.1 26.8 6.6 34 6.7
Avg length of individual input 30.6 30.8 30.6 475 379 449
Avg length of concatenated inputs 822 804 822 2641 1336 2544
Target Percent Positive 59.5 62.1 61.2 31.9 31.4 35.0

Table 2: Dataset statistics for movie reviews (left) and systematic reviews (right). Number of
meta-reviews, average meta-review length (tokens), input reviews per split, average number of in-
puts per instance, average total length of instance-inputs. For movie reviews, the target percent positive
reports the fraction of metareviews with a positive sentiment; for systematic reviews this refers to the
fraction of metareviews reporting a significant effect. f We subset the original dev set to instances of
< 4k tokens (accommodating TS5; other models can consume up to 16k).

This dataset comprises roughly 2,600 systematic
reviews summarizing a total of 16,500 clini-
cal trials evaluating interventions in healthcare
(Tables 1, 2). Each review includes a natural
language summary and accompanying statisti-
cal meta-analysis results. The latter provides an
aggregate statistical summary of the individual
(study-level) data extracted from the trials in-
cluded in each review. The natural language
summary should accurately convey and contextu-
alize the findings of the meta-analysis. Therefore,
the (lack of) treatment efficacy communicated in
a given summary should generally agree with the
direction of the corresponding meta-analytic point
estimate.

Measuring Effects in Evidence Syntheses. For
systematic reviews of clinical trials, we resort to
a less granular classification model g(x;;), 9(v:)
which attempts to infer whether a text reports

a significant result. Specifically, we use Robot -
Reviewer (Marshalletal.,2017; DeYoungetal.,
2020). Given a narrative describing a clinical
trial result (or a summary of trials), Robot-
Reviewer predicts whether the reported result
indicates a significant effect of the treatment being
investigated, or not. We can compare this predic-
tion to the ‘‘truth’’, which here is derived from
the meta-analytic result (specifically by checking
whether p < 0.05). Applying this off-the-shelf
model to the manually composed summaries ac-
companying the meta-analyses in our Cochrane
set, we observe a macro-average F1 score of 0.577
and 68.6% accuracy, providing a reasonable (if
weak) measure for this task.’

3 Models

We evaluate a suite of transformer (Vaswani
et al, 2017) summarization models: Pegasus
(Zhang et al., 2020), Longformer (Beltagy et al.,
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2020), PRIMERA (Xiao et al., 2022), T5 (Raffel
et al., 2020) and Flan-T5 (Chung et al., 2022),
and GPT-4 (OpenAl, 2023). For each trainable
transformer model and dataset we performed a
hyperparameter search over learning rates and
training steps (retaining most parameter defaults).
We train with an effective batch size of 16
and floating point 163 precision on an NVIDIA
RTX-8000 GPU (due to data size we can fit only
a single instance in memory at a time for some
models, and must use gradient accumulation).

Models were fine-tuned using the Adam opti-
mizer (Kingma and Ba, 2014), except Pegasus,
which was fine-tuned with Adafactor (Shazeer
and Stern, 2018),” across several learning rates
(le-4, 1e-5, le-6), for up to 20k training
steps. The best model was selected based on
ROUGE-1 performance on the validation set.!
PRIMERA was designed and pre-trained specifi-
cally for multi-document summarization. Though
not explicitly designed as multi-document summa-
rization models, both Pegasus (Zhang et al., 2020)
and TS5 (Amplayo et al., 2021) have been used on
multi-document tasks, while Longformer has been
used for a related multi-document summarization
task (DeYoung et al., 2021).

For GPT-4 (-0613) we use system prompt You
are a professional movie critic. Your job is to
provide an opinionated summary of a movie, in
your own words. You will have access other crit-
ics’ opinions of the movie. and assistant prompt
For movie {movie}, other critics have written:
{reviews}. In your own words, please produce
an opinionated summary of {movie}., providing
a one-shot example. For systematic reviews, we
used the system prompt You are a systematic
reviewing expert. Your job is to read random-
ized control trial reports and assist a medical
researcher. You will aid in drafting systematic
reviews. with assistant prompt: Please provide
a draft systematic review for the studies below:
{studies}. Start with the conclusions of the review
only, a more detailed analysis will happen later,
again providing a single shot example.

As itis not the focus of our work here, we did not
extensively tune these prompts. We inspected out-
puts over five training instances when developing
prompts for both movies and systematic reviews

8Flan-T5-Large and -XL used BF16 for speed.

°In larger Flan-T5 models we experimented with both
optimizers; differences in ROUGEI performance were small.

Ohttps://github.com/jayded/MDSSynthesis.

datasets. When designing movie review prompts,
we iterated through first asking the model to sum-
marize the reviews (yielding a summary of each
review instead of an aggregate), then telling the
model to use the same language as the reviews
(with effectively the same result), then providing
a single example (yielding some improvement),
then demanding an opinionated summary (again
with some improvement), and finally telling the
model to use its own words (yielding the prompt
above and experiments below). For the systematic
review prompt, we first asked for a draft review
(the model provided an entire draft), then we spec-
ified conclusions only (we received an abbreviated
abstract), then we specified a conclusions section
(we received a less abbreviated abstract), and,
finally, adding an in-context example. We also
explored asking for a high level summary (rather
than systematic review) of the input studies; and
with prompts providing intervention and outcome
information to the model and asking for a draft of
the review.

