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Abstract

Authorship verification is the task of deter-
mining if two distinct writing samples share
the same author and is typically concerned
with the attribution of written text. In this pa-
per, we explore the attribution of transcribed
speech, which poses novel challenges. The
main challenge is that many stylistic features,
such as punctuation and capitalization, are
not informative in this setting. On the other
hand, transcribed speech exhibits other pat-
terns, such as filler words and backchannels
(e.g., um, uh-huh), which may be characteris-
tic of different speakers. We propose a new
benchmark for speaker attribution focused
on human-transcribed conversational speech
transcripts. To limit spurious associations of
speakers with topic, we employ both conver-
sation prompts and speakers participating in
the same conversation to construct verifica-
tion trials of varying difficulties. We establish
the state of the art on this new benchmark by
comparing a suite of neural and non-neural
baselines, finding that although written text
attribution models achieve surprisingly good
performance in certain settings, they perform
markedly worse as conversational topic is in-
creasingly controlled. We present analyses of
the impact of transcription style on perfor-
mance as well as the ability of fine-tuning on
speech transcripts to improve performance.1

1 Introduction

Identifying individuals based on their language
use can be attempted using speech (speaker
recognition) or writing (authorship attribution).
Traditionally, speech data have been analyzed
using phonetic features, such as pitch and ar-
ticulation rate, or embeddings related to these
features, such as x-vectors (Snyder et al., 2018),

∗Authors listed alphabetically.
1Our benchmark is available at github.com

/caggazzotti/speech-attribution.

with broader linguistic information about the con-
tent of what is said playing little role (Gold and
French, 2019; Watt and Brown, 2020). Textual
data, by contrast, have been analyzed historically
via lexical, syntactic, semantic, and stylistic fea-
tures (Mosteller and Wallace, 1964; Stamatatos,
2018) and more recently via textual embeddings
from neural networks (Ding et al., 2019; Najafi
and Tavan, 2022).

There are a number of motivations for exploring
the use of textual authorship attribution methods
on transcribed speech. In challenging acoustic set-
tings, such as with degraded audio or a disguised
voice, speech content and syntax may be the only
reliable signal available. In other cases, the origi-
nal audio may no longer be available, leaving only
a textual version of the speech. This is common
with transcripts of interviews, court proceedings,
and in commercial settings where text is preferred
for archiving. Developing reliable identification
of a speaker based on transcripts of their speech
may also expose potential blind spots in current
speaker anonymization approaches, which alter
the speech signal but leave the speech content
intact (Fang et al., 2019; Sisman et al., 2021).

Given ever-increasing spoken media (such as
podcasts) and social communication as well as
the growing popularity of automatic transcription
systems (e.g., Descript for podcasters, Otter for
meetings), there will be a need for understanding
this domain and being able to accurately identify
speakers, especially in forensic settings, in the
future. Furthermore, understanding the general-
ity of text attribution methods for transferring to
not only new domains, but also new modalities
(textual representations of auditory input) may
indicate that these methods use deeper linguis-
tic features rather than mainly relying on surface
features, such as punctuation and capitalization.

Despite the potential utility of distinguish-
ing speakers via transcribed speech, there are a
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number of challenges. One that applies to both
transcript-based and text-based attribution is the
need for substantial writing samples to charac-
terize style, which, in the speech domain, means
a large number of utterances. Also, since tran-
scribed speech is both a different domain and a
different modality,2 text-based attribution mod-
els have more of a gulf to bridge than in a
standard cross-domain task. For example, while
written text contains features such as punctu-
ation, spelling, and use of emoticons that can
vary systematically across individuals, transcribed
speech may lack these particular stylistic cues. In-
stead, speech contains other potentially identifying
features, such as filler words (e.g., um), backchan-
nels (e.g., uh-huh), and other discourse markers
(e.g., well, I mean) (Duncan, 1974; Sacks, 1992),
and, more rarely, indications of pause length
or intonation. Finally, working with transcribed
speech, much like working with translated lan-
guage, introduces noise into the system via the
transcription or translation process.

The present work contributes a benchmark
for text-based authorship attribution models on
human-transcribed conversational speech tran-
scripts. Using the task of verification—i.e.,
determining if two transcripts have the same
speaker or different speakers—we perform a
systematic comparison of existing methods and
provide a detailed analysis of the results. This
work focuses on the following research questions.
First, despite the difference in modality, do textual
authorship models transfer to speech transcripts?
Once we have established this benchmark, we
probe other aspects of the task to help determine
the limits of authorship models applied to tran-
scripts. Since speech is transcribed based on a
transcription style, what is the impact of transcrip-
tion style on attribution performance? As alluded
to above, many state-of-the-art authorship models
focus on features such as capitalization that can
be erased or standardized with transcription. Ad-
ditionally, many models rely on topic as a clue for
attribution, so to what extent does controlling for
topic make the task harder? Next, does fine-tuning
on speech transcripts significantly improve per-
formance, and then, does further pre-training on
speech transcripts improve it more? Finally, since

2Although transcribed speech is in text form, it still
originates from the modality of speech and is thus sufficiently
different from other text domains.

in many forensic settings there are often limited
data, how many utterances are required to achieve
a given level of verification performance? By ad-
dressing these questions we provide a proof of
concept for the viability of applying authorship
models to speech transcripts.

2 Related Work

Early work in speaker identification for text used
special-purpose models for novels that match ut-
terances to the character who ‘said’ them (He
et al., 2013). The first work we are aware of
to perform attribution on speech transcripts is
a study that looks at word frequency to distin-
guish 250 speakers of Dutch (Scheijen, 2020).
In contrast, we consider a larger set of speak-
ers and compare a range of different methods,
both neural and non-neural. A contemporaneous
related task is the PAN 2023 competition, which
looked at cross-discourse type authorship veri-
fication between essays, emails, interviews, and
speech transcripts (Stamatatos et al., 2023). They
perform a weaker version of topic control, though,
replacing named entities with generic tags.

Recently, Tripto et al. (2023) compare a num-
ber of statistical and neural authorship models on
human spoken texts and large language models
prompted to emulate spoken texts, finding that
even simple n-gram-based authorship models can
perform well on speech transcripts. However, we
present contradictory results in this work, finding
that most text-based authorship models have al-
most no predictive power once topic is controlled.
We conduct further experiments that tease apart
which factors influence performance, such as the
transcription style and the number of utterances in
the transcript.

