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Abstract

Sentences containing multiple semantic op-
erators with overlapping scope often create
ambiguities in interpretation, known as scope
ambiguities. These ambiguities offer rich in-
sights into the interaction between semantic
structure and world knowledge in language
processing. Despite this, there has been little
research into how modern large language mod-
els treat them. In this paper, we investigate how
different versions of certain autoregressive lan-
guage models—GPT-2, GPT-3/3.5, Llama 2,
and GPT-4—treat scope ambiguous sentences,
and compare this with human judgments. We
introduce novel datasets that contain a joint
total of almost 1,000 unique scope-ambiguous
sentences, containing interactions between a
range of semantic operators, and annotated
for human judgments. Using these datasets,
we find evidence that several models (i) are
sensitive to the meaning ambiguity in these
sentences, in a way that patterns well with
human judgments, and (ii) can successfully
identify human-preferred readings at a high
level of accuracy (over 90% in some cases).1

1 Introduction

Sentences like ‘every farmer owns a donkey’ are
systematically ambiguous between two readings:
one in which the embedded noun phrase (NP)
(e.g., ‘a donkey’) is interpreted within the scope
of the quantifier that precedes it (‘every’), and
another in which the embedded NP is interpreted
outside its scope. As shown in Figure 1, ‘every
farmer owns a donkey’, for example, could either
mean (i) that each farmer simply owns their own
(possibly unique) donkey, or (ii) that there is a
specific donkey in question that all farmers jointly
own.

1Data and code are available at: https://github
.com/McGill-NLP/scope-ambiguity.

Such constructions are examples of what are
known as scope ambiguities. They are called so
because the standard account of these ambigui-
ties is that they arise when the respective scope
of multiple semantic operators in the expression
is ambiguous, yielding more than one possi-
ble semantic structure. Consider the following
example:

(1) a. Every farmer owns a donkey.

b. Surface Scope: ∀y[farmer(y) →
∃x[donkey(x) ∧ owns(y, x)]]

c. Inverse Scope: ∃x[donkey(x) ∧
∀y[farmer(y) → owns(y, x)]]

(1a), in logical form, involves a universal quan-
tifier (introduced by ‘every’), and an existential
quantifier (introduced by ‘a’). The ambiguity lies
in the order of application (and thereby scopes)
of these two operators. The surface scope reading
of the sentence, (1b), involves the universal quan-
tifier outscoping the existential quantifier. The
inverse scope reading, (1c), involves the reverse.

Importantly for this present work, English
speakers (i) have access to both kinds of readings,
and (ii) generally disambiguate between them to
arrive at a preferred reading (see Kurtzman and
MacDonald, 1993). For example, although (1a)
has two possible interpretations, without further
context, most people would prefer the surface
reading, due to at least the surface positions of ‘a’
and ‘every’ in the sentence, as well as background
world knowledge about farmers and donkeys
(see Kurtzman and MacDonald, 1993; Saba and
Corriveau, 2001; Anderson, 2004, for insights into
how such factors affect reading preferences).

The focus of this paper is how large language
models (LLMs) treat such ambiguities. Assess-
ing how they do so offers important insights into
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Figure 1: A high-level overview of our study, showing
our approaches to our first (see Section 4) and second
(see Section 5) experiments.

interactions between semantic structure and world
knowledge, as well as the representation of scope
in LLMs.

Semantic Structure and World Knowledge
Scope disambiguation lies at the interface be-
tween natural language semantics and background
world knowledge. Scope ambiguous sentences
like (1) are ambiguous between two semantic
structures; disambiguating between these two pos-
sible structures (and the different readings they
yield), however, often requires background world
knowledge (Saba and Corriveau, 2001). Take the
following two sentences:

(2) a. Every conference attendee ate a Big
Mac.

b. Every conference attendee attended a
networking event.

Both examples in (2) are scope-ambiguous in
a similar way to (1)—each offers two possible
semantic structures yielding different readings.
However, choosing the preferred reading is easy
in both cases: in (2a), the surface scope reading
(every attendee ate a potentially different Big
Mac) is preferred, while in (2b), the inverse scope
reading (there was a single networking event that
all attendees attended) is preferred. These pref-

erences are a result of the general knowledge
we have about conference attendees, networking
events, and Big Macs.