Beyond transformers, we consider models from
the opinion summarization and content aggrega-
tion literature: PlanSum (Amplayo et al., 2020),
QT (Angelidis et al., 2021), AceSum (Amplayo
etal., 2021), and REFLECT (Song et al., 2022).!!
PlanSum (Amplayo etal., 2020) learns a (disentan-
gled) sentiment and aspect model, and augments
an LSTM equipped with an attention-copy mech-
anism (Bahdanau et al., 2014; Vinyals et al., 2015)
with this information as a decoder.

QT (Angelidis et al., 2021) learns a quan-
tized embedding for each model input via an
auto-encoder, then finds representative input sen-
tences (via clustering and assignment) to use as
summaries. We include QT!? as an extractive
model. AceSum (Amplayo et al., 2021) adopts
a hierarchical approach, representing each input
document as sentences pooled over individual
inputs, and passing this representation to a trans-
former (TS5; Raffel et al., 2020), along with specific
aspect or general codeword tokens and vocabulary
embeddings, controlling what type of summary to

""We considered HierSumm (Liu and Lapata, 2019), but
excluded it for extreme degeneration while decoding. We
excluded Hercules (Hosking et al., 2023) as the software was
not adaptable to our tasks.

2For movie reviews, where targets can appear similar to
inputs in length and content, as opposed to systematic reviews
(for which we do not evaluate QT), where the target prose
differs substantially from its inputs.
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R? PCC R1 F1 Acc R1

QT 0.592 0.788 0.122 PlanSum 0.414 0.683 0.177
PlanSum 0.245 0.510 0.160 AceSum 0.532 0.550 0.151
AceSum 0.158 0.439 0.176 REFLECTMLE 0.532 0.639 0.271
REFLECTMLE 0.430 0.657 0.241 REFLECTRM 0.505 0.683 0.199
REFLECTRE 0.225 0.507 0.218 Pegasus 0.568 0.714 0.212
Pegasus 0.530 0.730 0.245 LED 0.490 0.631 0.259
LED 0.551 0.742 0.242 PRIMERA 0.526 0.644 0.253
PRIMERA 0.608 0.780 0.254 T5-Small 0.540 0.600 0.205
T5-Small 0.441 0.669 0.234 T5-Base 0.521 0.628 0.206
T5-Base 0.516 0.720 0.253 Flan-T5-Small 0.548 0.583 0.081
Flan-T5-S 0.412 0.647 0.237 Flan-T5-Base 0.538 0.683 0.194
Flan-T5-B 0.597 0.774 0.247 Flan-T5-L 0.556 0.692 0.218
Flan-T5-L 0.484 0.696 0.248 Flan-T5-XL 0.487 0.608 0.268
Flan-T5-XL 0.611 0.783 0.262 GPT-4 0.628 0.640 0.273
GPT-4 0.808 0.900 0.166 Reference 0.577 0.686

Reference 0.697 0.836

Table 3: Synthesis results for Movie reviews:
correlations (R?, Pearson’s r) between sentiment
measured in model outputs and Tomatometer
Ratings. R1 is ROUGEI.

produce (we focus on the general case). RE-
FLECT (Song et al., 2022) takes the hierarchical
approach one step further, with a sentence level
extraction phase (using aggregated token rep-
resentations) followed by an abstraction phase
(BART; Lewis et al., 2020), trained via standard
MLE and via areinforcement learning credit aware
self-critic method (Rennie et al., 2017). For all
models we largely retained the original hyperpa-
rameters, with modifications to increase sequence
lengths and decrease aspects (these models were
developed around aspect summarization).

4 Experiments

4.1 Do Summarization Models Synthesize?

We report sentiment performance for all models
in Table 3. These metrics quantify the strength
of the relationship between (a) the continu-
ous sentiment inferred (via our text regression
measurement model g) over model generated
or reference summaries and (b) the reference
sentiment (Tomatometer) score.

Save for GPT-4, correlations between the
sentiment measured in generated outputs and
Tomatometer scores are considerably lower
than that between the same measurement over
human-composed summaries and said score. This
implies that human authors tend to do a better job

Table 4: Synthesis results for Systematic re-
views: Macro-averaged Fls and accuracies
(RobotReviewer predictions over model out-
puts vs. reference meta-analysis results).

of synthesis than models when composing sum-
maries. GPT-4 seems performs especially well
here; we are not entirely sure why, but it may owe
to the differences in lengths of outputs (133 tokens
on average vs. 31 for reference summaries).

