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Abstract

Metrics are the foundation for automatic
evaluation in grammatical error correction
(GEC), with their evaluation of the metrics
(meta-evaluation) relying on their correlation
with human judgments. However, conven-
tional meta-evaluations in English GEC en-
counter several challenges, including biases
caused by inconsistencies in evaluation gran-
ularity and an outdated setup using clas-
sical systems. These problems can lead to
misinterpretation of metrics and potentially
hinder the applicability of GEC techniques.
To address these issues, this paper proposes
SEEDA, a new dataset for GEC meta-
evaluation. SEEDA consists of corrections
with human ratings along two different gran-
ularities: edit-based and sentence-based, cov-
ering 12 state-of-the-art systems including
large language models, and two human cor-
rections with different focuses. The results of
improved correlations by aligning the gran-
ularity in the sentence-level meta-evaluation
suggest that edit-based metrics may have been
underestimated in existing studies. Further-
more, correlations of most metrics decrease
when changing from classical to neural sys-
tems, indicating that traditional metrics are
relatively poor at evaluating fluently corrected
sentences with many edits.

1 Introduction

Grammatical error correction (GEC) is the task
of automatically detecting and correcting errors,
including grammatical, orthographic, and seman-
tic errors, within a given sentence. The prevailing
approach in GEC involves the use of a sequence-
to-sequence method (Bryant et al., 2023).

Automatic evaluation metrics play an impor-
tant role in the progress of GEC. These metrics
are essential for a fast and efficient improve-
ment cycle of system development because they
can replace costly and time-consuming human
evaluations and immediately reflect system per-

formance. GEC has made progress by enabling
a fair comparison of performance on a common
benchmark using these metrics in shared tasks
(Dale and Kilgarriff, 2011; Dale et al., 2012; Ng
et al., 2014; Bryant et al., 2019).

GEC metrics are categorized into edit-based
and sentence-based types according to their
evaluation granularity, and each has its objec-
tives. Edit-Based Metrics (EBMs), such as M 2

(Dahlmeier and Ng, 2012) and ERRANT (Bryant
et al., 2017), focus on evaluating the quality of
the edit itself, whereas Sentence-Based Metrics
(SBMs), such as GLEU (Napoles et al., 2015),
evaluate the quality of the entire sentence after
correction. Since the system output consists only
of sentences without explicit edits, EBMs require
the edit extraction from the system output using
any method. In addition, these metrics are pri-
marily evaluated based on the correlation with
human judgment (i.e., meta-evaluation).

Most of the previous meta-evaluations in En-
glish GEC have relied on Grundkiewicz et al.’s
(2015) dataset with human judgments (hence-
forth, this dataset is referred to as GJG15). How-
ever, existing meta-evaluations based on GJG15
(Grundkiewicz et al., 2015; Chollampatt and Ng,
2018b; Yoshimura et al., 2020; Gong et al., 2022)
have several significant issues. First, the perfor-
mance of EBMs may be underestimated due to
biases resulting from inconsistencies in evalua-
tion granularity. As an example of biases, while
EBMs assign the lowest score (or the highest
score in the sentence-level evaluation) to the un-
corrected sentence, sentence-based human evalu-
ation, such as GJG15, assigns scores across the
entire range. Furthermore, according to the ac-
tual data in Table 1, since human evaluations may
yield different results based on granularity, the
GEC evaluation suggests a need to separate eval-
uations for edits and sentences. Second, GJG15
is manually evaluated against the set of classical
systems in the CoNLL-2014 shared task, such as
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Grammatical Error Correction

It is hereditary.
Source: Do one who suffered from this disease keep it a secret of infrom their relatives?

In retrospect, its is also ones duty to ensure that he or she undergo periodic healthchecks in their own.

Output A: Should someone who suffered from this disease keep it a secret or inform their relatives?

Output B: Does someone who suffers from this disease keep it a secret from their relatives?

Edit-based human evaluation

Output A: (Rank 1) [Do → Should] [one → someone] who suffered from this disease keep it a secret
[of → or] [inform → inform] their relatives?

Output B: (Rank 1) [Do → Does] [one → someone] who [suffered → suffers] from this disease keep it a
secret [of inform → from] their relatives?

Sentence-based human evaluation

Output A: (Rank 1) Should someone who suffered from this disease keep it a secret or inform their
relatives?

Output B: (Rank 5) Does someone who suffers from this disease keep it a secret from their relatives?

Table 1: Actual data taken from our dataset shows that the results of human evaluation vary depending
on the granularity. In edit-based evaluation, output B was assigned the highest rank (tied with output
A), while in sentence-based evaluation, output B received the lowest rank. The results suggest that,
even if all edits are considered valid, there are instances where the corrected sentence may lack fluency
and naturalness in context.

statistical machine translation approach (Junczys
Dowmunt and Grundkiewicz, 2014), and classifier-
based approach (Rozovskaya et al., 2014). There-
fore, the gap between the classical systems in
GJG15 and the current modern GEC systems
based on deep neural networks limits the appli-
cability of meta-evaluation. Third, a single corre-
lation from the current fixed set of systems may
not sufficiently capture the performance of met-
rics, leading to the possibility of drawing incorrect
conclusions. For example, Deutsch et al.’s (2021)
study on meta-evaluation of summarization re-
vealed that certain metrics can exhibit a spectrum
of correlation values, ranging from weak nega-
tive to strong positive correlations. Mathur et al.’s
(2020) study also showed that outlier systems
have a strong influence on correlations in a meta-
evaluation of machine translation. Therefore, we
are concerned that a similar scenario could occur
in the GEC.