LLMs have been shown to be able to capture
aspects of world knowledge (e.g., Roberts et al.,
2020; Heinzerling and Inui, 2021; AlKhamissi
et al., 2022), and, separately, to capture some
properties of natural language semantics (e.g.,
Jawahar et al., 2019; Ettinger, 2020; Pavlick,
2022). Scope ambiguities present an opportunity
to assess how they might integrate the two.

Scope Representation in LLMs Model weights
are largely uninterpretable, so despite generally
high performance on language-based tasks, many
questions remain about the abstract linguistic
structures they capture (Belinkov and Glass, 2019;
Hewitt and Manning, 2019; Baroni, 2022). The
ambiguities discussed here arise out of a crucial
component of linguistic structure: scope. Analyz-
ing how LLMs treat them helps us gain insight into
how well they capture this component of structure.
This is particularly interesting because while for-
mal logic, as in (1), allows for a straightforward,
symbolic representation of scope ambiguities, it
remains an open question whether vector-based
LLM representations can adequately capture the
multiple readings of such constructions.

This paper therefore attempts to answer two
questions:

Q1: Do LLMs exhibit similar preferences to
humans in the interpretation of scope
ambiguous sentences?

Q2: Are LLMs sensitive to the presence of
more than one reading of scope ambiguous
sentences?

We conduct two experiments to investi-
gate these questions. From these experiments,
we present evidence that the answer to these
questions—at least for the more powerful
models—is ‘yes’.

2 Related Work

Scope ambiguities have been the focus in research
within computational linguistics and natural lan-
guage processing (NLP) primarily through the
task of quantifier scope disambiguation, which
involves the proper selection of a preferred scope
reading given a scope-ambiguous sentence.
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Early examples of NLP research on this task,
such as Higgins and Sadock (2003) and Andrew
and MacCartney (2004), frame it as a classifi-
cation task, and find models that outperform na-
ive heuristics. Such work predates modern neural
language models; Rasmussen (2022), however,
builds on this approach, framing quantifier scope
disambiguation as a span-pair classification task.
They test RoBERTa (Liu et al., 2019) on this
task, and find that the model achieves higher ac-
curacy on it than a majority-prediction baseline.
This work, however, does not directly test the
model’s underlying linguistic capabilities; it tests
the model on the classification task only after it
is trained on examples from the dataset used. As
a result, it is unclear to what degree the model’s
performance on the test set is due to linguistic
capabilities that emerged from its pretraining.

Manshadi and Allen (2011) and Tsiolis (2020)
approach the problem differently, as neither
frames it as a classification task. Manshadi and
Allen (2011) represent scope relations as graphs,
and frame the task as one of graph construction;
they present a support vector machine that beats
a naive heuristic baseline. Tsiolis (2020), on the
other hand, attempts to reframe the task as a nat-
ural language inference task, Q&A task, or one
in which probabilities of continuations are com-
pared. They use a large language model—GPT-2
(Radford et al., 2019)—but present mixed results.

Other research focuses on the linguistic fac-
tors that determine scope reading preferences in
a corpus. AnderBois et al. (2012) find that lin-
ear order, grammatical roles, and lexical effects
determine these preferences; Leczkowski et al.
(2022) build on this work and find that prepo-
sitions and preposition senses also affect scope
reading preference.

The only two instances of work assessing how
LLMs treat scope ambiguities in zero-shot con-
texts are, to our knowledge, recent work by Liu
et al. (2023), and Stengel-Eskin et al. (2023).
The latter assesses how LLMs treat ambiguous
inputs in terms of semantic parsing. The authors
use templates to generate ambiguous sentences—
including scope-ambiguous sentences—along with
logical parses of them, and assess the abilities of
LLMs to properly produce the two logical parses
of each ambiguous sentence, in both few-shot
and zero-shot contexts. They find that models
are poor at generating both parses of ambigu-
ous sentences in zero-shot contexts, but can more

accurately generate both parses in few-shot con-
texts. Liu et al. (2023), on the other hand, assess
how LLMs treat linguistic ambiguity in terms of
entailment relations. Using prompting approaches
to the task, as well as observing probabilities as-
signed to continuations of ambiguous sentences,
they present evidence suggesting LLMs struggle
to model ambiguity.