For systematic reviews (Section 2.2), the mea-
surement model g attempts to infer whether a text
reports a significant treatment effect; we compare
this against the p-value from the corresponding
statistical meta-analysis. This permits a coarse as-
sessment of synthesis, as we are unable to measure
correlations. Instead we report classification met-
rics describing how often the effect significance
inferred from a summary (generated or manually
written) matches the ground truth derived from
the meta-analysis (Table 4). The results are qual-
itatively similar to the sentiment case, in that the
humans appear to do a better job of synthesis—as
best we can measure, the significance reported in
their summaries better aligns with the statistical
results than in model generated summaries. GPT-4
is again an exception, slightly outperforming hu-
man results on this metric, which may owe to its
formulaic generation featuring strong, direct, clear
initial statements of treatment effectiveness.

4.2 Sensitivity to Input Ordering

Synthesis of inputs should be invariant to ordering
(e.g., critic consensus on a film does not depend on
the order in which one reads the reviews). Here we
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Figure 3: The spread of sentiment/treatment effect measured in outputs produced from permuted input orderings.
Left: Movie review sentiment. Right: Systematic review significance prediction entropy (0 indicates order
insensitivity) on the subset of reviews that report significant effects.
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Figure 4: ROUGEIL deltas from instance means for movie reviews (left) and systematic reviews (right).

evaluate if models are sensitive to input ordering
with respect to the synthesized aspect of inter-
est (z;9). Specifically, let X; = {z1,...,7x,}
denote an arbitrary ordering of inputs in the lin-
earized version z;. This ordering should not affect
the aggregate aspect z;; in the summary.

To evaluate if models realize this invariance,
we permute the instance ¢ inputs X; (and, conse-
quently, the linearized =) one hundred times,'?
randomizing input orderings. For each such per-
mutation Xi (and associated :i"?), we generate a
summary ¢; and estimate of the resultant aspect
Zij» using the corresponding measurement model.
By repeating this process for each instance ¢, we
can construct an empirical distribution over Z;;’s
under different random orderings.

Movie Reviews. We zero-mean the Z;;’s in-
ferred over each instance, and combine the
distributions from all instances into a histogram
(Figure 3). This shows the spread of sentiments
inferred over outputs under random input or-
derings minus the corresponding instance mean
sentiment. Were a model completely invariant to

3As a cost saving measure, we sample ten times for
GPT, over one hunded different inputs instead of the full
development set. Our experiments cost approximately $500
to run.

ordering, the empirical distribution over these dif-
ferences would collapse to 0. Instead, we observe
a relatively wide spread in sentiment measured
over outputs generated from different permuta-
tions, indicating a counter-intuitive sensitivity to
orderings. (Interestingly, Figure 4—provided for
comparison—suggests such permutations also af-
fect ROUGE; we do not explore this aspect further
here.)

Systematic Reviews. For each X; we have 100
order permutations and associated summaries; we
infer whether these report significant results or
not, and record the fraction that do (p;). If mod-
els were invariant to ordering, this fraction would
always be 0 or 1. Values in-between suggest
the model flips the report conclusion as a re-
sult of different input orderings. Figure 3 (right)
shows a histogram of entropies over p;, computed
over the subset of examples where the associ-
ated meta-analysis indicates a significant effect.
Densities away from zero indicate sensitivity to
ordering. QT, PlanSum, and GPT-4 all have a
smaller spread than the other models—QT because
it is order insensisitive by construction, PlanSum
similarly (but not entirely), and GPT-4 due to
overall quality performance. We note that sensi-
tivity is clearly an undesirable trait (any spread is
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R? PCC
QT 0.634 0.796
PlanSum 0.249 0.499
AceSum 0.177 0.420
REFLECTMLE 0.439 0.663
REFLECTRC 0.294 0.542
Pegasus 0.499 0.706
LED 0.524 0.724
PRIMERA 0.572 0.756
T5-Small 0.447 0.668
T5-Base 0.481 0.694
Flan-T5-Small 0.393 0.627
Flan-T5-Base 0.556 0.746
Flan-T5-Large 0.490 0.700
Flan-T5-XL 0.551 0.742
GPT-4 0.457 0.677

Table 5: Movie reviews Correlations between
subsampled inputs and generations.

undesirable), but this may trade off against other
metrics of interest.

4.3 Sensitivity to Input Composition

Synthesis models should be responsive to changes
in the distribution of the attribute to be synthesized
in the input composition: If we increase the ratio
of positive to negative reviews in an input set,
we would anticipate a concomitant change in the
sentiment communicated in the meta-review z;j.
To assess if models meet this synthesis desiderata,
we manipulate model inputs X; in such a way
to induce an expected change in the target mea-
sure z;;; we then measure if the output yields a
summary that aligns with this expected change.

Movie Reviews. We manipulate the ratio of pos-
itive to negative reviews and observe the resultant
change in the property of interest latent in the cor-
responding output. We take movies with mixed
reviews, and delete 10%, 20%, 30%, . . . , 100% of
the positive inputs, retaining the negative inputs;
we then repeat the process but instead remove
negative inputs. For each of these permutations,
we measure the input sentiment, the meta-review
sentiment, and how well they correlate (Table 5).

