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Abstract

In the task of Knowledge Graph Comple-
tion (KGC), the existing datasets and their
inherent subtasks carry a wealth of shared
knowledge that can be utilized to enhance the
representation of knowledge triplets and over-
all performance. However, no current stud-
ies specifically address the shared knowledge
within KGC. To bridge this gap, we intro-
duce a multi-level Shared Knowledge Guided
learning method (SKG) that operates at both
the dataset and task levels. On the dataset
level, SKG-KGC broadens the original data-
set by identifying shared features within entity
sets via text summarization. On the task level,
for the three typical KGC subtasks—head en-
tity prediction, relation prediction, and tail
entity prediction—we present an innovative
multi-task learning architecture with dynam-
ically adjusted loss weights. This approach al-
lows the model to focus on more challenging
and underperforming tasks, effectively miti-
gating the imbalance of knowledge sharing
among subtasks. Experimental results dem-
onstrate that SKG-KGC outperforms exist-
ing text-based methods significantly on three
well-known datasets, with the most notable
improvement on WN18RR (MRR: 66.6%→
72.2%, Hit@1: 58.7%→67.0%).

1 Introduction

Knowledge Graphs (KGs) are directed multi-
relation graphs, with entities as nodes and rela-
tions as edges, denoted as a set of triples (h, r, t).
Their distinctive advantage lies in efficiently rep-
resenting and managing extensive knowledge,
offering high-quality structured information for
diverse downstream tasks, including question
answering (Saxena et al., 2020), information re-
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trieval systems (Bounhas et al., 2020), and rec-
ommendation systems (Gao et al., 2023). Despite
these strengths, existing knowledge graphs still
lack a substantial amount of valuable information.
Effectively addressing this gap in knowledge com-
pleteness has given rise to the field of Knowledge
Graph Completion (KGC). KGC aims to infer the
missing entities and relations from knowledge
graphs, significantly enhancing both the qual-
ity and coverage of these valuable knowledge
repositories.

Existing KGC methods are mainly divided into
structure-based methods and text-based methods.
Structure-based methods (Bordes et al., 2013; Sun
et al., 2019; Balazevic et al., 2019) typically map
entities and relations into low-dimensional vec-
tors and calculate the probability of valid triples
by various scoring functions. Text-based methods
(Yao et al., 2019; Xie et al., 2022; Kim et al.,
2020; Yao et al., 2024) adopt pre-trained lan-
guage models to semantically encode textual de-
scriptions of entities. They can encode unseen
entities in training time, while making reasoning
less efficient. Recent advancements, such as the
bi-encoder structure proposed in studies like Wang
et al. (2021a, 2022), aim to reduce the training
cost of language model encoders. This shift has
led to text-based methods beginning to surpass
structure-based methods in terms of performance.

While these methods exhibit a strong capa-
bility to complete knowledge graphs, challenges
persist in the effective sharing of knowledge
among datasets and subtasks. Specifically, we
find that the same (h, r) or (r, t) often appear in
different triples (h, r, t). According to our analy-
sis in Figure 1a, 42.1% of triples can find other
triples sharing the same (h, r) with themselves,
and 66.9% of triples can find those sharing the
same (r, t) with themselves in the WN18RR train-
ing set. For instance, (Kirsten Dunst, film actor,
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Figure 1: (a) The greater the proportion of triples
sharing the same (r, t) or (h, r), the more accessi-
ble knowledge we acquire. (b) The average number of
connected entities in many-to-one and one-to-many
relations indicates the imbalanced distribution between
head entities and tail entities, respectively.

Spider-Man), (Willem Dafoe, film actor, Spider-
Man), (James Franco, film actor, Spider-Man)
all have the same relations and tail entities. This
suggests the potential existence of shared knowl-
edge, such as ‘‘American film actor,’’ among var-
ious head entities. Leveraging this dataset-level
shared knowledge is essential to enhance the
learning ability of triples and assist the model in
correctly identifying answers from lexically sim-
ilar candidates.

Notably, we observe considerable performance
variations across various KGC subtasks, even
when applied to the same dataset. For KG-BERT
(Yao et al., 2019) on the WN18RR dataset, the

Hit@10 prediction results differ notably for head
entities (54%) and tail entities (60.7%). This dis-
crepancy arises from certain relations, such as
gender and city, linking more head (tail) enti-
ties and fewer tail (head) entities. As shown in
Figure 1b, the issue of imbalanced distribution
of head entities and tail entities is prevalent in
knowledge graphs, yet it receives limited atten-
tion in research. Existing multi-task learning meth-
ods treat head entity and tail entity prediction
equally, ignoring the intricacies of more complex
tasks. Therefore, making the model focus on more
challenging tasks while learning the shared knowl-
edge across multiple subtasks becomes an urgent
concern. This task-level shared knowledge can
enhance the model’s learning of entity and rela-
tion embeddings.

In this paper, we introduce a multi-level Shared
Knowledge Guided learning method (SKG) for
knowledge graph completion. To capture dataset-
level shared knowledge within specific entity sets,
we jointly train original triples, triples with iden-
tical head entities and relations, and triples with
identical relations and tail entities. For task-level
knowledge sharing, we incorporate relation pre-
diction in multi-task learning to assist entity pre-
diction task, enabling the model to acquire more
relation-aware entity information. In each itera-
tion, our loss weight allocation scheme assigns
higher loss weights to tasks that are more chal-
lenging and underperforming, effectively address-
ing the imbalanced distribution of head and tail
entities. In summary, our contributions include:

• We extract dataset-level shared knowledge
by extending the original dataset, bolstering
the model’s ability to identify correct an-
swers from lexically similar candidates in
the bi-encoder architecture.