To address these issues, we propose SEEDA,1

a new dataset to improve the validity of meta-

1SEEDA stands for Sentence-based and Edit-based hu-
man Evaluation DAtaset for GEC. We have made this da-
taset publicly available at https://github.com/tmu
-nlp/SEEDA.

evaluation in English GEC. Specifically, we
carefully designed SEEDA to address the first
and second issues by performing human evalu-
ations corresponding to two different granular-
ity metrics (i.e., EBMs and SBMs), covering 12
state-of-the-art system corrections including large
language models (LLMs), and two human cor-
rections with different focuses (§3 and §4). Also,
through meta-evaluation using SEEDA, we inves-
tigate whether EBMs, such as M 2 and ERRANT,
are underestimated and demonstrate how the cor-
relation varies between classical systems and
neural systems (§6). Furthermore, to address the
third issue, we investigate the inadequacy of GEC
meta-evaluation based solely on a single corre-
lation by analyzing the presence of outliers and
using window analysis (§7). Finally, we discuss
best practices and provide recommendations for
future researchers to properly meta-evaluate GEC
metrics and evaluate their GEC models (§8).

Our contributions are summarized as follows.
(1) We construct a new dataset that allows for
bias-free meta-evaluation that fits modern neural
systems. (2) The dataset analysis shows variations
in sentence-level human evaluation results de-
pending on the evaluation granularity. (3) We
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identified two findings through meta-evaluation:
aligning the granularity between human evalua-
tion and metric enhances correlations, and cor-
relations for classical and neural systems are
different. (4) Investigating the influence of out-
liers and system sets, we discovered that a meta-
evaluation of a single setting cannot analyze the
detailed characteristics of the metric. We also
found that existing metrics lack the precision to
differentiate between the performances of top-tier
systems.

2 Related Work

Meta-evaluation Grundkiewicz et al. (2015)
proposed a dataset (GJG15) with sentence-based
human ratings for system outputs in the CoNLL-
2014 test set and found that M 2 has a moderate
positive correlation with human judgments. Si-
multaneously, Napoles et al. (2015) constructed a
dataset by performing a similar human evaluation
and observed that their proposed metric, GLEU,
has a stronger correlation than M 2. Both stud-
ies found no correlation with I-measure (Felice
and Briscoe, 2015). Chollampatt and Ng (2018b)
carried out significance tests between various
metrics using GJG15. They concluded that there
was no clear distinction in performance between
M 2 and GLEU, with I-measure proving to be
the most robust metric. However, these experi-
ments are based on classical systems and thus
deviate from modern neural systems. MAEGE
proposed by Choshen and Abend (2018a) applies
multiple partial edits to the uncorrected sentence
and assigns pseudo-scores based on the number
of edits, aiming for a meta-evaluation indepen-
dent of human evaluation. MAEGE does not con-
sider system outputs and human evaluations, so
it should be distinguished from existing meta-
evaluations that rely on humans. Moreover, since
it does not account for errors that machines might
make but humans wouldn’t, the need for human
evaluation against outputs persists. Furthermore,
Napoles et al. (2019) constructed GMEG-Data
by performing human judgments using continu-
ous scales on the CoNLL-2014 test set and three
domain-specific datasets. Their findings high-
lighted diverse correlations across the different
domains. They explored neural systems, but these
deviate from mainstream systems pretrained with
pseudo data and fine-tuned based on the trans-

former (Vaswani et al., 2017). While SEEDA
offers greater validity due to its focus on contem-
porary target systems and the evaluation granular-
ity, GMEG-Data has the advantage of allowing
meta-evaluation using the entire CoNLL-2014
benchmark in various domains.

Reference-based Evaluation In the evaluation
of GEC, commonly used metrics rely on refer-
ence sentences. Some of the most prevalent met-
rics include M 2, ERRANT, and GLEU. Both
M 2 and ERRANT calculate F0.5 score by com-
paring the edits in the corrected sentence to those
in the reference. In contrast, GLEU assesses based
on the matching of N-grams between the cor-
rected sentence and reference. I-measure evalu-
ates the degree of improvement from the original
sentence using the weighted precision of edits.
There are also newer metrics like GoToScorer
(Gotou et al., 2020), which takes into account
the difficulty of corrections, and PT-M 2 (Gong
et al., 2022), which extends M 2 (and ERRANT)
with pretraining-based metrics. It is worth noting
that these reference-based evaluations can lose
validity with limited reference coverage.