Figure 5 plots the relationship between the frac-
tion of positive reviews in the (manipulated) input
sets and the granular sentiment score inferred over
the resultant outputs. The models are generally
undersensitive to changes in their input: rather
than having a change in meta-review sentiment
equivalent in size to changes in input sentiment

(a slope of 1, as we observe when we fit a model
to the human written summaries). Models tend to
have trouble changing their sentiment, and require
a large change in input distribution to substantially
change the sentiment communicated in the output.

Systematic Reviews. To measure sensitivity to
changes in input composition, we manipulate in-
puts X; such that the meta-analysis result (target
;) flips from a significant effect to no effect, or
from no effect to an effect (Table 6, Figure 6). We
first take a subset of the reviews that have con-
flicting evidence (139 unique reviews). We then
order inputs in these by (weighted) effect sizes,'*
and remove subsets which ought to flip the signif-
icance result of a subsequent meta-analysis. The
surface level results (Table 6) show little differ-
ence from earlier results (i.e., the A values are
approximately comparable to Table 4), but our
classification results become substantially noisier
(Figure 6). We speculate that models are picking
up on some uncertainty from the change in over-
all meta-analysis but overall fail to capture that
detail in their outputs. Even if the models reflect
uncertainty due to the strength of the change (de-
sirable!) this is still incorrect as the finding has
changed.

Result. In both the case of the Movie Reviews
and the Systematic Reviews, we see a substantial
drop in performance from the base review results
(reported in Tables 3, 4). We can only speculate
as to the cause of this. Perhaps this indicates
memorization of original targets in pre-training,
or maybe removing strong (positive or negative)
reviews hampers performance.

5 Improving Synthesis in Summarization

We propose a straightforward post-hoc ap-
proach to improving the synthesis performed by
multi-document summarization models: (1) Gen-
erate an explicitly diverse set of output candidates;
(2) Select from these as the final output the candi-
date that best agrees with the expected synthesis
result (predicted by external model; Figure 7;
Table 11).1

“In fixed effects meta-analysis the weights are inverse
variances associated with study-level effect estimates.

50ved and Levy (2021) explore a related generate-
then-select approach for creating plausible product reviews.
We experimented with an additional decoding method: con-
strain beam search by restricting candidate productions
Po(Yit|Yin..e—1, ) such that the target attribute 2; is less
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Figure 5: Model sensitivity to manipulated input sentiment composition. Intensity patterns indicate that models
oscillate between low and high sentiments in outputs, and are not responsive to subtler shifts in input sentiment.
We show a model regression (blue) and the reference sensitivity regression (black).

F1 Acc
PlanSum 0.442 0.741
AceSum 0.454 0.504
REFLECTMLE 0.471 0.583
REFLECTRC 0.445 0.689
Pegasus 0.452 0.680
LED 0.510 0.684
PRIMERA 0.533 0.675
T5-Small 0.560 0.618
T5-Base 0.469 0.658
Flan-T5-Small 0.430 0.500
Flan-T5-Base 0.482 0.680
Flan-T5-Large 0.435 0.693
Flan-T5-XL 0.464 0.649
GPT-4 0.511 0.530

Table 6: Systematic reviews: Classification per-
formance for subsampled inputs and generations.
See Figure 6 for a visualization of classification
distribution, analogous to Figure 5 for movies.

For (1), werely on an existing technique for gen-
erating diverse outputs C; from input z: Diverse
Beam Search (DBS) (Vijayakumar et al., 2016).
This method modifies standard beam search to
maintain multiple groups of beams. During de-
coding, a term is added to the next-token log
probabilities, penalizing production of strings
similar to candidates in other groups.'®

here as they were often disfluent.
10This penalty requires a hyperparameter A that encodes
the relative importance of diversity; we use A = 0.5. To
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Figure 6: Systematic Reviews. A histogram of en-
tropies for the subsampled review classifications
(where the ground truth is positive).

In (2) we would like to select the output that
best synthesizes the property of interest; this re-
quires an approach to specify what we expect the
synthesized property be, given the inputs. For ex-
ample, if we know the sentiment scores associated
with input movie reviews, we might enforce that
the output sentiment agrees with the average of
these. To realize this intuition, we can select as
final output from C; the string that best aligns
with this aggregate property (sentiment score or
significance finding). Operationally, this requires
an external model to estimate the aspect of in-
terest as latent in a given candidate output. This

enable fair comparison with standard beam search (5 beams,
in all experiments), we used 5 groups, 1 beam per group. We
exclude QT as it is an extractive model, and PlanSum as it
does not readily support diverse beach search. For AceSum
and REFLECT we modify these codebases to use the diverse
beam search implementation from HuggingFace. For GPT-4
we sample five responses with a temperature of 0.6.
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e
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Figure 7: Our proposed strategy to improve synthesis. We generate an diverse set of output candidates (Vijayakumar
et al.,, 2016) and then select the text that best agrees with the predicted aggregate property of interest (here,
sentiment). We can also abstain when the model fails to yield an appropriate output.