The effect of conversational topic (and text
genre) on text-based authorship attribution perfor-
mance has been studied particularly in (forensic)
stylometry to address cases of a domain mis-
match between the texts of unknown authorship
that are under investigation (test data) and the
available comparison texts of known authorship
(training data) (Stamatatos, 2018). For instance,
an anonymous social media post might have to
be compared to the news articles and blog posts
of potential authors. These stylometric studies of-
ten focus on small amounts of data and/or few
candidate authors, such as manually elicited data
(Baayen et al., 2002; Goldstein-Stewart et al.,
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2009) or select literary authors (Kestemont et al.,
2012).

Authorship studies on larger amounts of data
across many authors use either no topic con-
trol or approximate topic control through domain
labels, such as categories of Amazon prod-
uct reviews (Boenninghoff et al., 2019; Zhu
and Jurgens, 2021) and subreddits of Reddit
(Wegmann et al., 2022; Zhu and Jurgens, 2021).
Although it is unclear how representative domain
labels are of various topics, studies that implement
some version of topic control generally find that
performance decreases as topic control increases
(Wegmann et al., 2022).

3 A Speaker Attribution Benchmark

To compare performance across the range of in-
tended conditions, we focus on one data set that
fit all our requirements, namely, large enough
in number of speakers, number of utterances per
speaker, and number of conversations to allow
fine-tuning. We also focus on gold standard tran-
scriptions since our aim is to establish an initial
benchmark of performance under ideal conditions
that can be used as a reference point for future
experiments on noisier data. In fact, experiment-
ing on the noisier output of automatic transcribers
is out-of-scope for this paper but is an important
next step in future work. To be able to adjust the
difficulty level of the verification task to obtain
a range of performance for the models, it was
crucial that speakers discuss fixed topics, which
would allow matching transcripts not only based
on speaker, but also on the content of what is
discussed. Finally, a conversational datas et aligns
with many likely use cases of speaker attribution,
especially in the forensic setting.

We chose the Fisher English Training Speech
Transcripts corpus (Cieri et al., 2004), a collec-
tion of human-transcribed phone calls, due to its
accessibility, size, manual error correction, con-
versational topic assignments, and gender balance
among speakers. The corpus consists of 11,699
transcribed phone calls totalling 1,960 hours. Par-
ticipants on calls generally did not know each
other and had an assigned discussion topic that
was randomly selected from a list. In general, par-
ticipants stayed on topic throughout the duration
of the call (Cieri et al., 2004), which we confirmed
through a manual check of a random sample of

Figure 1: Examples of the two Fisher transcript
encodings, ‘BBN’ and ‘LDC’.

the transcripts. The calls lasted 10 minutes and
speakers often participated in multiple calls.

The Fisher corpus contains two transcript ‘en-
codings’, or annotation styles. One was manually
transcribed using WordWave quick transcription
with error corrections and post-processing by
BBN Technologies. This ‘BBN’ encoding in-
cludes prescriptive punctuation and capitalization
according to an existing WordWave style guide
(Kimball et al., n.d.). The Linguistic Data Con-
sortium (LDC) provided the second encoding,
with automatic segmentation of the audio data
and manual transcription of the words, includ-
ing a basic spell check (Cieri et al., 2004). This
transcription did not include punctuation (other
than apostrophes and hyphens), put text in all
lowercase, and often grouped together text by
the same speaker despite interjected backchan-
nels. Comparing performance on each encoding
can help elucidate the extent to which the models
capture ‘deeper’ authorship features rather than
surface-level low-hanging fruit. Figure 1 presents
an example of each. Both encodings include
non-speech sounds, such as laughing and undis-
tinguished noise, in square brackets. The LDC
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encoding employs double parentheses for unclear
productions that were guessed by the transcriber.

We select the same transcripts from both en-
codings to test the impact of annotation on a
model’s attribution performance, according to the
following procedure. First, we use a 50/25/25
training/validation/test split with no overlap in
speakers between training and evaluation splits,
making the task more challenging. For the speak-
ers in each set, verification trials are formed by
matching two transcripts from either the same
speaker (‘positive’) or different speakers (‘nega-
tive’). Transcripts have ∼1400 tokens across an
average of 100 utterances. In Section 4.6 we vary
the number of utterances used from each tran-
script; the results revealed that the appearance of
names during introductions at the beginning of the
call significantly helped model performance; as a
result, we remove the first five utterances of each
transcript for all experiments.3

We create three different datasets according to
level of difficulty by controlling (or not) for topic
to the extent possible. The ‘base’ level does not
have any restrictions on topic: positive trials have
one speaker on different calls while in negative
trials, the speaker and call are different. The ‘hard’
level introduces some topic control: Positive trials
consist of two transcripts from the same speaker
in different calls in which the assigned discus-
sion topic is different, and negative trials contain
two transcripts from different speakers in calls in
which the assigned topic is the same. The ‘harder’
level contains the same positive trials as the ‘hard’
level, but the negative trials are further restricted
by only pairing speakers on the same call, so
not only is the assigned topic the same, but the
content within that topic also matches. In other
words, the ‘hard’ level is a rough measure of topic
given that a number of subtopics can be discussed
in ten-minute conversations, whereas the ‘harder’
level is a more reliable measure of topic given that
two people in the same call will cover the same
range of subtopics.

As a rough computational estimate of topic,
Table 1 shows the percentage of noun (specifi-
cally, noun lemma) overlap between same speaker
and different speaker transcripts. Although content
can be conveyed through many parts of speech,

3Many introductions concluded within the first two utter-
ances per speaker but we removed five to be conservative.
We also ran a simple check for (re)introductions later in the
transcript but found them to be rare.

%pos %neg #pos #neg #total #spkrs
Base 11.6 8.9 956 957 1913 1373
Hard 11.2 12.0 959 985 1944 1474
Harder 11.2 20.3 959 558 1517 1298

Table 1: Average % of noun lemma overlap
between transcripts in each positive/negative test
set verification trial, # of positive/negative/total
test set trials per difficulty, and # of speakers per
difficulty level.

Wang et al. (2023) showed that masking only
nouns is an effective way of obscuring content
without obscuring (much) style. The rate of over-
lap across positive trials stays fairly consistent;
however, the rate across negative trials increases
with increased topic control, with over double the
amount of overlap in the ‘harder’ setting compared
to the ‘base’ setting, indicating that using the as-
signed conversation topics as a proxy for topic
does have the intended effect to some extent.