Both studies, though they do not primarily fo-
cus on it, do include scope ambiguity data, and
are thus relevant to our work. Where we di-
verge from these works, however, is in our data
and experimental methods. While the templates
Stengel-Eskin et al. (2023) use allow for the gen-
eration of hundreds of sentences, they do limit
the diversity of these stimuli; moreover, the
scope ambiguities in their datasets are limited
to instances of quantifier-quantifier interactions.
Similarly, Liu et al. (2023) estimate from a random
sample that roughly 7.6% of their data involves
scope ambiguity; manually inspecting all 579 am-
biguous sentences in their dataset, however, we
find that the dataset contains a total of around 20
instances of scope ambiguity. We also employ dif-
ferent experimental set-ups (see Sections 4.1 and
5.1) than those used in the aforementioned works.
Crucially, these experimental methods may be
what provide us opposite findings from both of
them; we discuss this difference in Section 8.

More broadly, our work belongs to a grow-
ing body of literature evaluating how well neural
language models capture a range of semantic phe-
nomena (see Pavlick, 2022, for an overview). This
includes work assessing the capacity of such mod-
els to capture compositionality (see, e.g., Ettinger
et al., 2018; Shwartz and Dagan, 2019; Jawahar
et al., 2019; Yu and Ettinger, 2020, 2021), as well
as specific features such as negation (see, e.g.,
Ettinger et al., 2018; Kim et al., 2019; Ettinger,
2020; Jang and Lukasiewicz, 2023), quantification
(e.g., Kim et al., 2019; Richardson et al., 2020;
Cui et al., 2022), and monotonicity (e.g., Yanaka
et al., 2019, 2020; Wijnholds, 2023).

3 Background

We focus on scope ambiguities involving quan-
tifiers such as ‘some’, ‘every’, and ‘most’, as
well as quantifier-like determiners, like indefi-
nites and numbers. (1) is an example of scope
ambiguity arising out of quantifier-quantifier in-
teractions. But scope ambiguities can also arise

740



out of quantifier-negation and quantifier-adverb
interactions, as shown below:

Quantifier + Negation:

(3) Sita doesn’t like a classmate of hers.

(4) a. Surface Reading: There is no classmate
that Sita likes.

b. Inverse Reading: There is a specific
classmate that Sita does not like.

Quantifier + Adverb:

(5) Bachi usually meets two professors.

(6) a. Surface Reading: Usually, Bachi meets
any two professors, who are possibly
different each time.

b. Inverse Reading: There are two profes-
sors who Bachi meets regularly.

In all three cases, the different readings have
different truth conditions, and each is therefore
logically compatible with a different set of prop-
ositions. As an illustration, consider our original
example, reproduced here as (7):

(7) Every farmer owns a donkey.

(8) a. Each farmer has a different donkey.

b. All farmers have the same donkey.

(8a) is logically compatible with (7) only given
the surface scope reading of the sentence, which
states that each farmer has a potentially unique
donkey. It is not logically compatible with the in-
verse scope reading of the sentence, which states
that there is an individual donkey that all farm-
ers (jointly) have. (8b), however, is also logically
compatible with the inverse scope reading of the
sentence. In Experiments 1A and 1B, we use
these differences in logical compatibility to as-
sess whether LLMs exhibit similar preferences
to humans in the interpretation of scope ambigu-
ous sentences.

Similarly, different scope readings often yield
different effects in a discourse setting. Consider
(5): Under the inverse scope reading, two pro-
fessors are introduced as constant across the in-
stances of Bachi’s meetings. Consequently, they

can therefore be further referred to in the dis-
course, as in (9a).

(9) a. He likes those two professors.

b. It’s a different pair each time.