• We design a novel multi-task learning ar-
chitecture with dynamically adjusted loss
weights for task-level knowledge sharing.
This ensures the model focuses more on
challenging and underperforming tasks, al-
leviating the imbalance of subtasks in
KGC.

• SKG-KGC is evaluated on three benchmark
datasets: WN18RR, FB15k-237 and Wiki-
data5M. Experimental results demonstrate
the competitive performance of our model in
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both transductive and inductive settings, with
notable success on the WN18RR dataset.

2 Related Work

Knowledge Graph Completion KGC has been
extensively studied for many years as a popular
research topic. It can be divided into three sub-
tasks: head entity prediction, relation prediction,
and tail entity prediction. Structure-based meth-
ods, such as TransE (Dou et al., 2021), RotatE
(Sun et al., 2019), TuckER (Balazevic et al., 2019),
and Complex-N3 (Jain et al., 2020), map enti-
ties and relations to low-dimensional vector spaces
and measure the plausibility of triples by vari-
ous scoring functions. Recent text-based methods
represented by KG-BERT (Yao et al., 2019) at-
tempt to integrate pre-trained language models for
encoding textual descriptions of entities and rela-
tions. PKGC (Lv et al., 2022) converts each triple
into natural prompt sentences, utilizing a single
encoder for triple encoding. Xie et al. (2022),
Saxena et al. (2022), and Yao et al. (2024) formu-
late KGC as a sequence-to-sequence generation
task and explore Seq2Seq PLM models to di-
rectly generate required text. StAR (Wang et al.,
2021a) simultaneously learns graph embeddings
and contextual information of the text encod-
ing method. Chen et al. (2023) employ condi-
tional soft prompts to integrate textual description
structural knowledge. In contrast, SimKGC (Wang
et al., 2022) introduces contrastive learning and a
bi-encoder with a pre-trained language model to
encode entities and relations separately. It proves
highly efficient for training with a large negative
sample size, enhancing the efficiency of KGC
training and inference.

Multi-task Learning MTL aims to concur-
rently train deep learning models by leveraging
information from multiple interconnected tasks.
Balancing losses during training facilitates tasks
in providing valuable insights to each other, re-
sulting in a more proficient and robust model.
For the KGC task, Kim et al. (2020) first propose
a multi-task learning method, integrating relation
prediction, relevance ranking, and link prediction
tasks. Subsequent models focus on introducing
additional knowledge or potent pre-trained lan-
guage models (PLMs). For instance, Dou et al.
(2021) propose a novel embedding framework
for multi-task learning, enabling the transfer of

structural knowledge across different KGs. In-
corporating the ALBERT-large (Lan et al., 2020)
model with more parameters as the text encoder,
Tian et al. (2022) enhance model performance
at the expense of increased training costs. Mean-
while, Li et al. (2023) employ a multi-task pre-
training strategy to capture relational information
and unstructured semantic knowledge within struc-
tured knowledge graphs. These studies emphasize
the interconnectedness of various KGC subtasks,
highlighting that knowledge sharing among them
can enhance overall performance.

However, they overlook the distinction between
head entity prediction and tail entity prediction
tasks, which arises from the imbalanced distribu-
tion of head and tail entities. Recognizing this,
our SKG-KGC model explicitly distinguishes be-
tween head entity prediction and tail entity pre-
diction in the context of multi-task learning. We
attempt to achieve superior performance and scal-
ability by employing the basic PLM model and
fewer subtasks.

3 Method

In this section, we introduce a multi-level Shared
Knowledge Guided learning method (SKG) for
knowledge graph completion. We elaborate the
entire architecture of the proposed model in
Section 3.1. In Sections 3.2 and 3.4, we illustrate
how our method captures shared knowledge at both
dataset and task levels for KGC. These insights
are seamlessly integrated at the bi-encoder archi-
tecture, as explained in Section 3.3. The follow-
ing sections provide a detailed overview of the
training and inference processes of our model.

3.1 Model Structure

Figure 2 illustrates the overview of the SKG-
KGC model. Our model consists of three parts:

• Dataset level: During training, the model is
simultaneously trained with original triples,
triples with identical (h, r), and triples with
identical (r, t). This approach strengthens
the learning of shared features among entity
sets while reducing text redundancy.

• Bi-encoder architecture: Two encoders are
initialized with the same pre-trained model
but do not share parameters. The primary
encoder computes the joint embedding of the
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Figure 2: An overview of the SKG-KGC model.

two known elements in triples, while the sec-
ondary encoder computes the representation
of the missing entities.

• Task level: We design balanced multi-task
learning by introducing a relation prediction
subtask to assist link prediction. In each iter-
ation, the model assigns higher loss weights
to challenging and underperforming sub-
tasks, facilitating dynamic knowledge shar-
ing across different subtasks.

3.2 Dataset Expansion

In addition to the original triples (h, r, t), our
proposed model also incorporates triples with the
same head entity and relation (h, r, {t0, t1, . . . ,
ti}) and triples with the same relation and tail
entity ({h0, h1, . . . , hj}, r, t). Common features
among different entities in triples are identified
through text summarization. For instance, (h1,
r, t), (h2, r, t), and (h3, r, t) are valid triples in
the training dataset, where the relation r and
the tail entity t are consistent. Consequently, the

three head entities h1, h2, h3 may share common
or similar features. If a new entity h0 also con-
tains these common features within the head en-
tity set {h1, h2, h3}, the triplet (h0, r, t) is more
likely to be considered reasonable.

The model takes text sequences as input,
corresponding to the three types of triples for
knowledge graph completion. Each entity text
sequence comprises the entity’s name and its
corresponding text description. For the triple
({04692908, 00387897}, derivationally related
form, 01259005), the input sequence is: ‘‘[CLS]
chip, a mark left after a small piece has been
chopped or broken off of something [PSEP] snick,
a small cut [SEP] derivationally related form
[SEP] nick, cut a nick into [SEP]’’. The bold font
indicates the name of each head entity. [PSEP]
serves as the separator for entities in the head
entity set. The use of [CLS] and [SEP] aligns with
the BERT-base model. Further details regarding
different subtasks are provided in Table 1.