Running the authorship models on these
datasets thus tests their ability to look beyond
simplistic proxies for content and to utilize more
structural features used by the speaker. For each
difficulty level, the training set has ∼3300 veri-
fication trials, the validation set ∼1700, and the
test set ∼1800 on average. The number of positive
and negative verification trials per difficulty level
is roughly balanced, cf. Table 1.

4 Experiments

Models We test and compare the performance of
four main models. The first is Sentence-BERT
(SBERT),4 a variant of the pretrained BERT net-
work that creates semantically related sentence
embeddings (Reimers and Gurevych, 2019). As a
complement to the content-focused SBERT, we
test Content-Independent Style Representations
(CISR),5 which aims to capture writing style rather
than content by controlling the topic of verifica-
tion trials at training time (Wegmann et al., 2022).
The third model is an instance of Learning Univer-
sal Authorship Representations (LUAR),6 which
does well with zero-shot transfer between Reddit,
Amazon, and fanfiction stories (Rivera-Soto et al.,
2021), capturing stylistic features of an author’s

4huggingface.co/sentence-transformers/all
-MiniLM-L12-v2.

5huggingface.co/AnnaWegmann/Style-Embedding.
6huggingface.co/rrivera1849/LUAR-MUD.
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writing with less content sensitivity (Wang et al.,
2023). In summary, we use two models tailored to
capture primarily content (SBERT) and primarily
style (CISR), in addition to a model that com-
bines both and does domain transfer well (LUAR).
We specifically use a LUAR model trained on a
large Reddit dataset consisting of comments by
one million authors (Khan et al., 2021), which
we hypothesize is more similar to the conversa-
tional speech transcripts than other more formal
domains.

The final model we consider is the re-
current neural network model AdHominem7

(Boenninghoff et al., 2019), which performed well
on speech transcripts in recent work (Tripto et al.,
2023). This model uses a hierarchical architecture
to aggregate character, word, and sentence fea-
tures from each document. For AdHominem, we
converted the transcript trials into the appropriate
format and then saved a model checkpoint, whose
weights were restored for extracting features from
the utterances in each trial.

For reference, we also include two base-
lines: TF-IDF, a weighted measure of word
overlap, and PAN’s authorship verification base-
line of TF-IDF-weighted character 4-grams
(PANgrams)8 (Stamatatos et al., 2023).9

In line with the research questions in Section 1,
we set up the experiments as follows. Section 4.1
creates a performance benchmark of the aforemen-
tioned models evaluated out-of-the-box on speech
transcripts. Section 4.2 tests these out-of-the-box
models on both the BBN and LDC encodings to
determine the effect of transcription style on per-
formance. This includes an additional comparison
between the default LUAR pre-trained on Red-
dit and an instantiation of LUAR pre-trained on
Reddit that has been normalized to look like the
LDC data. Section 4.3 varies the difficulty level
of the task (‘base’, ‘hard’, ‘harder’) by controlling
for the topic discussed across the verification tri-
als. Section 4.4 adds a step of fine-tuning on each
training set difficulty level and then evaluates the
models on each difficulty level of the test set. As

7github.com/boenninghoff/AdHominem.
8github.com/pan-webis-de/pan-code/tree/master

/clef23/authorship-verification.
9We did not include the best performers (all SBERT-based

models) on the contemporaneous PAN 2023 authorship ver-
ification competition, whose task involved written data and
transcribed spoken data, because neither the models nor the
training data are publicly available.

a first look into the impact of pre-training domain
on performance, Section 4.5 tests the best per-
forming model, LUAR, pre-trained on the speech
transcripts themselves. Finally, Section 4.6 varies
the number of utterances used in each transcript
from 25 to the full transcript.

4.1 Experiment 1: Baselines

To address whether text-based authorship models
transfer to transcribed speech, we evaluate the
baselines (TF-IDFo, PANgramso) and main mod-
els (AdHominemo, SBERTo, CISRo, LUARo)
out-of-the-box on the ‘base’ difficulty level verifi-
cation trials. Recall that each transcript originally
had ∼1400 tokens and ∼100 utterances on aver-
age, but we removed the first five utterances per
speaker as we confirmed they contain name and
topic introductions in most transcripts.

For the TF-IDF baseline, the vectorizer was
fit to the Reuters-21578 corpus, which contains
10,788 news documents and totals 1.3 million
words (Lewis, 1997),10 the document-term matrix
obtained for each transcript in the test set trials,
and the cosine similarity calculated between each
matrix in each trial. For the out-of-the-box PAN
baseline, PANgramso was trained on the most
recent openly available PAN authorship verifica-
tion dataset, fanfiction stories (Bevendorff et al.,
2020), and evaluated on the test set trials using
cosine similarity.

For the main models, we first obtain an em-
bedding for each transcript in the trial,11 then
calculate the cosine similarity between each set
of two embeddings. AdHominem is trained using
Euclidean distance, so we negate it to compute
speaker similarity between pairs of transcripts.

We evaluate the performance of all models by
bootstrapping the area under the receiver operat-
ing characteristic curve (AUC) score with 1000
resamples of the test data. For testing statistical

10We also tried fitting the vectorizer to the training set
transcripts but found similar results so fit to Reuters to focus
on out-of-the-box performance of written text models.

11While LUAR is hierarchical, accepting multiple utter-
ances as independent inputs, SBERT and CISR encode
representations on the individual sentence (or document)
level. To accommodate multiple inputs with SBERT and
CISR, we embed each utterance independently and obtain
the final embedding using the coordinate-wise mean of all
utterance vectors. We found that this typically worked better
than concatenating the text of all utterances and producing a
single embedding.
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BBN encoding LDC encoding NormLDC encoding
Model Base Hard Harder Base Hard Harder Base Hard Harder
TF-IDFo 0.537 0.528 0.489 0.534 0.532 0.488 0.522 0.513 0.489
PANgramso 0.796 0.699 0.547 0.805 0.710 0.572 0.790 0.691 0.564
AdHominemo 0.565 0.553 0.492 0.600 0.574 0.536 0.588 0.589 0.545
SBERTo 0.646 0.483 0.322 0.653 0.456 0.283 0.621 0.514 0.174
CISRo 0.612 0.578 0.534 0.680 0.664 0.646 0.622 0.532 0.493
LUARo 0.714 0.633 0.472 0.803 0.711 0.547 0.837 0.722 0.543