Reference-less Evaluation Evaluations with-
out reference sentences aim to overcome the
coverage issues. GBM (Napoles et al., 2016b)
estimates grammaticality by identifying the num-
ber of errors in a sentence. However, it may be
less sensitive to semantic changes. To address
this limitation, GFM (Asano et al., 2017) was
proposed. It incorporates sub-metrics to estimate
grammaticality, fluency, and meaning preserva-
tion. Additionally, USim (Choshen and Abend,
2018b) was developed to specifically estimate
semantic faithfulness. SOME (Yoshimura et al.,
2020) draws inspiration from GFM and optimizes
each sub-metric based on human evaluation us-
ing BERT (Devlin et al., 2019). Scribendi Score
(Islam and Magnani, 2021) relies on various fac-
tors, including GPT-2 perplexity, token sort ratio,
and Levenshtein distance ratio, to evaluate cor-
rection quality. IMPARA (Maeda et al., 2022)
fine-tunes BERT using only parallel data to quan-
tify the impact of corrections. In terms of quality
estimation, Chollampatt and Ng (2018a) intro-
duced the first neural approach that does not rely
on handcrafted features, while Liu et al. (2021)
considered interactions between hypotheses using
inference graphs.
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Figure 1: M 2 Score (F0.5) and word edit rate for classical systems in GJG15, neural systems in SEEDA,
and human sentences. These neural systems generate more edits and better corrections compared to
classical systems.

3 The SEEDA Dataset

The SEEDA dataset consists of corrections
annotated with human ratings along two differ-
ent evaluation granularities (edit- and sentence-
based), covering 12 state-of-the-art neural systems
including LLMs, and two human corrections. The
SEEDA dataset is denoted as SEEDA-E for
edit-based evaluation and SEEDA-S for sentence-
based evaluation. In this section, we describe the
SEEDA dataset, how we generated the correc-
tions (§3.1), and how we collected the annota-
tions (§3.2). We use the CoNLL-2014 test set (Ng
et al., 2014) as our input data, consisting of test
essays and their error annotations. The test essays
are written by non-native English-speaking stu-
dents from the National University of Singapore
and cover two genres: genetic testing and social
media. Error annotations for the test essays are
conducted by two native English speakers. The
data comprises a total of 50 essays, consisting of
1,312 sentences and 30,144 tokens.

3.1 GEC Systems

To align with the current setting in GEC, we
collect corrections using two mainstream neural-
based approaches: sequence-to-sequence and se-
quence tagging (Bryant et al., 2023). To investigate
how highly discriminating current metrics are,
top-tier systems should be included among the
target systems. This includes the LLMs that have
received increased attention in recent years. Fol-
lowing these requirements, we carefully selected
11 systems, ensuring that the count is no less

than the number of systems in GJG15. Among
these, eight systems are sequence-to-sequence
models that generate each token autoregressively:
TemplateGEC (Li et al., 2023), TransGEC (Fang
et al., 2023), T5 (Rothe et al., 2021), LM-Critic
(Yasunaga et al., 2021), BART (Lewis et al.,
2019), BERT-fuse (Kaneko et al., 2020), Riken
Tohoku (Kiyono et al., 2019), and UEDIN-MS
(Grundkiewicz et al., 2019). The remaining three
systems are sequence tagging models that predict
edit tags in parallel: GECToR-ens (Tarnavskyi
et al., 2022), GECToR-BERT (Omelianchuk et al.,
2020), and PIE (Awasthi et al., 2019). Following
the recent LLMs trend, we consider GPT-3.5
(text-davinci-003) for two-shot learning
(Coyne et al., 2023). We included INPUT (source
from the CoNLL-2014 test set) since GEC eval-
uation requires consideration of uncorrected sen-
tences. We also consider REF-M (minimal edit
references by experts) and REF-F (fluency edit
references by experts), which are introduced by
Sakaguchi et al. (2016), to compare the system
performance with human correction, bringing to
the total to 15 sentence sets.

Figure 1 shows the M 2 Score (F0.5)2 and word
edit rate for classical systems in GJG15, neural
systems in SEEDA, and human sentences. Com-
paring these systems, neural systems in SEEDA

2In GEC, it is common to use F0.5, where Precision
is given twice the importance of Recall (Ng et al., 2014;
Bryant et al., 2019). This is because, in the practical usage of
GEC systems, not correcting is not as detrimental as making
incorrect corrections. Additionally, in the context of language
acquisition where minimizing incorrect feedback is desirable,
this weighting is reasonable (Nagata and Nakatani, 2010).

840



Figure 2: An overview of the annotation flow and an example of edit-based human evaluation. In Step
1, the annotator identifies errors in the source. Then, they categorize each edit in the output as either
valid or not. In Step 2, the annotator determines whether each edit in the output effectively corrects
the errors found in Step 1. TP, FP, and FN represent True Positive, False Positive, and False Negative,
respectively.

show a higher number of edits and demonstrate
better correction performance from the perspec-
tive of M 2. This performance comparison utilizes
the most common GEC evaluation method, re-
producing results reported in existing studies. On
the other hand, this performance comparison con-
tains intuitive contradictions, such as the lower
performance of human-corrected sentences and
LLMs. Therefore, we investigate and report how
the modern system comparison deviates from hu-
man judgments (§4.2). Note that few-shot learning
such as GPT-3.5 is known to be not grounding to
target sentences as compared to finetuned models
and may produce fluent but lengthy correction
sentences that do not preserve the meaning of the
source (Maynez et al., 2023).

3.2 Annotation Scheme
Edit-based Human Evaluation In the edit-
based human evaluation, we evaluate only for
edits in the system output. We perform a step-
by-step sequence labeling using the doccano an-
notation tool (Nakayama et al., 2018). In the
edit-based human evaluation, we decided to di-
vide the process into two steps to avoid compli-
cating the annotation process.