However, the integration of entity sets may
result in more extensive and redundant textual
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Subtask
Input

Label Type
h tokens r tokens t tokens

HP [MASK] has part China Asia Candidate entity ranking
RP Asia [MASK] China has part Multi-classification
TP Asia has part [MASK] China Candidate entity ranking

Table 1: An example of the head entity prediction (HP), relation prediction (RP), and tail entity pre-
diction (TP) subtasks in KGC.

information. To address this, we utilize the Text-
Rank algorithm (Mihalcea and Tarau, 2004) to re-
fine the input sequence from entity sets. Initially,
we construct an undirected graph by segment-
ing the text into m sentence units. Each sentence
unit is treated as a node in the graph. We then
quantify the similarity between sentences using a
word overlap-based method. This similarity score
w directly influences the weight of the graph’s
edges, with higher similarity resulting in greater
edge weight. Next, we assign an initial TextRank
value of 1/m to each sentence unit. These val-
ues are iteratively updated according to the fol-
lowing formula:

T (Si) = (1− d) + d ∗
∑

Sj

wji∑
Sk

wjk
T (Sj) (1)

Here, Sj and Sk are the nodes pointing to
and pointed by Si respectively, T (Sj) denotes
the TextRank value of the j-th sentence, wji

and wjk are the weight of edges between nodes
(sentence similarity), and d is the damping ratio,
signifying the probability of jumping from one
node to another.

After iteration, we obtain the final TextRank
value T (Si) for the i-th sentence unit. The
top-n sentences with the highest TextRank val-
ues are then selected as concise text, providing
the model with essential yet condensed descrip-
tive information.

3.3 Bi-encoder Architecture

Unlike MTL-KGC (Kim et al., 2020) using a sin-
gle encoder, our proposed model employs two
encoders initialized with the same pre-trained lan-
guage model but without sharing parameters. Each
encoder autonomously acquires shared knowl-
edge at both the dataset and task levels. The pri-
mary encoder computes the joint embedding of

the two known elements in triples, while the sec-
ondary encoder computes the representation of
the missing entities.

Head Entity Prediction Given a triple (h, r, t),
the main encoder concatenates the text descrip-
tions of the relation r and the tail entity t with
[SEP], calculating the relationship-aware embed-
ding of the tail entity (r, t). Meanwhile, the
secondary encoder encodes the head entity h.
This method, as demonstrated in previous ap-
proaches (Wang et al., 2021a, 2022), proves to
be more efficient than encoding the entire triple
simultaneously. Subsequently, we employ mean
pooling and L2 normalization strategies to de-
rive fixed-size embeddings. The similarity score
between the head entity embedding eh and the
relation-aware tail entity embedding ert is de-
termined by cosine similarity, expressed by the
following formula:

fHP(h, r, t) = cos (eh, ert) =
eh · ert

‖eh‖ ‖ert‖
(2)

Tail Entity Prediction The identical bi-encoder
computes the similarity score between the tail
entity embedding et and the relation-aware head
entity embedding ehr for tail entity prediction
(h, r, ?). The formula is as follows:

fTP(h, r, t) = cos (et, ehr) =
et · ehr

‖et‖ ‖ehr‖
(3)

We incorporate the idea of contrastive learning
to make the anchor point closer to positive sam-
ples (h, r, t) and farther from negative samples
(h′, r, t) or (h, r, t′). The proper selection of neg-
ative samples significantly impacts the training
model’s performance. For ease of comparison,
our model employs negative samples consistent
with those constructed in SimKGC.
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Relation Prediction The goal of relation pre-
diction (h, ?, t) is to predict the missing relation
between two given entities. Due to the absence
of detailed descriptions of relations, separately
encoding relations, as done in the previous two
tasks, is impractical. Therefore, we treat relation
prediction as a multi-classification task. The scor-
ing function g for the relation label is expressed
as follows:

g(h, r, t) = softmax(ehtW T
RP ) (4)

Here, eht represents the head entity and tail
entity embeddings encoded by the shared main
encoder, and WRP is the parameter matrix of the
classification layer used for relation prediction.

3.4 Balanced Multi-Task Learning

In multi-task learning, simultaneously training
multiple tasks can be challenging or inefficient
without achieving a proper balance among them.
Thus, we introduce a dynamic and balanced multi-
task weight allocation scheme to ensure equi-
librium among the three subtasks: head entity
prediction, relation prediction, and tail entity pre-
diction. This approach dynamically takes into
account the learning difficulty and accuracy of
tasks during each iteration, assigning a higher loss
weight to tasks that are challenging to learn and
exhibit lower performance. We use dk(t) to assess
the difficulty and accuracy of task k in the t-th
epoch as follows:

dk(t) = − (1− āk(t− 1))rk log (āk(t− 1))
(5)

Here, dk(t) is calculated similarly to focal
loss (Lin et al., 2020), augmenting the weight
of difficult-to-distinguish samples. Although fo-
cal loss is originally designed for classification
(Romdhane et al., 2020), we extend its applica-
tion to multi-task weight assignment. For task k,
āk(t − 1) ∈ (0, 1) denotes the normalized accu-
racy metric of the validation set during the itera-
tion immediately before t. An increased accuracy
metric āk(t) indicates enhanced learning capa-
bility of the model for the task, thus suggesting
a reduction in weight allocation. The focusing
parameter rk smoothly adjusts the proportion of
tasks that are down-weighted. As the task be-
comes simpler, it is accorded less weight.