Table 2: Bootstrapped test performance (AUC) across all out-of-the-box (o) models for the BBN, LDC,
and NormLDC encodings across all difficulty levels. Best performance for each encoding and difficulty
level is bolded and second best, underlined, the differences of which are all statistically significant
(p < 0.001) except for ties. The largest standard error is 0.0004.

significance between the first and second best per-
formers, as indicated in all tables in the paper, we
used a paired t-test over 1000 resamples to test
the null hypothesis that the AUC (or EER) scores
produced by two models are the same.12

Out-of-the-box attribution models transfer to
speech transcripts (without topic control).
AUC score test set results are in Table 2 and EER
results are in Table 8 in Appendix A. Focusing
on the leftmost column (BBN ‘text-like’ encod-
ing, ‘base’ difficulty), there is a clear ranking
in performance: PANgramso achieves the high-
est performance followed by LUARo, SBERTo,
and CISRo, with all scores well above chance
(AUC = 0.5). AdHominemo and TF-IDFo per-
form worst but still above chance. These initial
results—considering only the ‘base’ setting for
now—suggest at least some transfer from the text
domain to the speech domain. However, we revisit
this idea in Section 4.3 when discussing results on
topic-controlled datasets.

4.2 Experiment 2: Transcription Style

To test the impact of transcription style, we ran Ex-
periment 1 (with the same verification trials) on
both the BBN encoding, with punctuation and cap-
italization, and the LDC encoding, with limited or
none. Overall, we find that transcription style can
have a surprisingly large impact on performance.

Superficial text features are not needed. Com-
paring the leftmost column (‘base’) of the left

12We also ran a non-parametric test, the Wilcoxon
signed-rank test, but since the results were similar, we re-
port the (more conservative) results from the more powerful
parametric paired t-test.

Base level normalization variations: AUC

Model BBN LDC NormLDC
LUARo 0.714 0.803 0.837
LUARnormo 0.717 0.794 0.831

Table 3: Bootstrapped test performance (AUC)
across out-of-the-box (o) LUAR and normalized
LUAR models for the BBN, LDC, and NormLDC
encodings at the base difficulty level. Best per-
formance overall is bolded. The largest standard
error is 0.0003 and all differences are statistically
significant (p < 0.001).

(BBN) and middle (LDC) sections of Table 2, we
see that TF-IDFo, PANgramso, and SBERTo are
similar for both encodings. A lack of difference
for these models is expected since semantic con-
tent is similar across embeddings. AdHominemo

shows some improvement from BBN to LDC, but
there are significant increases for CISRo and espe-
cially LUARo with the LDC encoding. The ability
of LUARo to perform well out-of-the-box, and
to perform significantly better on the normalized
transcription style in general, suggests that LUAR
does not rely on ‘superficial’ prescriptive textual
features. The fact that model performance does
not degrade on normalized data, even improving
in some cases, is a promising sign for potential
applications to automatically transcribed speech,
which often lacks such features.

Removing transcript annotations can improve
performance. Since LUAR showed the biggest
difference between encodings, we ran a LUAR
model pre-trained on the same subset of the
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Reddit dataset as before, this time normalized
to look like the LDC encoding. The normalization
included lowercasing and removing all HTML
special entities, hyperlinks, emoticons, and punc-
tuation except apostrophes and hyphens between
letters. This model is called LUARnorm and its
out-of-the-box performance on the ‘base’ level
is in Table 3. LUARo and LUARnormo achieve
similar performance. (The performance of both
models across all encodings and difficulties is
shown in Table 9 (AUC) and Table 10 (EER).)

Since the speech transcripts contain bracketed
non-speech sounds and annotators’ hypothesized
transcriptions, the normalized Reddit dataset and
LDC encoding are still not exactly equivalent.
Thus, we also further normalized the LDC en-
coding data, creating a NormLDC encoding by
removing the brackets and double parentheses.
This new encoding now more closely resembles
the normalized Reddit, leaving only differences
between text and speech characteristics. Both
LUARo and LUARnormo perform best on the
NormLDC encoding out of all three encodings
and continue to perform roughly similarly. These
results suggest that a lack of capitalization and
punctuation (LDC), along with the removal of
transcript-specific annotations (NormLDC), seem
most influential for improving performance, but
pre-training on normalized text data (LUARnorm)
does not significantly impact performance.

4.3 Experiment 3: Topic

To test the effect of topic, after running Exper-
iment 1 on the ‘base’ dataset, we ran it on the
‘hard’ and ‘harder’ datasets. Since performance of
both LUARo (and LUARnormo) was highest on
the NormLDC encoding previously, we included
it here as well. The full AUC results across all set-
tings are shown in Table 2 and the corresponding
EER results are in Table 8.

Out-of-the-box performance degrades with
topic control. Across all three encodings, the
‘hard’ dataset had lower AUC scores than the
‘base’ dataset, and the ‘harder’ dataset lower than
the ‘hard’ dataset. In particular, TF-IDFo and
AdHominemo decrease consistently to around
chance. Even PANgramso, one of the best per-
formers on the ‘base’ level, degrades significantly,
suggesting that simple n-gram approaches are in-
capable of capturing speaker stylistic features and,

as a result, fail under topic shift. SBERTo was the
most severely affected by the topic manipulation,
with performance on the hardest dataset well be-
low chance. As we expect SBERTo to exploit
content differences that we successively remove
with this manipulation, this result is not surpris-
ing. CISRo also had a decrease in performance but
to a smaller extent, likely because its training in-
volves specific attempts at controlling for topic by
using subreddits as proxies for topic in the Reddit
training data (Wegmann et al., 2022). For LUARo,
we see ∼10% performance loss between the ‘base’
and ‘hard’ conditions, and ∼15% between the
‘hard’ and ‘harder’ conditions, to near chance.

We propose two potential explanations for the
greater difference between the ‘hard’ and ‘harder’
conditions. First, the ‘hard’ condition does not
fully accomplish its topic manipulation as prox-
ies for topic diverge from linguistic definitions
of thematic topic, discourse topic, and the like.
As two examples, ‘summer plans’ may include
discussions of both vacations and temp jobs, with
little semantic overlap between these topics, and
a range of subtopics may be discussed throughout
each conversation. With the ‘harder’ dataset, in
which each speaker in the trial discusses largely
the same topic(s) and subtopic(s) in the same order
given that they represent each side of the same
conversation, we expect a higher degree of topic
identity.