Figure 2 shows an overview of the annotation
flow and an example of edit-based human eval-
uation. In Step 1, the detection of errors in the
source and checking for edits in the output are

performed. During the initial error detection, an-
notators refer to 25 error categories by Bryant
et al. (2017) to identify error locations in the
source, enabling them to label errors at the min-
imal unit level. In the subsequent Edit checking,
annotators perform a binary decision to determine
whether they would like to apply the edits in the
output to improve the source or not. To reduce
annotation costs, ERRANT is used for extract-
ing edits. When there are conflicting edits (e.g.,
subject-verb agreement error), the one that aligns
with the context is deemed effective, while the
other is considered ineffective. Furthermore, for
edits that depend on each other (e.g., [law’s→ ]
and [ →of the law] in Figure 2), each is as-
signed an independent label, but they are deemed
effective only if all dependent edits are present.
In Step 2, the annotator performs a binary deci-
sion to determine whether each edit in the output
effectively corrects the errors found in Step 1.
Finally, we compute F0.5 based on Precision and
Recall3 for each corrected sentence and subse-
quently rank the set of corrected sentences ac-
cordingly. The supplementary information about
the annotation is provided in Appendix A.

Sentence-based Human Evaluation Follow-
ing Grundkiewicz et al. (2015), sentence-based

3Note that Precision and Recall are computed at different
levels of granularity.
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# Score Range System # Score Range System # Score Range System

1 0.273 1 AMU 1 0.992 1 REF-F 1 0.679 1 REF-F
2 0.182 2 CAMB 2 0.743 2 GPT-3.5 2 0.583 2 GPT-3.5
3 0.114 3–4 RAC 3 0.179 3–4 T5 3 0.173 3 TransGEC

0.105 3–5 CUUI 0.175 3–4 TransGEC
0.080 4–5 POST

4 −0.001 6–7 PKU 4 0.067 5–6 REF-M 4 0.097 4–6 T5
−0.022 6–8 UMC 0.023 5–7 BERT-fuse 0.078 4–7 REF-M
−0.041 7–10 UFC −0.001 6–8 Riken-Tohoku 0.067 4–7 Riken-Tohoku
−0.055 8–11 IITB −0.034 7–8 PIE 0.064 4–7 BERT-fuse
−0.062 8–11 INPUT
−0.074 9–11 SJTU

5 −0.142 12 NTHU 5 −0.163 9–12 LM-Critic 5 −0.076 8–11 UEDIN-MS
−0.168 9–12 TemplateGEC −0.084 8–11 PIE
−0.178 9–12 GECToR-BERT −0.092 8–11 GECToR-BERT
−0.179 9–12 UEDIN-MS −0.097 8–11 LM-Critic

6 −0.358 13 IPN 6 −0.234 13 GECToR-ens 6 −0.154 12–12 GECToR-ens
(a) Sentence-based evaluation in GJG15 7 −0.300 14 BART 7 −0.211 13–14 TemplateGEC

−0.231 13–14 BART
8 −0.992 15 INPUT 8 −0.797 15 INPUT

(b) Sentence-based evaluation in SEEDA (c) Edit-based evaluation in SEEDA

Table 2: Human rankings for each evaluation granularity using TS. Systems based on GPT and T5
architectures (GPT-3.5, T5, TransGEC) consistently achieve higher rankings than REF-M, suggesting
the potential for these systems to outperform human capabilities in providing corrections.

human evaluation is performed using the Ap-
praise evaluation scheme (Federmann, 2010). An-
notators read the context in the same way as
edit-based human evaluation. And then, the cor-
rected sentences are relatively ranked, allowing
the same rank from the best to the worst. The
judgment of whether a sentence is good or bad is
left to the subjectivity of each annotator.

Annotator and Sampling Method Each an-
notation was performed by three native English
speakers with extensive knowledge of the lan-
guage. To observe differences by evaluation gran-
ularity, they are responsible for the same set of
edit-based and sentence-based annotations. Fol-
lowing Grundkiewicz et al. (2015), we sample
200 subsets from the 1312 correction sets against
the CoNLL-2014 test set using a parameterized
distribution that favors more diverse outputs. To
measure inter- and intra-annotator agreements,
we duplicated at least 12.5% of the subset. One
subset may contain up to five sentences, and the
annotator creates a ranking from those sentences.

4 Dataset Analysis

In this section, we analyze SEEDA with a fo-
cus on evaluation granularity. First, we present
the dataset statistics (§4.1). Second, we produce
human rankings for the system using rating al-
gorithms to conduct system-level meta-evaluation

Annotator Raw data Expanded

1 1,777 (592 / 507) 10,893 (6,349 / 5,919)
2 1,770 (522 / 240) 11,663 (7,053 / 5,445)
3 1,800 (343 / 44) 10,988 (5,572 / 4,433)

Total 5,347 (1,457 / 791) 33,544 (18,974 / 15,797)

Table 3: Dataset statistics for pairwise judgments
by annotators. The numbers within the parentheses
represent the number of ties, with the left being
edit-based and the right being sentence-based.

(§4.2). Third, we quantitatively analyze to dis-
cern any disparities in human evaluations across
different evaluation granularities (§4.3).