But under the surface scope reading of (5),
there aren’t necessarily two professors that are
constant across instances, and who can therefore
be further referred to in the discourse. As a result,
(9a) is not an acceptable follow-up. The possi-
ble variability of the professors across multiple
instances, however, does mean that (9b) is an
acceptable follow-up (which it is not given the
inverse scope reading). In Experiments 2A and
2B, we use such patterns of acceptable and unac-
ceptable follow-ups to assess whether LLMs are
sensitive to the presence of multiple readings of
scope ambiguous sentences.

4 Experiment 1A

4.1 Method

In our first experiment, we assess whether LLMs
show similar preferences to humans in how scope
ambiguous sentences are interpreted. We frame
this as a Q&A task. We present the LLM with
sentences that are technically scope ambiguous,
but have one strongly preferred scope reading (in
some cases, this is a surface scope reading, and
in others, it is an inverse scope reading). We then
present the model with two possible statements
based on this ambiguous sentence. One statement
is compatible with only the surface scope reading
of the ambiguous sentence, while the other state-
ment is compatible with the inverse scope read-
ing. In the case of chat-optimized models, we then
ask the model which option is more likely; in the
case of models not optimized for chat, we then
obtain this answer through next token prediction.
Finally, we observe whether these responses align
with the reading preferred by most humans.

Figure 2 shows an example of how we conduct
this method, using the dataset we develop for this
experiment (details in Section 4.2). We concate-
nate, with newlines as shown in Figure 2, (i) a
test sentence that is technically scope-ambiguous;
(ii) an explanation that there are two options;
(iii) two statements, labeled Option A and Op-
tion B, where one is compatible only with the
surface scope reading, and the other is compat-
ible with the inverse scope reading; and (iv) a
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Figure 2: An example of stimuli provided to models in Experiments 1A and 1B. The sections highlighted in
bold are taken from our Experiment 1A dataset, and vary between individual stimuli presented to the models.
The non-highlighted sections, which act as a prompt frame, remain fixed. For chat-optimized models, we solicit
the model’s response using the question highlighted in blue; for plain autoregressive models, we solicit the
model’s response by seeing what it predicts after the sequence highlighted in orange. In the control setting, the
ambiguous sentence is dropped.

prompt that elicits the model’s preferred choice.
In the case of chat-optimized models, we observe
the model’s response to a question asking it to
choose between the options. For other models, we
observe the next token predicted by the model
after the text ‘the most likely option
among these two is option’: this is ei-
ther ‘A’ or ‘B’, corresponding to Option A and
Option B, respectively. We treat these as the
model’s ‘answer’, and evaluate the model based on
whether it aligns with preferred human readings.

Control: No Sentence in Prompt

One possible issue with this approach is that
answers may depend more on the likeliness of
the two options as general statements than on
their likeliness given the ambiguous sentence. We
therefore add a control: We remove the ambigu-
ous sentence altogether from the stimulus, and
present the rest of it to the model, conducting the
same task as before. In this setting, the model
should do significantly worse, as it is not ex-
posed to the sentence that is being evaluated with
respect to the two options. For instance, in the
example in Figure 2, both options appear plausi-
ble in the absence of any context; following the
scope-ambiguous sentence, however, only Option
A is plausible. If model performance does not
drop significantly when the ambiguous sentence
is dropped, the model’s performance in the origi-
nal setting is likely unrelated to its processing of
the ambiguous sentence, and instead reflects the
background likeliness of each option.

4.2 Dataset

We build upon the quantifier scope dataset pre-
sented by AnderBois et al. (2012). We chose
this dataset as a starting point because among
the few existing scope ambiguity datasets (see
Section 2), it was the dataset that had data-
points most appropriate to the focus of this study.
This dataset contains around 1,700 sentences and
phrases scraped from LSAT (Law School Admis-
sion Test) logic puzzles, and marked for quantifier
scope where present. We filtered the dataset for
instances of two interacting ‘quantifiers’.2 This
narrowed it down to around 400 datapoints. Next,
we manually constructed contrasting ‘options’
based on surface and inverse scope readings for
whichever of these roughly 400 datapoints al-
lowed this approach, giving us 186 sentences with
accompanying contrasting statements.