In this paper, the focusing parameter rk pri-
marily mirrors the learning difficulty of the head
entity prediction and tail entity prediction tasks,
denoted as the ratio of the average number of con-
nected entities in many-to-one and one-to-many
relations. A higher count of entities connected by
many-to-one relations increases the learning com-
plexity of the head entity prediction task. The
tail entity prediction task is also influenced by
the number of entities connected by one-to-many
relations. The default value of rk for the relation
prediction task is set to 1.

Subsequently, we normalize dk(t) using the
softmax function and multiply it by the number
of tasks K, ensuring K =

∑
i wi(t). Finally, we

obtain the loss weight wk(t) for task k in the
t-th epoch.

wk(t) =
K exp (dk(t))∑

i exp (di(t))
(6)

For t = 1, we initialize the loss weight
wk(t) of each task to 1, though introducing any
non-balanced initialization weight based on prior
knowledge is also viable.

3.5 Training

For different subtasks in KGC, we optimize our
proposed model using InfoNCE loss and cross-
entropy loss, respectively.

InfoNCE loss We treat both head entity predic-
tion (HP) and tail entity prediction (TP) as can-
didate entity ranking tasks. Therefore, we employ
the InfoNCE loss with additive margin softmax
(Yang et al., 2019; Wang et al., 2022) for LHP

and LTP. The loss LTP is defined as follows:

LTP = − log
e(f(h,r,t)−γ)/τ

e(f(h,r,t)−γ)/τ +
∑|N |

i=1 e
f(h,r,t′i)/τ

(7)

The scoring function f(h, r, t) ∈ [−1, 1] for
triples is the cosine similarity of ehr and et. The
additive margin γ > 0 enhances the separation
between true triples and false triples. We utilize
the temperature τ to adjust the relative importance
of negatives in triples and introduce log 1

τ as a
learnable parameter during training. |N | repre-
sents the number of negative samples. The same
approach is applicable to obtain the loss LHP.
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Cross-entropy Loss For the relation prediction
subtask (RP), we train the model by minimizing
the cross-entropy loss between the true relations
and the predicted relations. The cross-entropy loss
function is given by:

LRP = −
∑

(h,r,t)∈DRP

y log g(h, r, t) (8)

Here, y is a one-hot encoding of relation r.
g(h, r, t) denotes the output score of the relation
prediction.

Throughout the training process, we employ
the mini-batch stochastic gradient descent algo-
rithm to optimize the objective function. For each
training step, a mini-batch is randomly selected
from the entire training dataset D = DHP ∪DRP ∪
DTP. Subsequently, the model is trained sequen-
tially for the task associated with the specific
mini-batch. Finally, we multiply the three loss
functions by their corresponding weights and sum
them up to obtain the overall loss function L.
The formula is as follows:

L = LHP · wHP + LRP · wRP + LTP · wTP (9)

3.6 Inference

Assume there are |T | test triples and |E| can-
didate entities in the head entity prediction task.
Traditional cross encoders, such as KG-BERT
(Yao et al., 2019) and MTL-KGC (Kim et al.,
2020), traverse |E| entities for each test triple
(?, r, t). They replace the head entity in the test
triplet repeatedly and select the highest-ranking
entity as the candidate. This means a test triple
requires |E| computations, and |T | triples need
|E| × |T | computations in total. In contrast, our
method employs two independent encoders sim-
ilar to SimKGC (Wang et al., 2022). The pri-
mary encoder computes the relation-aware tail
entity embeddings for |T | test triples, while the
secondary encoder necessitates only a one-time
computation for |E| candidate entities without re-
traversing all entities. The embeddings from the
two encoders are combined using a dot product
operation to obtain the ranking scores for all en-
tities. This reduces the required BERT forward
passes to |E| + |T |, significantly reducing infer-
ence time.

Likewise, the reasoning process for the tail
entity prediction subtask follows a comparable

pattern. The computational complexity also shifts
from |E| × |T | to |E| + |T |. The inference com-
plexity of the relation prediction subtask remains
|T |, owing to the retention of the cross-encoder.
Moreover, we have the capability to pre-compute
the embeddings of unseen entities or relations
based on their text descriptions. Consequently, our
model can also facilitate inductive reasoning for
some unseen entities or relations.

4 Experiments

4.1 Experimental Setup

Dataset Our model is evaluated on three bench-
mark datasets: WN18RR (Dettmers et al., 2018),
FB15k-237 (Toutanova and Chen, 2015), and
Wikidata5M (Wang et al., 2021b). Further de-
tails regarding dataset statistics are provided in
Table 2. WN18RR is a subset of WordNet (Miller,
1995), containing about 41k entities and 11 seman-
tic relations between words. FB15k-237, a subset
of FreeBase (Bollacker et al., 2008), consists of
about 15k entities and 237 relations. For text de-
scriptions in WN18RR and FB15k237, we follow
the data provided by KG-BERT (Yao et al., 2019).
Wikidata5M integrates the Wikidata knowledge
graph and Wikipedia pages, comprising nearly 5
million entities and about 20 million triples. It
is used for both transductive and inductive KGC
tasks. In the transductive setting, entities appear-
ing in the test set are encountered in the training
set, while in the inductive setting, entities in the
test set have never appeared in the training set.

Evaluation Metrics For each test triple (h, r, t),
our model predicts the tail entity t by ranking
all entities based on (h, r), and similarly, predicts
the head entity h by ranking all entities based
on (r, t). The evaluation employs four metrics:
mean reciprocal rank (MRR), Hit@1, Hit@3, and
Hit@10. MRR is the average reciprocal rank of
all test triples, while Hit@k represents the pro-
portion of correct entities ranked within the top-k
candidates. All metrics are reported under the fil-
tered setting (Bordes et al., 2013), and computa-
tions involve averaging over head entity prediction
(?, r, t) and tail entity prediction (h, r, ?) tasks.