Approximate Selection Oracle Selection
R? A PCC A Rl A R? A PCC A R1 A

AceSum 0.566  0.408  0.769 0.330 0.162 —0.014 0.723 0.565 0.861 0422  0.162 —-0.014
REFLECTME  0.658 0.228 0.825 0.168 0.241 0.000 0.791 0.361 0.895 0.238 0.240 —0.001
REFLECTRL  0.491 0.266  0.702 0.195 0.220 0.002 0.576  0.351 0.759 0252  0.219 0.001
Pegasus 0.694  0.164  0.835 0.105 0.229 —0.016 0.799  0.269 0.894  0.164 0232 —0.013
LED 0.656  0.105 0.821 0.079 0.229 —0.013 0.763 0.212 0.878 0.136  0.227 —0.015
PRIMERA 0.749 0.141 0.880  0.100  0.240 —0.014 0.890  0.282 0.948 0.168 0.240 —0.014
T5-Small 0.692 0.251 0.846 0.177 0.225 —0.009 0.827 0.386 0.913 0.244  0.226 —0.008
T5-Base 0.721 0.205 0.856 0.136  0.231 —0.022 0.876 0360  0.938 0.218 0.230 —0.023
Flan-T5-S 0.698 0286  0.837 0.190  0.219 —0.018 0.832 0420 0912  0.265 0.218 —0.019
Flan-T5-B 0.732  0.135 0.863 0.089 0.225 —0.022 0.863 0.266 0930 0.156  0.225 —0.022
Flan-T5-L 0.732  0.248 0.866 0.170  0.243 —0.005 0.875 0.391 0.937 0.241 0.244 —0.004
Flan-T5-XL 0.769 0.158 0.888 0.105 0.250 —0.012 0.900  0.289 0950  0.167 0.248 —-0.014
GPT-4 0.814  0.006 0924 0.024  0.159 —0.007 0914  0.106 0963  0.063 0.164 —0.002
Reference 0.697 0.836 0.697 0.836

Table 7: Movie Reviews: Generate diverse meta-reviews and select from them using an approximate
(left) or oracle (right) target sentiment. Performance improves on every measure except ROUGE-1. As
compare the metric to their left with the results reported in Table 3.

is a limitation of the approach, but in many set-
tings it may be feasible to identify or construct
a model; we were able to do so for both tasks
considered here.

It may be that any member of C; will align well
with the anticipated aggregated property. In such
cases, we have no means of producing an output
consistent with respect to synthesis, and it may be
desirable to abstain from outputting anything at all
in such cases; that is, to be a cautious summarizer
(Ferri et al., 2004; Hechtlinger et al., 2018). We
consider this strategy in the case of generating
narrative synopses of evidence, as this constitutes
a case in which (a) one would very much prefer
not to produce a misleading summary of clinical
evidence (Kell et al., 2021), and, (b) we observe
many cases where the diverse decoding strategy

yields an output that seems to communicate (at a
granular level) the aggregate findings expected.

Movie Reviews. We use BERT (Devlin et al.,
2019), fine-tuned on IMDB (Maas et al., 2011)"7
to predict the sentiment inputs x;;, using the pro-
portion of x;; € X; with a positive score to
approximate the target sentiment z;;. For each
diverse prediction C;, we predict its sentiment
Ziy via our regression model (2.1), and select the
prediction closest to the estimated target senti-
ment |Z;; — 2;;|. We find this improves model
synthesis performance (Table 7; Figure 8). Two
authors blindly annotated 100 paired instances
over PRIMERA generations for sentiment prefer-
ence (matching the reference) between standard

Thttps://huggingface.co/lvwerra/bert—imdb.
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Figure 8: Differences relative to human summaries under vanilla decoding and the proposed generate-diverse
then select strategy on movie meta-reviews. We report Pearson’s r (PCC) and R? as measures of synthesis
“‘calibration’’. Vanilla decoding yields synthesis performance worse than humans, but explicitly considering
synthesis at inference time results in performance comparable to and sometimes better than the human summaries

(as best we can measure).

03

AceSum REFLECT-MLE REFLECT_RL Pegasus LED

0.2
0.1

0.0

0.3
PRIMERA

Density

Flan-T5 Flan-T5-Large Flan-T5-XL GPT-4

0.2

0.1

Diverse Sampling Sentiment Ranges

1.0

AceSum

REFLECT_MLE
0.8 -

REFLECT_RL Pegasus LED

0.6
0.4
0.2
0.0

Density

0
PRIMERA
0.8

Flan-T5-Base Flan-T5-Large Flan-T5-XL GPT-4

06
04
02
0.0

Average Predicted Effect

Figure 9: Distributions of outputs for the candiate summaries. Movie reviews (left) show a histogram for the
range of differences between lowest and highest output sentiments. Systematic reviews (right) show histograms

of the fractions of outputs reporting significant results.

and diverse outputs.'® We find a moderate agree-
ment Cohen’s x = 0.59, and a statistically
significant preference for the diverse summaries
(p = 0.003).

Systematic Reviews. For systematic reviews,
we have a binary measure of significant effect (or
not). As a proxy for z;3, weuse Robot Reviewer
to extract an effect for each of the model inputs
x;j, using the majority vote (i.e., do the plurality
of z;; € X; indicate that there was an effect). We
classify each output candidate in C; again using
RobotReviewer to estimate z;;. We then select
for output the highest probability candidate in C;
which agrees with the majority vote of the inputs,
and abstain where there are no viable candidates.
When we are able to choose a summary, we find
performance similar to our measure (Table 9;
Figures 8 and 9).