To further ensure that these datapoints had
strong scope reading preferences, we then con-
ducted two rounds of human validation. In both
rounds, we recruited participants via Prolific. Par-
ticipants (38 in each round) were presented the
filtered scope-ambiguous sentences along with
two accompanying options, and were asked to
pick the most likely option. In the first round, we
reworded datapoints with low subject agreement;
in the second round, we dropped any datapoints

2These included constructions such as ‘per’ in ‘one per-
son per appointment’—constructions that have some quan-
tificational force, even if they aren’t quantifiers in the strict
sense—as well as instances of negation such as ‘none’ in
‘none of the cities’.
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Interaction Type Example Count

Experiment 1 Experiment 2

Quantifier-Quantifier Every laptop is facing a glitch
136/153 (88.9%) 7/29 (24.1%)
653/837 (78%)* 38/110 (34.5%)

Quantifier-Negation I didn’t pass all of my exams
11/153 (7.2%) 11/29 (37.9%)

184/837 (22%) 35/110 (31.8%)

Quantifier-Adverb I generally spar with two boxers
– 11/29 (37.9%)
– 37/110 (33.6%)

Quantifier-Misc. Each truck is either green or red (but not both)
6/153 (3.9%) –

– –

Table 1: Original Experiment 1A and 2A datasets (regular), as well as expanded versions used in
Experiments 1B and 2B (bold), broken down by interaction type. Our original Experiment 1A dataset
consisted of a few examples involving disjunction, as shown in the example above. We label these as a
miscellaneous type of interaction, as they are not our primary focus. *These include a balanced set of
‘quantifiers’, including numbers, indefinites, and quantificational determiners.

with less than 75% agreement (all datapoints re-
ceived at least 4 evaluations). For the datapoints
that remained, gold labels (i.e., the correct option
for each datapoint, and consequently, the pre-
ferred scope reading) were taken as the majority
vote from study participants. This process ulti-
mately yielded 153 scope ambiguous sentences,
each with a pair of options.

Of these, 41 had an inverse scope reading pre-
ferred, while the remaining 112 had a surface
scope reading preferred. Almost all were exam-
ples of scope ambiguities arising from quantifier-
quantifier interactions, with a handful involving
quantifier-negation interactions, and even fewer
involving other types of interactions (see Table 1
for a breakdown by interaction type). As a final
step, we duplicated each datapoint, but with a
flipped order of options (i.e., ‘Option A’ was
labeled ‘Option B’, and vice versa). This meant
that while the distribution of preferred scope-
readings remained skewed, the final dataset—
which contains 306 datapoints covering 153
unique sentences—had an even distribution of
correct answers (50% ‘A’ and 50% ‘B’).

4.3 Models

For all experiments, we choose to use autore-
gressive language models, due to their grow-
ing prevalence in practical applications using
prompting.

Specifically, for this experiment, we use chat
and vanilla versions of Llama 2 (Touvron et al.,

Table 2: Summaries of models used for Experi-
ments 1 and 2, including size and whether they
were fine-tuned with reinforcement learning from
human feedback (RLHF). *text-davinci-
002 is not fine-tuned with RLHF, but is fine-
tuned on human demonstrations and highly rated
model outputs.

2023) at 7B, 13B, and 70B sizes;3 three variants
of GPT-3/3.5 (Brown et al., 2020; Ouyang et al.,
2022): davinci, text-davinci-002, and
text-davinci-003; and GPT-4 (OpenAI,
2023). See Table 2 for a summary of key differ-
ences between these models.

4.4 Human Baselines

After the human feedback-based filtering men-
tioned above, we conducted another round of the
same experiment with humans to get human base-
lines on this dataset. We are testing models on
their ability to choose the scope readings pre-
ferred by most people—but how good are human

3For Llama 2 at 70B, we use a version of the model
loaded in 8-bit (see Dettmers et al., 2022).
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Source Accuracy Surface Acc. Inverse Acc.