Hyperparameters The SimKGC model (Wang
et al., 2022) serves as our benchmark, with most
hyperparameters aligning with it. The encoders
are initialized with BERT-base-uncased (English).
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Dataset #entity #relation #train #valid #test
WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466
Wikidata5M-Trans 4,594,485 822 20,614,279 5,163 5,163
Wikidata5M-Ind 4,579,609 822 20,496,514 6,699 6,894

Table 2: Statistics of the datasets used in this paper. ‘‘Wikidata5M-Trans’’ and ‘‘Wikidata5M-Ind’’
refer to the transductive and inductive settings, respectively.

Model WN18RR FB15K-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

Structure-based Methods

TransE (Bordes et al., 2013) † 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1
ComplEx (Trouillon et al., 2016) † 44.9 40.9 46.9 53.0 27.8 19.4 29.7 45.0
RotatE (Sun et al., 2019) † 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3
TuckER (Balazevic et al., 2019) † 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4
Complex-N3 (Jain et al., 2020) 49.0 44.0 – 58.0 37.0 27.0 – 56.0
TransMTL-H (Dou et al., 2021) 49.8 – – 57.0 34.9 – – 53.7
SEPA (Gregucci et al., 2023) 48.1 44.1 49.6 56.2 33.2 24.3 36.3 50.9
Text-based Methods

KG-BERT (Yao et al., 2019) † 21.6 4.1 30.2 52.4 – – – 42.0
MTL-KGC (Kim et al., 2020) 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8
StAR (Wang et al., 2021a) 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
GenKGC (Xie et al., 2022) – 28.7 40.3 53.5 – 19.2 35.5 43.9
MIT-KGC (Tian et al., 2022) – 33.5 58.2 76.5 – 21.2 41.7 57.5
SimKGC (Wang et al., 2022) 66.6 58.7 71.7 80.0 33.6 25.7 37.3 49.8
LP-BERT (Li et al., 2023) 48.2 34.3 56.3 75.2 31.0 22.3 33.6 49.0
SKG-KGC 72.2 67.0 75.1 81.6 35.0 26.4 37.7 52.2

Table 3: Main results for WN18RR and FB15K-237 datasets. Results of [†] are from StAR (Wang
et al., 2021a) and the other results are from the corresponding papers. Bold numbers represent the
best results.

The AdamW optimizer with linear learning rate
decay is employed. All models are trained with
batch size 1024 on 4 A100 GPUs. We con-
duct a grid search on learning rates within
{10−5, 3 × 10−5, 5 × 10−5}. Entity descriptions
are truncated to a maximum of 50 tokens. In the
TextRank algorithm, we set the damping ratio
d at 0.85 and select the top three sentences as
the summarized text. Each task’s initial weight
in multitask learning is set to 1. The tempera-
ture τ initializes at 0.05, and the additive margin
γ for InfoNCE loss is 0.02. For the WN18RR,
FB15k-237, and Wikidata5M datasets, we train
for 50, 10, and 1 epochs, respectively.

4.2 Main Results

We compare the performance of SKG-KGC with
state-of-the-art baseline models, covering both
structure-based methods and text-based meth-

ods. Table 3 illustrates the main results on the
WN18RR and FB15K-237 datasets, while Table 4
shows the performance on the Wikidata5M data-
set under transductive and inductive settings.

On the WN18RR dataset, the SKG-KGC model
outperforms other models significantly. It exhib-
its notable improvements over the state-of-the-
art (SOTA) method in MRR, Hit@1, Hit@3, and
Hit@10, with gains of 5.6%, 8.3%, 3.4%, and
1.6%, respectively. The most substantial enhance-
ment is observed in Hit@1, potentially attributed
to the presence of more lexically similar entities
and a sparser graph structure in the WN18RR da-
taset. We argue that shared knowledge aids the
model in learning crucial textual descriptions, en-
hancing its ability to identify similar candidate
entities. The dynamic and balanced loss weight
scheme in multi-task learning enables the model
to concentrate more on specific subtasks, en-
hancing its efficacy in handling sparse data in
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Model
Wikidata5M-Trans Wikidata5M-Ind

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
Structure-based Methods
TransE (Bordes et al., 2013) ‡ 25.3 17.0 31.1 39.2 – – – –
RotatE (Sun et al., 2019) ‡ 29.0 23.4 32.2 39.0 – – – –

Text-based Methods

DKRL (Xie et al., 2016) ‡ 16.0 12.0 18.1 22.9 23.1 5.9 32.0 54.6
KEPLER (Wang et al., 2021b) ‡ 21.0 17.3 22.4 27.7 40.2 22.2 51.4 73.0
BLP-SimplE (Daza et al., 2021) ‡ – – – – 49.3 28.9 63.9 86.6
SimKGC (Wang et al., 2022) 35.8 31.3 37.6 44.1 71.4 60.9 78.5 91.7
KGT5 (Saxena et al., 2022) 30.0 26.7 31.8 36.5 – – – –
SKG-KGC 36.6 32.3 38.2 44.6 72.0 61.6 78.8 91.7

Table 4: Main results for Wikidata5M dataset. Results of [‡] are from SimKGC (Wang et al., 2022)
and the other results are from the corresponding papers. We follow the evaluation protocol used in
SimKGC.

WN18RR. Moreover, text-based methods consis-
tently outperform structure-based methods, under-
scoring their advantage in grasping the semantics
of words.