Result. Movie reviews show a wide range of
sentiments; systematic reviews show some im-
provement but are biased towards no effect. Both

18Summaries were ordered by difference in extracted sen-

timents between base outputs and diverse outputs, then 100
instances randomly selected from the top 20" percentile.

settings show improvement from the switch to di-
verse decoding over standard beam-search meth-
ods: We repeat the generate-multiple-then-select
approach with movie reviews (Table 8) and sys-
tematic reviews (Table 10). While the standard
beam search did produce better overall scores
when considering multiple candidates, the di-
verse generations produced higher correlations
with human sentiment, and improved overall clas-
sification and abstention behaviors. Both settings
have some decay in overall (crude) measures of
review quality—Tables 7, 8 show small decreases
in ROUGE-1 score; furthermore the diverse beam
search results produce overall higher quality re-
sults (R?, PCC), but how larger changes in
ROUGEI compared to a standard beam search
method. Systematic Reviews behave similarly
(Tables 9, 10), with an increase in F1 (or accuracy)
comes with higher variability in ROUGE] scores
and a substantial amounts of abstention.

6 Related Work

Automatic (Multi-document) Summarization.
(Nenkova and McKeown, 2011; Maybury, 1999)
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Approximate Selection Oracle Selection
R? A PCC A RI A R? A PCC A RI A

AceSum 0.534 0376  0.740  0.301 0.177 0.001 0.509  0.351 0.715 0276  0.177 0.001
REFLECTMLE 0,555 0.125 0.750  0.093 0.248 0.007 0.603 0.173 0.780  0.123 0.247 0.006
REFLECTRE 0.406  0.181 0.638 0.131 0.222 0.004 0.454 0229  0.675 0.168 0.221 0.003
PEGASUS 0.649  0.119 0.809 0079 0.248 0.003 0.705 0.175 0.840  0.110  0.247 0.002
LED 0.653 0.102  0.815 0.073 0.241 —0.001 0.711 0.160  0.847  0.105 0.240 —0.002
PRIMERA 0.685 0.077  0.833 0.053 0.254 0.000 0.731 0.123 0.857  0.077 0.255 0.001
T5-Small 0.612  0.171 0.785 0.116  0.236 0.002 0.668  0.227 0.818  0.149  0.236 0.002
T5-Base 0.615 0.099 0.786  0.066  0.252 —0.001 0.669  0.153 0.819  0.099 0.253 0.000
Flan-T5-S 0.539  0.127  0.735 0.088  0.236 —0.001 0.579  0.167 0.803 0.156  0.251 0.014
Flan-T5-B 0.694  0.097 0.834 0.060 0.248 0.001 0.741 0.144  0.861 0.087  0.248 0.001
Flan-T5-L 0.732 0248 0866  0.170  0.243 —0.005 0.875 0.391 0937  0.241 0.244 —0.004
Flan-T5-XL 0.769  0.158  0.888 0.105 0.250 —0.012 0900  0.289 0950  0.167 0.248 —0.014
Reference 0.697 0.836 0.697 0.836

Table 8: Movie Reviews: Generate movie meta-reviews using standard beam search, then select using
approximate (left) or oracle (right) target sentiments.

Multiple-then-select Oracle

F1 A Acc A Abs R1 A Abs R1 A
AceSum 0.562 0.030 0.573 0.023 0.088 0.154 0.003 0.133 0.152 0.001
REFLECTMLE 0.588 0.056 0.626 —0.013 0.227 0.280 0.009 0.150 0.278 0.007
REFLECTRE 0.605 0.100 0.700 0.017 0.430 0.197 0.002 0.247 0.207 0.008
Pegasus 0.633 0.065 0.676 —0.038 0.355 0.216 0.004 0.216 0.220 0.008
LED 0.625 0.135 0.698 0.067 0.355 0.250 —0.009 0.211 0.257 —0.002
PRIMERA 0.617 0.091 0.663 0.019 0.283 0.251 —0.002 0.180 0.250 —0.003
T5-Small 0.592 0.052 0.627 0.027 0.211 0.193 —0.012 0.169 0.190 —0.015
T5-Base 0.608 0.087 0.671 0.043 0.325 0.202 —0.004 0.197 0.210 0.004
Flan-T5-S 0.579 0.031 0.597 0.014 0.138 0.198 0.117 0.119 0.205 0.124
Flan-T5-B 0.660 0.122 0.723 0.040 0.358 0.222 0.164 0.177 0.222 0.028
Flan-T5-L 0.610 0.054 0.663 —0.029 0.212 0.212 0.065 0.152 0.206 —0.012
Flan-T5-XL 0.618 0.131 0.667 0.059 0.300 0.273 0.005 0.189 0.275 0.007
GPT-4 0.653 0.025 0.640 0.000 0.450 0.275 0.002 0.410 0.269 —0.004
Reference 0.577 0.686

Table 9: Systematic Review results with multiple-then-selected predictions. We report macro-averaged
F1 on the set of returned results. We abstain (Abs) when no output matches the expected
synthesis result.