test control test control test control

Human* 0.90 – 0.89 – 0.91 –
Llama2-7b 0.58 0.67 0.57 0.69 0.61 0.63
Llama2-7b-chat 0.54 0.55 0.54 0.58 0.54 0.49
Llama2-13b 0.71 0.63 0.73 0.65 0.65 0.59
Llama2-13b-chat 0.72 0.67 0.74 0.69 0.67 0.61
Llama2-70b 0.88 0.70 0.88 0.71 0.87 0.68
Llama2-70b-chat 0.85 0.71 0.88 0.72 0.78 0.67
GPT-3-davinci 0.58 0.58 0.58 0.58 0.57 0.57
GPT-3.5-td002 0.80 0.72 0.83 0.72 0.73 0.71
GPT-3.5-td003 0.91 0.75 0.94 0.79 0.84 0.67
GPT-3.5-turbo 0.80 0.67 0.81 0.66 0.77 0.66
GPT-4 0.98 0.75 0.98 0.79 0.99 0.65

Table 3: Results from Experiment 1A: model ac-
curacy, as well as accuracy on sentences that
had a preferred surface or inverse reading. In the
test setting, the ambiguous sentence is present in
the prompt; in the control setting it is dropped.
*Values for humans are averaged across all
participants’ responses.

themselves at choosing the scope readings pre-
ferred by most other people? Our human base-
lines should provide a sense of the answer to this
question. A total of 68 native speakers of En-
glish were recruited via Prolific for a repeat of
the experimental set-up described in Section 4.2,
but this time with the final dataset. Each par-
ticipant was presented with 18 datapoints and
evaluated on their answers. We then calculated
overall accuracy as the total proportion of cor-
rect responses out of all responses.

4.5 Results
The results of Experiment 1A are shown in
Table 3. Human responses yield an average ac-
curacy of around 90%, suggesting that English
speakers can, with a high degree of accuracy, ar-
rive at scope reading preferences shared by most
other people.

When it comes to model responses, although
models like davinci and Llama2-7b do not
perform far above chance (50%, since correct
answers in the dataset were balanced through
duplication), several other models do achieve high
performance—both versions of Llama2-70b,
as well as all the GPT-3.5 models achieve an
accuracy of 80% or more in the test setting, while
GPT-4 achieves 98%, close to the ceiling.

The control setting adds further insights to these
results. Neither davinci nor the versions of
Llama 2 at 7B see their accuracy scores drop

when prompts are provided without the actual
scope ambiguous sentence (Llama2-7b actually
produces a higher accuracy in this setting), sug-
gesting that performance in the test setting is not
a result of the models’ processing of the ambigu-
ous input, but primarily driven by the background
likeliness of the two options. The models with
higher accuracy scores, however, see more severe
drop-offs in the control setting, most notably with
GPT-4, which sees its accuracy drop to 75% in
the control setting.

4.6 Discussion

These results suggest that the more advanced
LLMs evaluated—GPT-3.5, Llama 2 at 70B, and
most notably GPT-4—are able to exhibit simi-
lar scope reading preferences as humans, with a
high level of accuracy. Smaller or less advanced
models, however, such as Llama 2 at 7B, appear
to fail.

Also worth noting is the fact that, for almost
all models, performance on sentences that had a
preferred inverse scope reading was lower than
on those that had a preferred surface scope read-
ing. This aligns with literature suggesting that
inverse scope readings are generally harder to ac-
cess than surface readings (see, e.g., Kurtzman
and MacDonald, 1993; AnderBois et al., 2012),
but curiously, does not align with the behavior of
humans in this experiment, who showed no such
dispreference.

The deeper implication of some of the mod-
els’ high performance, however, is that LLMs
can not only capture different types of readings—
surface and inverse, which correspond to dif-
ferent semantic structures—but also integrate
background world knowledge in their behavioral
preferences when confronted with scope ambig-
uous constructions.

5 Experiment 2A

5.1 Method

Our first experiment showed us that, where there
is a clear preferred reading, LLMs can mimic
human preferences in the interpretation of scope
ambiguous sentences. It did not, however, indicate
whether or not LLMs were sensitive to the fact
that each such scope ambiguous sentence had
more than one reading. This question is the focus
of our second experiment.
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Figure 3: Experiment 2A and 2B set-up, comprising of an ambiguous sentence S, unambiguous control Sc, and
two follow-ups, F1 and F2, demonstrated using an example from our manually constructed dataset. We compare
the probabilities a model assigns to F1 and F2 as continuations to S, versus as continuations to Sc.