4.1 Dataset Statistics

Table 3 presents the statistics for pairwise judg-
ments by annotators. Each annotator has created
200 rankings for each subset, resulting in a total
of 600 rankings. We take all combinations of all
two sentences (A, B) for ranking, make a pairwise
judgment (A>B, A=B, A<B), and count their
numbers. To investigate the frequency of dupli-
cate corrections, the raw data was expanded by
treating systems that produced the same output
independently. As a result, the number of pairwise
evaluations increased significantly. This finding,
similar to classical systems in Grundkiewicz et al.
(2015), suggests that even high-performing neu-
ral systems that make many edits often generate
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Figure 3: Scatter plots of the human score and the metric score. ‘‘Base’’ indicates the 12 systems
excluding uncorrected sentences (INPUT) and fluent sentences (REF-F, GPT-3.5). Each line represents
a regression line, and the shaded area indicates the size of the confidence interval for the estimated
regression, obtained using bootstrap. Comparing the orange and blue regression lines to the gray
regression line allows us to observe the degree of influence of each outlier on the distribution trend.
For example, the leftward tilt of the orange regression lines for M 2, PT-M 2, ERRANT, and GLEU
indicates a negative impact from fluent sentences as outliers.

Agreement κ (SEEDA /GJG15) Degree

Inter- (Edit) 0.28 / – Fair
Inter- (Sentence) 0.41 / 0.29 Moderate

Intra- (Edit) 0.61 / – Substantial
Intra- (Sentence) 0.71 / 0.46 Substantial

Table 4: Cohen’s κ measures the average inter- and intra-
annotator agreements on pairwise judgments. The numbers
in parentheses represent the κ for GJG15.

duplicated corrections. Moving forward, experi-
ments will be conducted using raw data of pairwise
judgments. Table 4 shows average inter- and
intra-annotator agreements. Cohen’s kappa co-
efficient (κ) (Cohen, 1960) is used to measure
the agreement. In comparison to the results in
Grundkiewicz et al. (2015), the high inter- and
intra-annotator agreement indicates that the an-
notators were able to provide more consistent
evaluations.

4.2 Human Rankings

Following Grundkiewicz et al. (2015), we em-
ployed two rating algorithms, TrueSkill (TS) from
Sakaguchi et al. (2014) and Expected Wins (EW)

from Bojar et al. (2013), to create human rank-
ings based on pairwise judgments. Table 2 shows
the human rankings generated using TS for both
edit-based and sentence-based evaluations. In con-
trast to classical systems in GJG15, all the neural
systems receive ranks surpassing INPUT. This in-
dicates a tendency of these systems to improve
uncorrected sentences through correction. Sys-
tems based on GPT and T5 architectures (e.g.,
GPT-3.5, T5, TransGEC) achieve higher rank-
ings than REF-M. This suggests the potential of
these systems to offer corrections that might even
surpass human capabilities.

4.3 Difference in Human Evaluation
by Granularity

We perform a quantitative analysis of the varia-
tions in human evaluation based on granularity. To
measure sentence-level agreement, we calculate
the average intra-annotator κ between edit-based
and sentence-based evaluations. The result, a mod-
est 0.36, indicates low agreement. On the other
hand, the system-level κ using pairwise judgments
from the human rankings stands at a much higher
0.83, revealing negligible disparity. This indicates
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a pronounced difference in sentence-level evalu-
ation, but a relatively minor one in system-level
evaluation. This suggests that biases are more
prominent at the sentence-level meta-evaluation.

5 Baseline Metrics

We target 11 GEC metrics for meta-evaluation,
including EBMs (§5.1) and SBMs (§5.2).

5.1 Edit-based Metrics

M 2 (Dahlmeier and Ng, 2012). It compares
the edits in the corrected sentence with those in
the reference. It dynamically searches for edits to
optimize alignment with the reference edits using
Levenshtein alignment (Levenshtein, 1966).

SentM 2. It is a variant of M 2 that calculates
F0.5 score at the sentence level.

PT-M 2 (Gong et al., 2022). It is a hybrid met-
ric that combines M 2 and BERTScore (Zhang
et al., 2019). It can measure the semantic similar-
ity between pairs of sentences, not just comparing
edits.

ERRANT (Bryant et al., 2017). It is similar to
M 2 but differs in that it uses linguistically en-
hanced Damerau-Levenshtein alignment for ex-
tracting edits. It is characterized by its ability to
calculate F0.5 score for each error type.

SentERRANT. It is a variant of ERRANT that
computes sentence-level F0.5 score.

PT-ERRANT. It is a variant of PT-M 2 where
the base metric has been changed from M 2 to
ERRANT.

GoToScorer (Gotou et al., 2020). It calculates
F0.5 score while considering the difficulty of
correction. The difficulty is calculated based on
the number of systems that were able to correct
the error.

5.2 Sentence-based Metrics

GLEU (Napoles et al., 2015). It is based on
the commonly used BLEU (Papineni et al., 2002)
in machine translation. It rewards N-grams in the
output that match the reference but are not in the
source while penalizing N-grams in the source that
do not match the reference. For better evaluations,
we use GLEU without tuning (Napoles et al.,
2016a).