Multiple-then-select Oracle

F1 A Acc A Abs R1 A Abs R1 A
AceSum 0.578 0.046 0.588 0.038 0.197 0.157 0.006 0.255 0.153 —0.002
REFLECTMLE 0.631 0.099 0.706 0.067 0.480 0.273 0.002 0.355 0.277 0.006
REFLECTRE 0.603 0.098 0.753 0.070 0.483 0.188 —0.011 0.294 0.201 0.002
Pegasus 0.688 0.120 0.774 0.060 0.447 0.208 —0.004 0.258 0.216 0.004
LED 0.582 0.092 0.730 0.099 0.505 0.260 0.001 0.341 0.261 0.002
PRIMERA 0.625 0.099 0.704 0.060 0.436 0.259 0.006 0.313 0.250 —0.003
T5-Small 0.603 0.063 0.633 0.033 0.258 0.204 —0.001 0.233 0.201 —0.004
T5-Base 0.613 0.092 0.692 0.064 0.405 0.208 0.002 0.300 0.211 0.005
Flan-T5-S 0.603 0.055 0.632 0.049 0.361 0.081 0.000 0.333 0.080 —0.001
Flan-T5-B 0.637 0.099 0.761 0.078 0.500 0.195 0.001 0.300 0.198 0.004
Flan-T5-L 0.673 0.117 0.771 0.079 0.478 0.177 —0.041 0.281 0.174 —0.044
Flan-T5-XL 0.594 0.107 0.665 0.057 0.394 0.271 0.003 0.311 0.269 0.001
Reference 0.577 0.686

Table 10: Systematic reviews results with multiple generate-then-select predictions, this time using the
top-5 results from standard beam-search.
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Summary Sent.

You Don’t Mess With the Zohan’s handful
of laughs are almost enough to compensate
for its inconsistent tone and stale, obvious
jokes.

You Don’t Mess with the Zohan has a
handful of crotch thrusts, but not enough
of them land.

You Don’t Mess With the Zohan’s handful
of laughs are almost enough to compensate
for its aimless, crass script.

You Don’t Mess with the Zohan has its
moments, but not all of them — and the
jokes are embarrassingly crass and often
crude.

You Don’t Mess with the Zohan has its
moments, but not all of them — and the
jokes are embarrassingly crass and often
crude. The script

0.243

0.429

0.288

0.434

0.406

Table 11: Diverse meta-review generations and
automatically inferred sentiment scores for ‘“You
Don’t Mess With The Zohan’’. Target meta-
review sentiment of 37%: We bold the closest
generation in terms of (inferred) sentiment.

has been an active subfield within NLP for
decades. We have focused our analysis on mod-
ern, neural abstractive models for conditional
text generation (Bahdanau et al., 2015). In light
of their empirical success, we have specifically
evaluated a set of Transformer-based (Vaswani
et al.,, 2017) models which have recently been
used for multi-document summarization (Beltagy
et al., 2020; Zhang et al., 2020; Xiao et al.,
2022; Raffel et al., 2020). There has been some
work on highlighting conflicting evidence in
health literature specifically (Shah et al., 2021b,a),
though this focused primarily on highlighting
conflicting evidence and explicitly aggregating
extracted content.

Multiple works have attempted gauge the
difficulty of multi-document summarization.
Wolhandler et al. (2022) measures the difficulty of
abstractive multi-document news summarization
as a function of inputs necessary to produce a final
summary; they find that two to four well-chosen
documents can cover a news topic sufficiently
for the summarizer. They also find systematic
reviews are particularly ill-suited to this minimal
covering approach. Giorgi et al. (2022) study
the impact of document retrieval behaviors on

multi-document summarization performance, and
find that models are sensitive to missing inputs.

Sentence Fusion. One view on synthesis might
be that is a particular kind of sentence fusion
(Barzilay and McKeown, 2005). However, past
work on ‘‘fusing’’ sentences has assumed that
the aim is to generate an output that contains the
information common to similar sentences (Thadani
and McKeown 2013). This is intuitive in the con-
text of, e.g., summarizing multiple news articles
covering the same event. But here we are interested
in the more challenging setting in which the output
should reflect an aggregate measure of potentially
conflicting evidence or opinions.

Review and Opinion Summarization. consid-
ers a similar task to ours: Aggregating (usually
product) reviews and opinions into a single coher-
enttext. Oved and Levy (2021) developed a system
with a similar generate-then-select approach, how-
ever this work was focused on generating plausible
summaries rather than accurate syntheses, by
selecting amongst candidates via a voting mech-
anism designed to mimic human preferences.
Other related work has considered generating
personalized and/or aspect-oriented summaries
(He et al., 2017; Angelidis and Lapata, 2018;
Amplayo and Lapata, 2020, 2021; Amplayo et al.,
2021; Angelidis et al., 2021). Amplayo and Lapata
(2021) propose a T5 variant for pooling instance
representations, and also use Rotten Tomatoes as
a dataset. This work (and Amplayo et al., 2021)
includes a manual evaluation of how well sys-
tem summaries are supported by input reviews,
in contrast to how well a summary agrees with
all inputs in the precise sense we have consid-
ered. We note that none of these prior works
directly probe model responsiveness to changes in
input composition.