Compared to the WN18RR dataset, the FB15K-
237 dataset features richer relations and fewer
entities. Our model exhibits improved experi-
mental performance among text-based methods,
with the exception of MIL-KGC, which utilizes
the more potent AlBERT-large encoder and un-
dergoes longer training times. This outcome un-
derscores the effectiveness of shared knowledge
and balanced multi-task learning in SKG-KGC
for leveraging text information. However, our
model still falls short when compared to struc-
tured methods like TuckeER and Complex-N3.
Two main reasons contribute to this shortfall.
Firstly, the limited number of entities in the
FB15K-237 dataset results in inadequate learn-
ing of entity textual descriptions. Additionally,
structured methods contribute to a more effective
understanding of generalizable inference rules,
which proves advantageous for the FB15K-237
dataset.

The Wikidata5M dataset spans various do-
mains and boasts a much larger scale compared
to WN18RR and FB15K-237. As indicated in
Table 4, our model demonstrates SOTA perfor-
mance in both transductive and inductive settings
when compared to existing structure-based and
text-based methods. Notably, the million-scale
data results in a prolonged training time for our
model in a single iteration. To facilitate compar-
isons and minimize training costs, we adopt the
approach from SimKGC, maintaining the epoch

at 1 during training. Consequently, the dynamic
and balanced loss weight allocation scheme is
not applied to this dataset. Although extending the
existing dataset and incorporating the relation pre-
diction subtask in multi-task learning contribute
to some performance enhancement, further im-
provements can be achieved. Additionally, the
exceptional performance on the Wikidata5M inds
dataset underscores our model’s capability to in-
fer entities not encountered in the training set.

4.3 Ablation Studies

We conduct the ablation studies to explore the
impact of each specific component on the SKG-
KGC model. Specifically, ‘‘w/o dataset expan-
sion’’ means that the model is trained only using
original triples. ‘‘w/o balanced multi-task learn-
ing’’ refers to treating the loss weights of multiple
subtasks as 1. ‘‘w/o multi-level shared knowl-
edge’’z means removing both components that
gather dataset-level and task-level knowledge.
‘‘w/o bi-encoder architecture’’ indicates that we
only use one encoder for all triple elements. The
results shown in Table 5 highlight that remov-
ing any of these components greatly reduces the
model’s performance.

Effect of Dataset Expansion Removing data-
set expansion causes a significant decrease in
our model’s performance on the WN18RR and
FB15K-237 datasets. Particularly on the WN18RR
dataset, which features more textual descriptions,
MRR, Hit@1, Hit@3, and Hit@10 metrics all drop
by 3.7%, 5.4%, 2.5%, and 1.3%, respectively.
This emphasizes the effectiveness of common
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Model WN18RR FB15K-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

w/o dataset expansion 68.5 61.6 72.6 80.3 34.2 25.6 36.9 51.5
w/o balanced multi-task learning 70.8 65.3 73.6 81.5 34.7 26.0 37.4 52.3
w/o multi-level shared knowledge 66.9 60.3 70.5 79.3 34.1 25.4 36.8 51.7
w/o bi-encoder architecture 68.2 61.2 72.4 80.6 33.3 24.3 36.2 51.1
SKG-KGC 72.2 67.0 75.1 81.6 35.0 26.4 37.7 52.2

Table 5: The ablation results on the WN18RR and FB15K-237 dataset.

knowledge within entity sets sharing the same
(h, r) or (r, t). Such dataset-level shared knowl-
edge enhances the model’s ability to learn com-
mon features among interconnected entities.

Effect of Balanced Multi-task Learning On
the WN18RR and FB15K-237 datasets, when bal-
anced multi-task learning is excluded, the MRR,
Hit@1, and Hit@3 of the model show a decrease,
but the Hit@10 metric is still comparable. This
highlights the advantage of our proposed loss
weight allocation scheme for multiple subtasks in
multi-task learning. The scheme facilitates more
accurate identification of the expected entity from
candidate entity sets, despite facing challenges in
identifying the top-10 entities.

Effect of Bi-encoder Architecture The re-
moval of the bi-encoder architecture results in a
4% decrease in MRR on WN18RR, and a 1.7%
decrease on the FB15K-237 dataset. This indicates
that it is reasonable for the model to use two inde-
pendent encoders to encode unknown and known
elements separately, thereby avoiding some po-
tential confusion in the single encoder configura-
tion. These findings highlight the effectiveness of
the bi-encoder architecture in seamlessly integrat-
ing dataset-level and task-level shared knowledge,
significantly improving the model’s proficiency
in knowledge graph completion.

4.4 Further Exploration of Dataset-level
Knowledge

During dataset expansion, we study how different
input texts, the number of sentences, and entity
sets affect our model, aiming at further exploration
of dataset-level knowledge.

Experiment 1: Effect of Input Texts In this
experiment, we assess the impact of different in-
put texts on the model performance. We exam-

Input text MRR Hit@1 Hit@3 Hit@10
w/o entity description 41.5 32.7 46.0 58.1
w/o entity name 65.3 57.6 70.0 79.0
w/o text summarization 70.5 64.2 74.1 81.8
SKG-KGC 72.2 67.0 75.1 81.6

Table 6: Performance comparison of different in-
put texts on WN18RR.

ine four scenarios: without entity descriptions,
without entity names, with both but without
text summarization, and with both including text
summarization.

The results in Table 6 indicate that the re-
moval of entity descriptions and names leads to a
30.7% and 6.9% decrease in the model’s MRR,
respectively, underscoring the importance of these
features in capturing in-depth semantic relations in
the text-based KGC methods. Importantly, entity
descriptions contribute significantly to providing
an extensive textual context. Furthermore, the
application of the TextRank text summarization
algorithm yields a 1.7% increase in MRR, effec-
tively addressing the issue of text redundancy due
to an excess of entities.

Experiment 2: Selection of Top-n Sentences
During text summarization, we select the top
n sentences with the highest TextRank values
to serve as concise text, providing the model
with the necessary but succinct descriptive infor-
mation. Accordingly, we explore the impact of
the number of sentences on the model’s overall
performance.