Scribendi Score (Islam and Magnani, 2021).
It evaluates by combining the perplexity calcu-
lated by GPT-2 (Radford et al., 2019), token sort
ratio, and Levenshtein distance ratio.

SOME (Yoshimura et al., 2020). It optimizes
human evaluations by fine-tuning BERT sepa-
rately for each of the following criteria: gramma-
ticality, fluency, and meaning preservation.

IMPARA (Maeda et al., 2022). It combines a
quality estimation model fine-tuned with paral-
lel data using BERT and a similarity model to
consider the impact of edits.

6 Revisiting Meta-evaluation for GEC

We investigate how correlations are affected
by resolving granularity inconsistencies and are
changed from classical systems to modern neu-
ral systems through system-level (§6.1) and
sentence-level (§6.2) meta-evaluations. Figure 3
shows the scatter plots of the human evaluation
and the metric scores, indicating that uncorrected
sentences (INPUT) and fluently corrected sen-
tences (REF-F, GPT-3.5) stand out as outliers and
influence the correlation. Therefore, we consider
12 systems, deliberately excluding uncorrected
sentences (INPUT) and sentences with fluently
corrected sentences (REF-F, GPT-3.5). We calcu-
late metric scores on the subset targeted in human
evaluations.

6.1 System-level Meta-evaluation
Setup For our system-level meta-evaluation,
we report correlation using system scores ob-
tained from human rankings. Metrics such as M 2,
PT-M 2, ERRANT, GoToScorer, and GLEU can
calculate system scores, while other metrics use
the average of sentence-level scores as the system
score. We use Pearson correlation (r) and Spear-
man rank correlation (ρ) to measure the close-
ness between the metric and human evaluation.

Result According to the system-level meta-
evaluation results in Table 5, it is evident that
aligning the granularity between the metrics and
human evaluation improves the correlation for
EBMs in SEEDA-E, while the correlation for
SBMs in SEEDA-S tends to decrease. One rea-
son for the inconsistent results even when the
granularity is aligned is that system-level hu-
man evaluations exhibit relatively small variations
across different evaluation granularities.
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Metric
System-level Sentence-level

GJG15 SEEDA-S SEEDA-E GJG15 SEEDA-S SEEDA-E
r ρ r ρ r ρ Acc τ Acc τ Acc τ

M 2 0.721 0.706 0.658 0.487 0.791 0.764 0.506 0.350 0.512 0.200 0.582 0.328
SentM 2 0.852 0.762 0.802 0.692 0.887 0.846 0.506 0.350 0.512 0.200 0.582 0.328
PT-M 2 0.912 0.853 0.845 0.769 0.896 0.909 0.512 0.354 0.527 0.204 0.587 0.293
ERRANT 0.738 0.699 0.557 0.406 0.697 0.671 0.504 0.356 0.498 0.189 0.573 0.310
SentERRANT 0.850 0.741 0.758 0.643 0.860 0.825 0.504 0.356 0.498 0.189 0.573 0.310
PT-ERRANT 0.917 0.886 0.818 0.720 0.888 0.888 0.493 0.343 0.497 0.158 0.553 0.246
GoToScorer 0.691 0.685 0.929 0.881 0.901 0.937 0.336 0.237 0.477 −0.046 0.521 0.042
GLEU 0.653 0.510 0.847 0.886 0.911 0.897 0.684 0.378 0.673 0.351 0.695 0.404
Scribendi Score 0.890 0.923 0.631 0.641 0.830 0.848 0.498 0.009 0.354 −0.238 0.377 −0.196
SOME 0.975 0.979 0.892 0.867 0.901 0.951 0.776 0.555 0.768 0.555 0.747 0.512
IMPARA 0.961 0.965 0.911 0.874 0.889 0.944 0.744 0.491 0.761 0.540 0.742 0.502

Table 5: System-level and sentence-level meta-evaluation results excluding outliers. We use Pearson
(r) and Spearman (ρ) for system-level and Accuracy (Acc) and Kendall (τ ) for sentence-level
meta-evaluations. The sentence-based human evaluation dataset is denoted SEEDA-S and the edit-based
one is denoted SEEDA-E. The score in bold represents the metrics with the highest correlation at each
granularity. There is a trend of improving correlation by aligning the metrics at the sentence level
(SEEDA-S vs SEEDA-E) and a trend of decreasing correlation by changing the target systems from
classical systems to neural systems (GJG15 vs SEEDA-S).

We discovered that as we move from classi-
cal systems to neural systems, correlations for
all metrics—except GoToScorer and GLEU—
decrease through a comparison between GJG15
and SEEDA-S. This result suggests that the major-
ity of current metrics cannot adequately evaluate
the more extensively edited and fluent correc-
tions produced by neural systems, in contrast
to those generated by classical systems. In the
meta-evaluation results of GJG15, comparing it
with existing studies (Grundkiewicz et al., 2015;
Choshen and Abend, 2018a) is unfeasible, as the
exclusion of INPUT has been implemented to al-
leviate scoring bias between EBMs and sentence-
based human evaluation.

6.2 Sentence-level Meta-evaluation

Setup In sentence-level meta-evaluation, we use
pairwise judgments in Table 3 to calculate corre-
lations. We use Kendall’s rank correlation (τ ) and
Accuracy (Acc) to measure the performance of
the metrics. Kendall (τ ) can measure performance
in the common use case of comparing corrected
sentences to each other.