Also related is the work of Chu and Liu (2019),
which considered unsupervised approaches to
multi-document summarization of Yelp! and
Amazon reviews; they adopt an auto-encoder that
““‘decodes’’ the mean of input representations to
target summaries. They similarly note that output
texts should convey mean input sentiment, and re-
port ‘‘sentiment accuracy’’ as one of their metrics.
But the synthesis aspect is not their main focus, and
they consider only unsupervised settings (rather
than the SOTA fine-tuned summarization models
we have evaluated).
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Interpretation and Analysis of Neural Models
for NLP. This work is also related to the emerg-
ing body of work on analyzing neural NLP models,
their behaviors, ‘‘knowledge’’, and ‘‘abilities’” in
general (e.g., Linzen et al., 2016; Tenney et al.,
2019; Petroni et al., 2019; Niven and Kao, 2019;
Meng et al., 2022). There has been some work
specifically on analyzing neural summarization
models. Xu et al. (2020a) investigated when a
model is likely to copy rather than generate. Xu
and Durrett (2021) assessed when models were
relying on the local input to produce particular
output tokens, and when they instead rely mostly
on a background language distribution acquired
in pre-training. In contrast to Giorgi et al. (2022)
we explore beyond surface forms and explore the
specific aspect of text synthesis.

Factuality of Neural Summarizers. Neural
conditional generation models have proven adept
at producing fluent outputs, but when summa-
rizing they are prone to hallucinating content
unsupported by input documents (Maynez et al.,
2020; Kryscinski et al., 2019). Automated metrics
such as ROUGE do not reliably capture such phe-
nomena (Falke et al., 2019; Maynez et al., 2020).
This has motivated the design of automated fac-
tuality metrics (e.g., Wang et al., 2020; Xu et al.,
2020b); see Pagnoni et al. (2021) for an overview.

7 Conclusions

We have outlined and investigated the problem of
synthesis as related to some summarization tasks.
We showed that existing models are partially able
to synthesize implicitly, but do so imperfectly:
the aggregation they perform is sensitive to input
ordering, and they are not as sensitive to pertur-
bations in the composition of inputs as one would
hope. Some models specifically designed for these
tasks (AceSum, QT, REFLECT) are less sensitive
to these perturbations, but offer worse overall
performance than an equivalently sized trans-
former model (compare LED and REFLECT -
REFLECT integrates a model with the same
base LLM parameters as a portion of its syn-
thesis model). Furthermore, increasing model size
within an architecture can lead to fairly substantial
improvements (LED to PRIMERA, T5 Small to
Base, similarly for Flan-T5). Pretraining methods
have some impact as well: TS and Flan-T5 do
not perform identically despite an identical model

structure and comparable sizes, and GPT-4 clearly
outperforms all models in this case, including the
bespoke ones.

We proposed and validated a straightforward
inference time method to improve model syn-
thesis capabilities by preferentially outputting
summary candidates that align with a predicted
aggregate measure, and demonstrated empirically
that this offers gains in performance. These gains
are primarily limited by the underlying mod-
els’ behaviors, but potentially bring performance
on these single, task-specific metrics, on par to
human performance, when the model is capa-
ble of providing a response that aligns with the
proxy metrics.

We hope this work encourages additional re-
search into summarization models that explicitly
optimize to accurately synthesize potentially con-
flicting evidence. We are particularly interested
in understanding why models fail to synthe-
size—they clearly learn to produce synthesis-like
text, but fail to yield the best option, even among
their top candidates. We use summary rerank-
ing as a means to surface these more-appropriate
summaries, but this is solely post-hoc as opposed
to controlling for a more suitable generation, or
ideally improving base model performance.

Our methods focus solely on improving perfor-
mance at single specific task measures, potentially
at a cost to other review qualities. Users of such
systems may have auxiliary goals, perhaps requir-
ing multiple measures of synthesis quality, other
measures of overall review quality, or a greater (or
lesser) willingness to abstain. Abstinence can be
a feature beyond the case of systematic reviews;
systems may have other specific rules for when to
abstain: e.g. toxic language, challenging to verify
statements, or distance from an overall objective
(i.e. abstaining in the movie reviews case).

This work has several limitations. We have
made an effort to fine-tune several popular sum-
marization models, but limited our analysis to
models of relatively modest size (due to the
GPU memory required to train long sequence
summarization models). These behaviors appear
to change with larger models (e.g., the small
vs base-sized models, GPT-4 (OpenAl, 2023)),
but building robustness to perturbations while
maintaining sensitivity to input composition is a
non-obvious challenge. We also have reported re-
sults on only English-language tasks. Finally, we
focused on a relatively narrow behavior (synthesis
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of a single aspect); models may succeed in this
respect while failing in other ways.
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