Figure 3 presents the experimental out-
comes of selecting the top-n sentences (n =
{1, 2, 3, 4, 5, 6}) on the WN18RR dataset. When
n = 3, the MRR and Hit@1 metrics of the
SKG-KGC model reach their optimal value. When
n is less than 3, the model may face challenges
in fully comprehending more detailed information
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Figure 3: The impact of the number of sentences on
performance metrics.

Model Subtask MRR Hit@1 Hit@3 Hit@10

w/o head
entity sets

(?, r, t) 66.5 59.4 70.6 79.6
(h, r, ?) 73.3 65.6 78.4 87.1
Average 69.9 62.5 74.5 83.3

w/o tail
entity sets

(?, r, t) 66.4 60.1 70.1 77.7
(h, r, ?) 73.8 66.6 78.6 86.5
Average 70.1 63.3 74.3 82.1

SKG-KGC
(?, r, t) 67.5 62.4 70.4 76.5
(h, r, ?) 76.9 71.6 79.8 86.7
Average 72.2 67.0 75.1 81.6

Table 7: Effectiveness of different entity sets on
WN18RR. (?, r, t) and (h, r, ?) denote head en-
tity and tail entity prediction respectively.

regarding the entity context. Conversely, when
n increases, the influx of descriptive information
might lead to information overload and confu-
sion, making it challenging to identify the more
critical contextual information about entities. Con-
sequently, the top three sentences are ultimately
selected as the summarized text.

Experiment 3: Effect of Entity Sets We com-
pare SKG-KGC with its two variants that remove
head entity sets ({h0, h1, . . . , hj}, r, t) and tail
entity sets (h, r, {t0, t1, . . . , ti}) on the WN18RR
dataset.

Table 7 shows the effect of such exclusions
on the model’s performance in predicting head
and tail entities. Removing head entity sets sig-
nificantly reduces the performance of tail entity
prediction (MRR decreases by 3.6%), while re-
moving tail entity sets only slightly affects head
entity prediction (MRR decreases by 1.1%). The
overall performance in entity prediction benefits
from shared knowledge across all dataset lev-
els, notably for the tail entity prediction task.

We attribute this observed phenomenon to the
proportion of triples sharing the same (r, t) or
(h, r), as depicted in Figure 1a. The WN18RR
dataset contains more triples with the same (r, t),
thereby providing a wealth of knowledge about
head entity sets and resulting in a more significant
enhancement in the tail entity prediction task.

4.5 Further Exploration of Balanced
Multi-Task Learning

We analyze SKG-KGC alongside weight-
unadjusted methods from two perspectives: dif-
ferent datasets and different subtasks of the
WN18RR dataset.

Experiment 1: Performance of Balanced
Multi-task Learning on Different Datasets
As shown in Table 5, balanced multi-task learning
works well on WN18RR, but shows only slight
improvements on the larger FB15k-237 dataset.
We attribute this performance to two main factors.
First, the scheme is designed for addressing the
issue of imbalanced loss weights among tasks, so
it works well when task differences are signifi-
cant. As shown in Figure 1a, the proportion of tri-
ples sharing the same (r, t) or (h, r) is 84.3% and
74.8% on the FB15K-237 dataset, respectively,
which means less task disparity compared to the
24.8% on WN18RR. Secondly, our scheme dy-
namically updates the loss weights of all tasks af-
ter each iteration. Due to computational resource
limitations, the number of iterations performed
on larger datasets is reduced, leading to less pro-
nounced changes in task weights. Therefore, our
proposed scheme performs better when applied to
smaller datasets and more diverse tasks.

Experiment 2: Performance of Balanced Multi-
task Learning on Different Subtasks Further-
more, Table 8 provides detailed results on the
WN18RR dataset, including head entity and tail
entity prediction outcomes.

Notably, tail entity prediction consistently out-
performs head entity prediction. We attribute
this to the smaller average number of entities
connected in one-to-many relations. Moreover,
Figure 1b underscores the imbalanced distribu-
tion of head entities and tail entities. While our
proposed SKG-KGC improves experimental per-
formance through a designed loss weight alloca-
tion scheme in multi-task learning, the challenge
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Model Subtask MRR Hit@1 Hit@3 Hit@10

w/o weight
(?, r, t) 66.3 60.9 68.4 76.8
(h, r, ?) 75.3 69.6 78.8 86.1
Average 70.8 65.3 73.6 81.5

SKG-KGC
(?, r, t) 67.5 62.4 70.4 76.5
(h, r, ?) 76.9 71.6 79.8 86.7
Average 72.2 67.0 75.1 81.6

Table 8: Performance of balanced multi-task
learning on different subtasks of WN18RR.

Encoder #num MRR Hit@1 Hit@3 Hit@10

BERT-base (110M)
one 68.2 61.2 72.4 80.6
two 72.2 67.0 75.1 81.6

BERT-large (340M)
one 69.6 62.3 74.1 82.7
two 70.8 63.8 75.2 83.2

Table 9: Performance comparison of encoders
with varying parameter volumes on WN18RR.

of significant performance differences between
head entities and tail entities persists.

4.6 Parameter Analysis in Bi-Encoder
Architecture

In our experiment, we utilize two types of
encoders: BERT-base-uncased with 110M param-
eters and BERT-large-uncased with 340M param-
eters, to assess their performance on WN18RR.
Each model is evaluated in two configurations:
Single-encoder uses one encoder for all elements,
while bi-encoder uses two separate encoders for
known and unknown elements.

As shown in Table 9, within a bi-encoder
architecture, the Hit@10 metric improves with
the substantial increase in parameter volume of
BERT-large. However, the more critical MRR
and Hit@1 metrics decline significantly by 1.4%
and 3.2%, respectively, potentially due to the
curse of dimensionality and overfitting. This ob-
servation indicates that an increase in parameter
volume does not necessarily lead to an overall
improvement in model performance, as supported
by previous research (Tian et al., 2022).