Result In contrast to the system-level results,
sentence-level meta-evaluations showed more sig-
nificant improvements in correlations when the
granularity was aligned. The substantial varia-

tion in sentence-level human evaluations based on
granularity likely contributed to more consistent
results. In other words, it became evident that
correlations in sentence-level meta-evaluation are
underestimated when granularity is not aligned.

When we compared GJG15 and SEEDA-S,
we observed a decrease in correlations for most
metrics, especially in EBMs, similar to the system-
level results. Consistently high correlations were
found for SOME and IMPARA, indicating the
effectiveness of fine-tuned BERT.

7 Further Analysis

As further analysis, we investigate the influence
of outliers (§7.1) and variations in the system set
(§7.2) on the correlation of the metric. We test
the hypothesis on which this study focuses, that
there may be a range of correlations in flexible
settings in GEC. Based on the best practices ob-
tained in §6, granularity will be aligned in sub-
sequent meta-evaluations.

7.1 Influence of Outliers

Table 6 shows the results when the uncorrected
sentences (INPUT) and/or fluently corrected sen-
tences (REF-F, GPT-3.5) are added to the base
meta-evaluation excluding outliers (§6).
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Table 6: Meta-evaluation results when an outlier is included. Green indicates an increase in correlation
compared to the meta-evaluation in Table 5, while red indicates a decrease. ‘‘+Min’’ in parentheses is
when 11 minimal edit references are added, and ‘‘+Flu’’ is when three fluency edit references are added.
‘‘All systems’’ is the case where all outliers are considered. For most metrics, INPUT acts as an outlier
that improves correlation, while REF-F and GPT-3.5 function as outliers that decrease correlation.

System-level Analysis The system-level results
show that simply considering INPUT increases
the correlations for most metrics to the point
where comparisons are difficult. This suggests
that INPUT serves as a strong outlier that skews
the correlation positively and prevents accurate
meta-evaluation. One of the reasons is that most
EBMs assign the lowest score to INPUT, which
also ranks the lowest in human evaluations. There-
fore, in the meta-evaluation using neural models,
it was demonstrated that a fair comparison can-
not be made when considering the INPUT.

On the other hand, the addition of REF-F and
GPT-3.5 shows a sharp drop in overall correla-
tion. The results suggest that metrics other than
SOME and IMPARA cannot properly assess flu-
ently corrected sentences. Increasing references to
commonly used metrics (M 2, ERRANT, GLEU)
improves the correlation slightly, but still does not
provide the same evaluation as humans. The same
tendency as in the Maynez et al. (2023) study was
observed that the overlap-based metric does not
correctly evaluate LLMs for few-shot learning.

Sentence-level Analysis The results in the
sentence-level meta-evaluation showed a similar
trend as system-level results but with some dif-

ferences. Adding INPUT improved correlations
for most metrics, but both GoToScorer and
Scribendi Score have decreased, which may be
attributed to the inability to properly perform
sentence-based evaluation. Furthermore, when
adding REF-F and GPT-3.5, not only did many
metrics show a decrease in correlation, but SOME
and IMPARA also exhibited a slight reduction
in correlation.

The improved correlations in M 2 (+Min) and
GLEU (+Min), when REF-F and GPT-3.5 were
added, indicate that the fluency correction may no
longer be an outlier for commonly used metrics if
the low coverage of reference-based evaluation is
mitigated. To address the issue of reference cov-
erage, an approach similar to Choshen and Abend
(2018a), which involves splitting and combining
edits for each reference, could potentially enhance
the effective utilization of references. However,
the result that fluency edit references were useful
only for GLEU suggests that fluent edit references
may be effective on an N-gram basis, but not on
an edit extraction basis. As one of the reasons, we
can consider the difficulties and complexities in
edit extraction for fluent sentences in EBMs, as
well as the inability to address the low coverage
of three fluent references.
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Figure 4: Variation of correlation when different systems are considered using window analysis. The
x-axis represents the human ranking of the 12 systems excluding outliers. ‘‘n’’ denotes the number
of systems considered, with solid lines representing four systems and dashed lines representing eight
systems. For example, for n = 4, a point with x = 5 corresponds to a human evaluation using
systems ranked 2 to 5. The orange line represents Pearson (r) and the blue line represents Kendall
(τ ). The correlation of the main metrics (M 2, ERRANT, GLEU) shows significant variability, while
pretraining-based metrics (SOME, IMPARA) exhibit relatively stable correlations.

7.2 Influence of Variations in the System Set

Next, we investigate the extent to which the cor-
relation of the metrics varies with changes in a
system set. To create a difficult setting for the met-
ric, correlations are computed for a set of systems
with close performance by sorting the systems
in order of human ranking. Figure 4 shows the
variation in correlations using window analysis.
What is common for most metrics is that Pearson
(r) tends to be highly variable from positive to
negative for evaluation of four systems, but rela-
tively stable for evaluation of eight systems. This
suggests that most metrics do not have enough
precision to identify performance differences in
a set of high-performance neural systems. There-
fore, there is still a need to develop better met-
rics that allow precise evaluation. Furthermore,
M 2, ERRANT, and GLEU were often uncorre-
lated or negatively correlated, indicating that the
commonly used metrics do not have high robust-
ness. On the other hand, the BERT-based metrics
were found to maintain relatively high correla-
tions, with SOME in particular being the most
robust. Kendall (τ ) has a large number of sam-
ples for pairwise judgments, so there is no signif-
icant change.