A second possibility comes from the literature
on linguistic accommodation. Peers in conver-
sation adapt their speech style to more closely
resemble that of their interlocutor (Danescu-
Niculescu-Mizil et al., 2011; Pardo et al., 2022;
Giles et al., 2023). There are a number of rea-
sons, both automatic and intentional, for this kind
of convergence, but for our purposes, all fac-
tors relevant to the Fisher corpus would favor
it (i.e., speakers unknown to each other in a
collaborative task wanting to make a favorable
impression). If our speakers accommodated to
one another, their styles of speaking would be-
come more similar the longer they talked and
therefore more difficult to distinguish. This would
explain the supplemental difficulty we find with
the ‘harder’ dataset. These explanations are inde-
pendent and could both contribute; future work
will quantify the effect of accommodation, simi-
lar to what Danescu-Niculescu-Mizil et al. (2011)
did for Twitter exchanges, in order to tease
these apart.
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LDC Encoding
Trained on: Base Hard Harder
Evaluated on: Base Hard Harder Base Hard Harder Base Hard Harder
TF-IDFft 0.500 0.519 0.491 0.493 0.524 0.521 0.532 0.544 0.523
PANgramsft 0.763 0.628 0.419 0.764 0.623 0.412 0.765 0.628 0.417
AdHominemft 0.586 0.578 0.541 0.594 0.576 0.546 0.542 0.558 0.586
SBERTft 0.694 0.650 0.632 0.589 0.830 0.835 0.530 0.818 0.935
CISRft 0.722 0.696 0.744 0.660 0.642 0.690 0.674 0.651 0.781
LUARft 0.844 0.818 0.753 0.798 0.872 0.818 0.694 0.820 0.894

Table 4: Bootstrapped test performance (AUC) across all fine-tuned (ft) models for the LDC encoding
across all distribution combinations. Best performance per combination is bolded and second best,
underlined, the differences of which are all statistically significant (p < 0.001). The largest standard
error is 0.0004.

Overall, since topic shifts are expected to some
degree in many applications of speaker verifica-
tion, these results suggest that methods developed
for written text are inadequate out-of-the-box for
verification of transcribed speech. CISRo is a
promising approach for being more resilient to
topic control, but performs worse compared to
other models on the ‘base’ and ‘hard’ levels.

4.4 Experiment 4: Fine-tuning

To see whether fine-tuning on speech transcripts
can improve transfer from authorship models to
speech transcripts, we fit a multilayer perceptron
(MLP) classifier to the concatenated embeddings,
from each model, of each trial in the training set
verification trials.13 Since the available number of
trials is limited based on the size of the corpus,
we are wary of overfitting the data and thus fit
a transformation of the (fixed) embedding from
each model rather than fine-tune the whole model.
We then evaluate the classifier on its probability
predictions of the concatenated embeddings of the
test trials. To account for variation, we bootstrap
the AUC score over 1000 random resamples of
the test trials. We use this procedure for all mod-
els except PANgramsft, which directly uses the
PAN-provided code to train and calculate cosine
similarity within trials (Stamatatos et al., 2023),
but we additionally bootstrap its AUC score over

13Model selection was performed based on validation
performance. We found that other fine-tuning approaches,
such as linear models, performed worse on validation data.
Hyperparameter optimization experiments found that using
the Adam solver with 800 maximum iterations worked best
overall across models on the validation trials. We kept all
other default values and used a random state of 1.

1000 random test trial resamples to produce a
more robust evaluation.

The classifier is fine-tuned on the training set for
each difficulty level and then evaluated on all test
sets, e.g., train on ‘base’ and evaluate this model
on ‘base’, ‘hard’, and ‘harder’. Table 4 gives these
results for the LDC encoding, which produced
higher scores overall than the BBN encoding.
Table 7 shows the results for the BBN encoding;
EER results for the train-test match setting across
the BBN, LDC, and NormLDC encodings are
provided in Table 8.

Fine-tuning helps if train-test distributions
match. For most models, training on the same
difficulty level as that of the evaluation data
yields the best performance. This is especially
true in the harder settings, with each model’s
highest performance across all settings achieved
in the ‘harder’-‘harder’ train-test distribution set-
ting. Since the models are evaluated on trials
of the same difficulty as they are trained on, it
makes sense that fine-tuning the neural models on
difficult trials does indeed help with harder cases.

The SBERTft model achieves the best perfor-
mance in the ‘harder’-‘harder’ condition (0.935).
Unlike SBERTo, which was not able to overcome
the reduction in content differences in the ‘harder’
setting, SBERTft seems to have ‘learned’ to take
advantage of the content similarity. Returning to
rates of noun overlap in Table 1, there is almost
double the noun overlap between transcripts of
different speakers in the same conversation (neg-
ative trials in the ‘harder’ setting) than between
transcripts of the same speaker in conversations
on different topics (positive trials in the ‘harder’
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setting). One hypothesis for SBERTft’s higher
performance, then, is that it used the rate of noun
overlap as a negative indicator of whether the
speaker is the same or not, with higher noun
overlap rates indicating different speakers and
lower rates indicating the same speaker. In other
words, SBERTft used a shortcut that may have
worked well in this experimental setup, but likely
would not work well in other setups, which is
corroborated by its poorer performance on the
‘harder’-‘base’ and ‘harder’-‘hard’ settings.

LUARft has the next best performance after
SBERTft, also in the ‘harder’-‘harder’ condition,
and shows a strong correspondence between distri-
bution matching. CISRft, though, does not show
this same pattern. Again, as its training attempts
to control for topic, its performance is less af-
fected by our topic manipulation, and fine-tuning
on particular settings does not show as significant
of a difference. AdHominemft could be similar,
though its performance in general is much lower.

Unlike the out-of-the-box models, the
fine-tuned models can, to an extent, overcome
challenges, such as less-than-perfect topic control
and speaker style accommodation; exposure to
trials of the same, or similar, difficulty level in
training enables them to encode identifying stylis-
tic features of speakers beyond the conversation
topic. However, there is no general-purpose model
that works well across difficulty levels; models
work best when they are trained and evaluated on
data from the same distribution. These models
have potential for further improvement with more
specialized tuning, which is a direction for future
work.

4.5 Experiment 5: Pre-training Domain

To address how pre-training domain for style
representation impacts performance, we tried
pre-training specifically on speech transcripts.
Since LUAR was the overall best performer in
the previous experiments, we conducted focused
experiments on LUAR to test this question.