Here, we assess whether models exhibit dif-
ferent behavior for scope ambiguous sentences
than they do for similar, non scope ambiguous
sentences, in a manner that indicates a sensitivity
to the meaning ambiguity in the former but not
the latter. We do not frame this as a conventional
goal-oriented task such as Q&A.4 Instead, follow-
ing work that brings psycholinguistic methods to
language model analysis (see Linzen et al., 2016;
Futrell et al., 2019; Ettinger, 2020; Baroni, 2022;
Schuster and Linzen, 2022), we investigate the
question by observing the probabilities a model
assigns to different types of continuations given a
scope-ambiguous sentence.

Figures 1 and 3 illustrate the general set-up
we employ: We begin by presenting the LLM
with a scope ambiguous sentence S. We then
observe the probabilities the model assigns to
two follow-ups to S, labeled F1 and F2. F1 is an
acceptable continuation toS only given the inverse
scope reading of S, while F2 is an acceptable
continuation to S only given the surface scope
reading of S. We then compare these probabili-
ties with those the model assigns to F1 and F2

given a control sentence, Sc. Sc is highly similar
in both syntax and semantics to S, but differs
in that it is not scope ambiguous; F1 remains an
acceptable continuation to Sc, though F2 does not.

If an LLM successfully captures the meaning
ambiguity of a sentence like S, we would expect
the ratio of probabilities it assigns to F1 and F2

as continuations to S to be smaller than the ratio
of probabilities it assigns to the same follow-ups

4This was mainly due to our focus on examples without
one strongly preferred reading (see Section 5.2). Without
one strongly preferred reading, tasks like Q&A, which require
a ‘right’ and ‘wrong’ answer, are difficult to implement.

as continuations to Sc. In other words, we ex-
pect the following inequality to hold:

(10)
P (F1|S)
P (F2|S) <

P (F1|Sc)
P (F2|Sc)

This is because while S is ambiguous between
two readings, and therefore allows for both F1

and F2 as continuations, Sc has only one read-
ing, and allows only for F1 as a continuation (see
Figure 3). If an LLM upholds (10), it thus pro-
vides evidence of capturing the fact that S is
ambiguous between two readings, in a way that
non scope-ambiguous sentences, even if syntacti-
cally and semantically similar, are not.

For a more thorough analysis, we also ob-
serve the degree to which P (F1|Sc) : P (F2|Sc) is
greater than P (F1|S) : P (F2|S). We measure the
difference in the log ratios of F1 and F2 given S,
and F1 and F2 given Sc, and use it to calculate
what we call the model’s ambiguity recognition
score, or ‘α-score’:

(11) α = −[[logP (F1|S)− logP (F2|S)]
−[logP (F1|Sc)− logP (F2|Sc)]]

If the inequality in (10) holds, the α-score will
be positive; the larger its value, the greater the
difference in ratios.

5.2 Dataset

Existing scope ambiguity datasets (see Section 2)
are (i) few in number, and (ii) generally involve
examples where one scope reading is strongly
preferred over the other. While we made use of
this second observation in our first experiment,
where we assessed whether LLMs exhibited sim-
ilar scope reading preferences as humans, it is
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a significant problem for the current experiment,
due to its aims.

In this experiment we aim to test LLMs for
their sensitivity to the presence of multiple read-
ings of a scope ambiguous sentence. But in such
cases, if humans themselves find one of these
readings very hard to access without further con-
text, it would be unfair to expect models to do so.
For a fair evaluation, therefore, it is crucial that
we use sentences which do not have one reading
strongly preferred over another.

We therefore construct a small-scale dataset,
consisting of 38 manually handcrafted datapoints,
where each datapoint includes a scope ambiguous
sentence (S), a matching non scope-ambiguous
control sentence (Sc), and two follow-up phrases
(F1 and F2), yielding a total of 152 sentence-
continuation pairs. For further validation, these
datapoints were then filtered through our human
baselines: Any datapoints that yielded negative
human-derived scores (details in Section 5.3) were
dropped, as such scores indicated that these were
datapoints for which the inequality in (10) did
not align with human judgments. This left us
with 29 unique datapoints, yielding 116 unique
sentence-continuation pairs (see Table 1 for a
breakdown by interaction type).