8 Discussion

We provide a more practical guideline for meta-
evaluation (§8.1) and evaluation (§8.2) method-
ologies in future GEC research by considering
the experimental results so far.

8.1 Towards Valid Meta-evaluation in GEC

We recommend that meta-evaluation be con-
ducted at each evaluation granularity in GEC.
Specifically, EBMs should use SEEDA-E, and
SBMs should use SEEDA-S. The meta-evaluation
using SEEDA should use the 12 systems as
a baseline, excluding outliers, and add REF-F
and GPT-3.5 if one wants to find out how well
the metrics can evaluate fluent corrections. This
allows meta-evaluation for the modern neural
system without the bias of the granularity. Ad-
ditionally, conducting experiments with various
methodologies is crucial to validate the charac-
teristics of metrics. Therefore, experiments using
GMEG-Data for domain-specific meta-evaluation
of SBMs and meta-evaluation by MAEGE, irre-
spective of granularity, should be considered if
resources permit.
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The further analysis in §7, which yielded re-
sults unavailable in §6, demonstrates that con-
ducting meta-evaluation for only a single setting
is inadequate in GEC. Therefore, it is necessary to
measure correlations across multiple experimental
settings, considering the presence of outliers and
more realistic sets of systems with similar perfor-
mance. Additionally, achieving meta-evaluation
reliability in GEC using confidence intervals for
correlations, like Deutsch et al.’s (2021) study,
is considered important. Furthermore, annota-
tion based on Multidimensional Quality Metrics
(Lommel et al., 2014) can take into account error
types and severity, potentially providing interest-
ing insights when compared to results from WMT
(Freitag et al., 2021, 2022).

8.2 Best Practices for GEC Evaluation

We recommend the use of both EBMs and SBMs
in GEC. In light of the trend toward more fluent
correcting systems such as the GPT model, the
current combination of the CoNLL-2014 test set
and M 2 will no longer be adequate for proper
evaluation. Therefore, it is essential to use high
correlation metrics, such as SOME or IMPARA, in
addition to M 2, to enable the evaluation of LLMs
and achieve a more human-like and robust evalua-
tion. Alternatively, exhaustive fluency references
should be prepared to improve M 2 correlations,
or datasets such as JFLEG (Napoles et al., 2017)
that can account for fluency, should be used.
Furthermore, using LLMs, as reported in recent
studies (Chiang and Lee, 2023; Liu and Fabbri,
2023; Kocmi and Federmann, 2023) as an ef-
fective evaluator for other generative tasks, may
also prove beneficial in GEC. If resources allow,
it would be good to conduct additional human
evaluations. EBMs and SBMs each have different
strengths. EBMs can calculate Precision, Recall,
and F-score, allowing a detailed evaluation of
the system performance. In terms of second lan-
guage acquisition, the evaluation of each edit
provides information about the error location,
type, and amount, which can improve the quality
of feedback and learning efficiency. Most SBMs,
on the other hand, can evaluate without refer-
ences, circumventing the problem of underesti-
mating corrections that are limited by the coverage
of references. Also, unlike EBMs, SBMs do not
automatically give the lowest score to uncorrected

sentences. This allows for a quantifiable measure-
ment to determine whether a sentence has been
improved or worsened as a result of correction.

9 Conclusion

To address issues in conventional meta-evaluation
in English GEC, we construct a meta-evaluation
dataset (SEEDA) consisting of corrections with
human ratings along two different evaluation
granularities, covering 12 state-of-the-art sys-
tem corrections including LLMs, and two human
corrections with different focuses. The dataset
analysis reveals that the results of sentence-level
human evaluation differ between granularities and
that GEC systems based on GPT and T5 can cor-
rect as well as or better than humans. Also, through
meta-evaluation using SEEDA, we demonstrate
that EBMs may be underestimated in existing
meta-evaluations and that matching the evalua-
tion granularity of metrics with human evaluations
tends to improve sentence-level correlations. By
further analysis, we discovered the uncertainty
of conclusions based on a single correlation and
found that most metrics lacked the precision to
distinguish differences among high-performance
neural systems. Finally, we propose a methodol-
ogy for meta-evaluation and evaluation in GEC.
We hope that this paper contributes to further
advancements in GEC.
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A Supplement of Annotations

Figure 5 shows a screenshot of doccano used in
the edit-based human evaluation. The source is

enclosed in a <t> tag, and each corrected sen-
tence is emphasized with a <s> tag along with
the system number. In step 1, there are error la-
bels for the source and True and False labels for
each edit. In step 2, True and False labels with
the system number are used to indicate whether
the errors in the source were corrected. Due
to the specifications of doccano, even if the same
edit appears in multiple corrections, annotators
need to label each occurrence separately. For in-
formation on Appraise in sentence-based human
evaluation, you may refer to Grundkiewicz et al.’s
(2015) work.
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Figure 5: Screenshot of doccano used in the edit-based human evaluation.
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