Pre-training on speech transcripts performs
best. PreTrain-BBN and PreTrain-LDC are
two separate instantiations of LUAR that were
pre-trained on the full training set of speech
transcripts, without refining by difficulty level,
for the BBN and LDC encoding, respectively.
Out-of-the-box, these models followed the previ-

NormLDC encoding

Model Base Hard Harder
LUARo 0.837 0.722 0.543
LUARnormo 0.831 0.704 0.524
PreTrain-BBNo 0.887 0.709 0.505
PreTrain-LDCo 0.906 0.699 0.418
LUARft 0.844 0.869 0.876
LUARnormft 0.864 0.875 0.907
PreTrain-BBNft 0.906 0.909 0.952
PreTrain-LDCft 0.909 0.921 0.935

Table 5: Bootstrapped test performance (AUC)
across o and ft LUAR models for the NormLDC
encoding across all train-test matched difficulty
levels. Differences between first and second best
are all statistically significant (p < 0.001) except
between ties. The largest standard error is 0.0004.

ously described pipeline of being evaluated using
cosine similarity on the validation (and later test)
set. In the fine-tuned case, again following the
same protocol as before, an MLP classifier was
trained on the training set verification trials (i.e.,
the same training data as seen in pre-training, but
this time as trials of a particular difficulty) and
evaluated using bootstrapped AUC score on the
validation (and later test) set. Since training and
evaluating on the same difficulty performed best
in Experiment 4, we restrict the experiment to
the train-test distribution match condition across
difficulty levels. Performance was best on the
NormLDC encoding, so Table 5 focuses on these
results, but the results for all encodings are shown
in Table 9 (AUC) and Table 10 (EER).

As expected, compared to the other LUAR
models, PreTrain-BBNft and PreTrain-LDCft

perform best across all three difficulties and
achieve the highest performance of any model
on the ‘harder’ level. On the ‘base’ level,
PreTrain-BBNo and PreTrain-LDCo are fairly
close seconds to their fine-tuned counterparts;
however, in the ‘hard’ and ‘harder’ levels,
PreTrain-BBNo’s and PreTrain-LDCo’s perfor-
mance decreases significantly. This drop-off is
most likely due to the train-test mismatch be-
tween pre-training on all training transcripts and
evaluating only on verification trials of a par-
ticular difficulty level. The fine-tuned models
suggest, though, through their increased perfor-
mance across levels, that during pre-training,
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Figure 2: Bootstrapped AUC test performance (y-axis)
across out-of-the-box and fine-tuned models (columns)
on the LDC encoding at the 3 levels of difficulty
(rows) with the number of utterances per speaker varied
(x-axis). Increasing the number of utterances improves
performance for all models, with the best generally
achieved by 135 utterances.

LUAR encodes speech-specific features that the
MLP can avail of.

4.6 Experiment 6: Varying Input Size

Our final experiment tested the impact that ob-
serving more data has on attribution by varying
the number of utterances used in each verification
pair. We ran Experiment 1 and Experiment 4 (with
training and evaluation distributions matched) on
trials of transcripts containing incrementally more
utterances, ranging from the first 25 per speaker to
the full transcript. Speakers averaged ∼95 utter-
ances per transcript (after the first 5 were removed)
and the longest had∼200 utterances. We chose the
four best performing models for this experiment
but only one LUAR (the standard instantiation for
better comparability): PANgrams, SBERT, CISR,
and LUAR. Since performance across models was

Figure 3: Bootstrapped AUC test performance (y-axis)
across out-of-the-box and fine-tuned models (columns)
on the BBN encoding at the 3 levels of difficulty
(rows) with the number of utterances per speaker varied
(x-axis). Increasing the number of utterances improves
performance for all models, with the best generally
achieved by 135 utterances.

not consistently better on the NormLDC encod-
ing, we ran this experiment only on the BBN
and LDC encodings. The graphs for the LDC en-
coding are in Figure 2 and those for the BBN
encoding are in Figure 3. These display the AUC
score performance for each out-of-the-box (left
column) and fine-tuned model (right column) on
transcripts of length 25, 75, 135, and the full num-
ber of utterances per speaker in each pair. Each
row represents an increase in difficulty level.

Performance plateaus after 75 utterances.
Across both out-of-the-box and fine-tuned mod-
els, all increase in performance from 25 to 75
utterances, begin to plateau after 75, and some
reach slightly higher performance by 135 utter-
ances. Only 22% of the LDC test transcripts are
less than 75 utterances long and 67% are less
than 100 utterances, so most transcripts have not
concluded at 75.
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LDC Encoding
Base Hard Harder

Model first 50 last 50 first 50 last 50 first 50 last 50
PANgramso 0.741 0.757 0.620 0.683 0.461 0.519
SBERTo 0.648 0.675 0.467 0.654 0.244 0.309
CISRo 0.747 0.646 0.682 0.664 0.637 0.600
LUARo 0.723 0.782 0.682 0.767 0.495 0.441

Table 6: Bootstrapped test performance (AUC) across out-of-the-box (o) models for the LDC encoding
across all difficulty levels for trials restricted to each speaker’s first 50 utterances or last 50 utterances.
Best performance for each difficulty level and transcript section is bolded and second best, underlined,
the differences of which are all statistically significant (p < 0.001) except for ties. The largest standard
error is 0.006.

To help determine if different parts of the tran-
script contribute more speaker information than
others, we also ran a preliminary experiment at-
tributing transcripts using only the beginning or
the end of the transcript. Specifically, we restrict
to transcripts having at least 100 utterances and
create two further evaluation datasets. The first is
similar to our existing experiments but restricted
to the first 50 utterances to produce the speaker
representation. The second instead takes the last
50 utterances to produce the speaker represen-
tation. Then we construct three experiments for
our ‘base’, ‘hard’, and ‘harder’ settings using the
same protocol as elsewhere in the paper. Since
there were significantly fewer trials (∼100 per
difficulty) after requiring each speaker per trial to
have at least 100 utterances, these results should be
compared relatively to each other, but not to other
results in the paper. Table 6 reports these results
for the same four best performing out-of-the-box
models on the LDC encoding.

We make the following observations. First,
we see that the baseline model PANgramso and
the semantic model SBERTo consistently benefit
from using the last 50 utterances across all diffi-
culty levels. LUARo, which performs better in the
‘base’ and ‘hard’ settings, also benefits from us-
ing the last 50 utterances over the first 50, except
in the ‘harder’ setting. The CISRo style repre-
sentation, however, exhibits the opposite trend
as PANgramso and SBERTo, being consistently
worse when using the last 50 utterances. Over-
all, further study is needed to understand these
differences in performance, although we may hy-
pothesize that accommodation, which is likely to
be evident later in a conversation, is playing a role
in explaining these results, particularly for CISRo.