Furthermore, when comparing the performance
between single and bi-encoder configurations, it
is evident that the bi-encoder consistently outper-
forms the single encoder configuration. We spec-
ulate this could be attributed to the bi-encoder’s
explicit differentiation between the embeddings
of known and unknown elements in the triplets,
thereby avoiding potential confusion in the single

Time
WN18RR FB15K237

T/EP Train Inf T/EP Train Inf
MTL-KGC 2.6h 7.8h 60h 6.9h 20.8h 491h
Our model 5.5m 2.5h 2.8m 16.7m 2.7h 10m

Table 10: Comparison of time cost between
our model and MTL-KGC. The terms ‘‘T/Ep’’,
‘‘Train’’, and ‘‘Inf’’ denote the training time per
epoch, the training time until convergence, and
inference time, respectively.

encoder configuration. Hence, when selecting en-
coders and architectures for similar tasks, priority
should be given to the selection of architecture
rather than simply increasing the model’s param-
eter volume.

4.7 Efficiency Analysis
Since our model and MTL-KGC (Kim et al.,
2020) both engage in multi-task learning in KGC,
we employ the same task settings and encoders
for comparative analysis. Table 10 reports the
approximate time cost for training and inference.

Compared with MTL-KGC, SKG-KGC dem-
onstrates superior speed in training and test da-
tasets. This efficiency improvement emerges from
our model’s use of independent candidate en-
tity encoders for calculating entity rankings, sim-
ilar to the approaches employed by StAR (Wang
et al., 2021a) and SimKGC (Wang et al., 2022).
While not pioneering fast inference, our proposed
model achieves a trade-off between efficiency and
effectiveness, with a focus on improving the lat-
ter. Notably, our model surpasses MTL-KGC in
both training and inference speed, aligning with
the theoretical analysis outlined in Section 3.6.

4.8 Case Study
To conduct a qualitative analysis of the multi-
level shared knowledge, we show the top two
entities as ranked by SKG-KGC, SKG-KGC with-
out shared knowledge, and the most competitive
baseline SimKGC in Table 11.

In the first case, SKG-KGC correctly predicts
the entity ‘‘Rome’’ and also unexpectedly predicts
‘‘City of London’’, possibly due to the influence
of ‘‘London’’ in the shared tail entity sets. In
the second case, SKG-KGC correctly identifies
‘‘United States of America’’ by utilizing shared
knowledge from candidate entity sets, while other
models fail due to an overemphasis on textual sim-
ilarity between ‘‘Pittsburgh’’ / ‘‘Allentown’’ and
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Case 1: Input (head and relation):
h: Cleopatra [is a 1963 British-American-Swiss epic drama film...]
r: /film/film/featured film locations

Prediction (SKG-KGC):
P1*: Rome [Located in the foothills of the Appalachian Mountains...]
P2*: City of London [is a city within London...]

Prediction (SKG-KGC w/o Shared Knowledge):
P1: Zurich [is the largest city in Switzerland...]
P2*: Rome [Located in the foothills of the Appalachian Mountains...]

Prediction (SimKGC):
P1*: Rome [Located in the foothills of the Appalachian Mountains...]
P2: Zurich [is the largest city in Switzerland...]

Case 2: Input (relation and tail):
r: /location/location/contains
t: Curtis Institute of Music [is a conservatory in Philadelphia...]

Prediction (SKG-KGC):
P1*: United States of America [commonly referred to as the United States...]
P2: Pittsburgh, PA Metropolitan Statistical Area [is the largest population center...]

Prediction (SKG-KGC w/o Shared Knowledge):
P1: Pittsburgh, PA Metropolitan Statistical Area [is the largest population center...]
P2*: United States of America [commonly referred to as the United States...]

Prediction (SimKGC):
P1: Allentown [is a city located in Lehigh County...]
P2*: United States of America [commonly referred to as the United States...]

Case 3: Input (head and relation):
h: Flo Rida [Tramar Lacel Dillard, better known by...]
r: /people/person/profession

Wrong Prediction (All models):
P1: Record producer-GB [is an individual working within the music industry...]
P2: Music executive-GB [is a person within a record label...]

Table 11: Case study on the FB15K-237 dataset.
[*] indicates ground-truth entity. Text in brackets
represents the textual description for entities.

‘‘Philadelphia’’. However, in the third case, the
training set only reveals that Flo Rida’s profession
is that of an actor and songwriter, and the correct
tail entity should be Artist-GB. All three mod-
els predict incorrectly due to the presence of the
word ‘‘song’’ in Flo Rida’s description. Thus, we
suspect that text-based methods may excessively
focus on certain text descriptions of the entities
themselves and overlook structural information in
the knowledge graph.

These results highlight that SKG-KGC can mit-
igate the over-reliance on semantic similarity as
compared to previous methods, and effectively im-
prove the ability to identify correct entities from
similar candidate entities. Furthermore, these in-
sights prove valuable for considering both textual
and structural information in KGC.

5 Conclusion

In this paper, we introduce a multi-level shared
knowledge guided method for efficient knowl-
edge graph completion. Our approach effectively
addresses the challenges of inadequate knowl-
edge learning and imbalanced subtasks in multi-
task learning. Through extensive experiments on
benchmark datasets, we demonstrate that SKG-
KGC consistently outperforms competitive base-

line models, particularly excelling on WN18RR
with its extensive entity descriptions. These find-
ings provide new insights for multi-task learning
and other tasks related to knowledge graphs. In
future research, we aim to explore the integration
of text-based methods with graph embeddings to
extract the semantic and structural information in
knowledge graphs.
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