5 Discussion

Summary of Findings The primary goal of this
work was to provide a proof of concept and estab-
lish baseline performance of text-based authorship
models on speech transcripts. We focused on
gold standard, human-transcribed transcripts as
a starting point to find an upper bound on per-
formance since this task has not previously been
benchmarked. In so doing, we discovered the fol-
lowing answers to our research questions. First,
despite the modality difference, we found that
off-the-shelf textual authorship models, such as
PANgrams and LUAR, transfer surprisingly well
to speech transcripts, unless we control for topic,
in which case all models’ performance drops dras-
tically. This finding contradicts previous work
that did not rigorously control for topic, suggest-
ing that model performance may have resulted
from spurious correlations with topic rather than
an ability to distinguish speakers.

Transcription style also impacts performance,
with most models performing best on the LDC
transcripts normalized to remove capitalization
and punctuation. Further normalization to re-
move speech transcript-specific annotations, such
as brackets around non-speech sounds and dou-
ble parentheses around annotators’ hypothesized
transcriptions (NormLDC), hurt performance for
many models, however. Adding superficial pre-
scriptive textual features to transcripts is thus
perhaps an unneeded processing step, but main-
taining a distinction between annotations and
regular speech is.

We found that fine-tuning on speech tran-
scripts significantly improves performance for
most neural models, with the best performance
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achieved when the training and evaluation data
are drawn from the same difficulty-level distribu-
tions, specifically in the ‘harder’ condition where
negative pairs are drawn from the same con-
versation. The ‘base’ setting, though, represents
a complete sample of pairwise verification tri-
als without any artificial subsampling; therefore,
while it is our easiest setting, it also represents
a possibly more realistic setting than ‘hard’ and
‘harder’ cases. Choice of model should thus be de-
termined by the particularities of the available data
and the specific application. Separately, we find
that additionally pre-training the model on speech
transcripts can further improve performance. Fi-
nally, performance across all models plateaus after
75 utterances, despite most transcripts containing
at least 20 more utterances, but which section
(beginning or end) of each call is most useful for
speaker attribution differs by model.

Limitations and Future Work Our best results
use fine-tuned author representations pre-trained
on the same speech transcripts; future work should
explore variations that might produce even bet-
ter performance, such as pre-training a dedicated
model on a larger and more diverse dataset of
speech transcripts. To better understand how
the models are performing, future work should
conduct a qualitative analysis of the results,
linguistically examining which trials the mod-
els predict correctly and incorrectly to find any
consistencies across models as well as any fea-
tures the models might be using to make their
determinations.

We note that in our ‘harder’ dataset, accommo-
dation may play a role in the results in addition to
topic control, but do not tease apart the relative im-
pact of this and other factors. Future work should
attempt to quantify the amount of accommodation
that occurs between speakers in the same call,
which could also further inform which stages of
conversation are most revealing of speaker style.
An eventual extension might also look at the ex-
tent to which topics change over the course of
conversations with specified discussion subjects,
though a qualitative evaluation of some of the
corpus indicated less evolution than expected.

Adding more baselines, such as a linguistic sty-
lometric method, which calculates the frequencies
of features at various linguistic levels, such as
part-of-speech tags and function words, can also
provide more informative comparisons. To get a

better sense of how generalizable these results are
to other speech domains, future work should in-
clude non-conversational data (e.g., speeches) and
other conversational forms (e.g., interviews). The
range of experiments should also be run on dif-
ferent languages (Fisher has Spanish and Arabic
corpora) for direct comparison with the results of
this work.

Finally, for many real world applications,
manually annotating or correcting transcripts to
produce gold standard transcriptions is unfeasi-
ble. Transcripts will thus have varying amounts of
noise, impacting attribution performance. Future
work should investigate this question by running
the same speech samples through several auto-
matic transcribers, measuring the amount of noise
and comparing model performance across these
noisier transcripts.

Broader Impact As previously mentioned, an-
alyzing the content and style of what is said in
addition to the speech signal itself could improve
speaker recognition performance, especially in
low-quality acoustic settings (and can be the only
option with discarded audio, etc.). Forensic set-
tings, in particular, often have very little and/or
degraded audio data, so combining insights across
all linguistic levels may enrich current models and
provide a more comprehensive speaker profile.
Even in cases with good quality audio, having an
independent method reach the same conclusion
would help confirm speaker recognition results,
providing more confidence in the attribution.

A related observation is that speaker
anonymization methods currently tend to ob-
fuscate the acoustic signal, leaving the speech
content, syntax, etc., intact. Since our results
showed that even out-of-the-box models can
perform well on verifying speakers based strictly
on the remaining linguistic features of their
speech as transcribed, this finding exposes a
current weakness of speaker anonymization
models that should be addressed in order to more
comprehensively protect speakers’ identities.
In settings for which we imposed a stringent
control for topic, though, attribution performance
dropped considerably, suggesting that textual
attribution models do need to be adapted to the
speech domain in order to more robustly attribute
speakers based on their transcribed speaking style.
Nonetheless, models like CISR, which appear to
be more robust against topic control out of the
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box, suggest that there is some overlap between
topic-independent writing style and transcribed
speaker style.

Finally, testing authorship models on the new
domain of speech transcripts provides further in-
sights into how the models work, especially ‘black
box’ neural models. Through these experiments,
we obtain a better understanding of not only the
abilities and limitations of authorship models,
allowing us to apply them more accurately and ef-
fectively, but also the similarities and differences
between written and spoken data.

Ethical Considerations Our findings should be
carefully interpreted before considering speaker
attribution for any real-world applications. For
instance, although fine-tuning a model in our
‘harder’ setting can significantly improve its per-
formance on the same ‘harder’ condition, this is
an artificial setting that is not generally repre-
sentative of real-world distributions of speaker
transcripts. In addition, we find that performance
across all models significantly decreases with a
more rigorous control for topic, indicating that it
would be premature to apply these models if topic
shifts or topic differences across samples are pos-
sible in the application domain. We acknowledge
that further enhancements of the methods pre-
sented, such as a better accounting of topic, may
be used to defeat speaker anonymization systems,
but our results suggest that current methods are
not yet robust enough to topic manipulations to
have this capability. Regardless of topic, though,
these models should not be applied in domains
in which it is important to understand how and
why an attribution decision is made; such models
would not pass the Daubert standard (Daubert v.
Merrell Dow Pharmaceuticals, Inc., 1993) for sci-
entific evidence in the U.S. judicial context, for
example.

Many of the models we used were trained on
anonymized social media data that have implicit
biases, such as imbalances in the prevalence of
authors from certain demographic groups. As a
result, attribution performance may vary based on
the same latent demographic factors, which is an
issue that needs further study. One remediation
may be to control for demographics when training
the neural representations and then ensure that
within-group performance is consistent for all
relevant factors. Finally, it is worth noting that
population-level statistics do not currently exist to

determine the extent to which people speak (or
write) like one another—while it is tempting to
think that we have unique patterns of speech based
on the success of some attribution models, we still
have no real understanding of how rare certain
styles are.
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A Appendix

AUC BBN Encoding
Trained on: Base Hard Harder
Evaluated on: Base Hard Harder Base Hard Harder Base Hard Harder
TF-IDFft 0.552 0.535 0.540 0.507 0.527 0.537 0.501 0.512 0.516
PANgramsft 0.756 0.637 0.419 0.759 0.633 0.413 0.759 0.640 0.419
AdHominemft 0.582 0.554 0.513 0.565 0.557 0.520 0.518 0.524 0.595
SBERTft 0.689 0.640 0.634 0.600 0.808 0.825 0.569 0.766 0.936
CISRft 0.633 0.639 0.634 0.638 0.620 0.656 0.565 0.555 0.865
LUARft 0.764 0.734 0.688 0.737 0.800 0.761 0.622 0.685 0.909

Table 7: Bootstrapped test performance (AUC) across all fine-tuned (ft) models for the BBN encoding
across all distribution combinations. Best performance per combination is bolded and second best,
underlined, the differences of which are all statistically significant (p < 0.05) except for ties. The
largest standard error is 0.0004.

EER BBN encoding LDC encoding NormLDC encoding
Model Base Hard Harder Base Hard Harder Base Hard Harder
TF-IDFo 0.465 0.474 0.504 0.466 0.470 0.505 0.479 0.489 0.506
PANgramso 0.280 0.344 0.475 0.268 0.340 0.457 0.284 0.354 0.466
AdHominemo 0.459 0.466 0.512 0.428 0.444 0.471 0.449 0.442 0.484
SBERTo 0.396 0.508 0.637 0.395 0.527 0.663 0.421 0.474 0.802
CISRo 0.422 0.448 0.481 0.374 0.380 0.399 0.424 0.468 0.507
LUARo 0.340 0.407 0.517 0.276 0.345 0.456 0.240 0.336 0.472
TF-IDFft 0.458 0.485 0.490 0.498 0.489 0.477 0.503 0.475 0.462
PANgramsft 0.300 0.405 0.554 0.308 0.406 0.568 0.285 0.416 0.569
AdHominemft 0.454 0.458 0.438 0.434 0.448 0.438 0.423 0.450 0.473
SBERTft 0.372 0.258 0.142 0.358 0.256 0.147 0.406 0.461 0.214
CISRft 0.375 0.416 0.215 0.340 0.401 0.294 0.416 0.469 0.435
LUARft 0.300 0.271 0.173 0.230 0.212 0.185 0.239 0.215 0.213

Table 8: Bootstrapped test performance (EER) across all out-of-the-box (o) models and fine-tuned (ft)
models in the train-test match setting for the BBN, LDC, and NormLDC encodings across all difficulty
levels. Best performance for each encoding and difficulty level within o and ft models (separately) is
bolded and second best, underlined, the differences of which are all statistically significant (p < 0.001)
except for ties.
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AUC BBN encoding LDC encoding NormLDC encoding
Model Base Hard Harder Base Hard Harder Base Hard Harder
LUARo 0.714 0.633 0.472 0.803 0.711 0.547 0.837 0.722 0.543
LUARnormo 0.717 0.614 0.439 0.794 0.682 0.490 0.831 0.704 0.524
PreTrain-BBNo 0.879 0.703 0.387 0.877 0.703 0.486 0.887 0.709 0.505
PreTrain-LDCo 0.821 0.580 0.342 0.905 0.707 0.406 0.906 0.699 0.418
LUARft 0.764 0.801 0.909 0.844 0.872 0.894 0.844 0.869 0.876
LUARnormft 0.796 0.819 0.893 0.850 0.860 0.907 0.864 0.875 0.907
PreTrain-BBNft 0.896 0.897 0.932 0.899 0.902 0.946 0.906 0.909 0.952
PreTrain-LDCft 0.877 0.894 0.930 0.910 0.915 0.943 0.909 0.921 0.935

Table 9: Bootstrapped test performance (AUC) across all LUAR out-of-the-box (o) models and
fine-tuned (ft) models in the train-test match setting for the BBN, LDC, and NormLDC encodings
across all difficulty levels. Best performance for each encoding and difficulty level across o and ft

models (together) is bolded and second best, underlined, the differences of which are all statistically
significant (p < 0.001) except for ties. The largest standard error is 0.0004.

EER BBN encoding LDC encoding NormLDC encoding
Model Base Hard Harder Base Hard Harder Base Hard Harder
LUARo 0.340 0.407 0.517 0.276 0.345 0.456 0.240 0.336 0.472
LUARnormo 0.344 0.420 0.547 0.276 0.364 0.503 0.252 0.356 0.485
PreTrain-BBNo 0.200 0.363 0.580 0.201 0.359 0.500 0.196 0.346 0.489
PreTrain-LDCo 0.254 0.451 0.627 0.175 0.350 0.583 0.176 0.363 0.578
LUARft 0.300 0.271 0.173 0.230 0.212 0.185 0.239 0.215 0.213
LUARnormft 0.284 0.241 0.197 0.229 0.226 0.175 0.218 0.211 0.184
PreTrain-BBNft 0.188 0.181 0.152 0.181 0.175 0.128 0.175 0.172 0.118
PreTrain-LDCft 0.207 0.180 0.150 0.168 0.167 0.131 0.174 0.157 0.144

Table 10: Bootstrapped test performance (EER) across all LUAR out-of-the-box (o) models and
fine-tuned (ft) models in the train-test match setting for the BBN, LDC, and NormLDC encodings
across all difficulty levels. Best performance for each encoding and difficulty level across o and ft

models (together) is bolded and second best, underlined, the differences of which are all statistically
significant (p < 0.001) except for ties.
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