5.3 Human Baselines
Since the current experiment involves the analy-
sis of probabilities assigned to text sequences—
something not directly replicable with humans—
we use proxy scores derived from a crowdsourced
judgment task as our human baselines. We con-
ducted a crowdsourced study via Prolific, involv-
ing 140 native speakers of English; each was
presented random sentence-continuation pairs from
the dataset, and asked to provide ratings from 1 to
7 on how ‘natural-sounding’ the continuation was
to the sentence. From these ratings, we computed
the mean score for each sentence-continuation
pair, and normalized them to be in an interval
between 0 and 1. We then treat these normalized
scores as we treat model-assigned probabilities
when calculating α-scores and label the negative
difference of log ratios our proxy α-score.

This proxy score gives us an indirect means
by which to compare human judgments of scope-
ambiguous sentences and continuations with LLM-
assigned probabilities of the latter given the former.
Just as in the case of α-scores for models, we
would expect human proxy scores to be positive.

5.4 Models

As in Experiment 1A, we work with autoregres-
sive LLMs. Unlike in Experiment 1A, however,
the current experimental set-up allows us to also
work with models ill-suited to zero-shot contexts.
We therefore ran this experiment not only on the
models tested before, but also on several smaller
variants of GPT-2 (Radford et al., 2019): small
(117M params), medium (345M params), large
(774M params), and XL (1.5B params).5 The
reliance on probabilities, however, forces us to
omit GPT-3.5-turbo and GPT-4, for which
sequence log-probabilities are not accessible.

5.5 Results

5.5.1 Mean Scores

We first compute mean α and proxy scores, along
with p-values derived from paired t-tests.6 Posi-
tive, statistically significant mean scores point to
an overall sensitivity to the meaning ambiguity of
the sentences in the dataset; comparing between
models, higher mean scores also suggest stronger
overall sensitivity.7 Table 4 shows our results.
All models yield positive mean α-scores; and
barring the case of GPT-2-small, all are
statistically significant at a threshold of p < 0.05.

5.5.2 Correlations Between Model and
Human Scores

We also compute the correlation between model-
derivedα-scores and human-derived proxy scores,
to see how model behavior aligns with human
judgments; if the two do align well, we expect to
see a strong, positive correlation between them.

Table 4 shows model-wise Pearson correlation
coefficients between α-scores and human proxy
scores, along with corresponding p-values. Many

5Probabilities from GPT-2 and Llama 2 models were
extracted using the minicons library (Misra, 2022).

6We choose this statistical measure as both α and proxy
scores are calculated as paired differences of differences.

7While the latter is true between models, this relation-
ship is less clear when comparing model scores and human
scores. The main reason is that while human scores are
derived from a bounded set of ratings between 1 and 7,
model log-probabilities practically have no negative bound,
allowing for more extreme differences between them. Since
α-scores are computed as differences of log differences (see
(11)), it is thus possible for them to be much higher than
derived human scores, purely on account of being unbounded
below zero.

746



Source Mean Scores Correlations
α > 0

α/proxy score p-value R-value p-value

Human 1.22 4.43e-06 1.0 – 1.0
GPT-2-small 0.29 0.43 0.32 0.09 0.52
GPT-2-med 0.97 0.03 0.38 0.04 0.62
GPT-2-large 1.51 1.97e-03 0.33 0.08 0.69
GPT-2-xl 1.79 9.78e-04 0.29 0.12 0.76
Llama2-7b 3.89 2.9e-07 0.17 0.39 0.93
Llama2-7b-chat 5.03 9.45e-07 0.27 0.16 0.86
Llama2-13b 3.62 6.67e-07 0.49 7.38e-03 0.90
Llama2-13b-chat 4.54 1.28e-05 0.53 3.31e-03 0.83
Llama2-70b 3.97 5.74e-08 0.38 0.04 0.93
Llama2-70b-chat 4.72 3.52e-06 0.43 0.02 0.90
GPT-3-davinci 3.77 4.95e-08 0.20 0.31 0.93
GPT-3.5-td002 4.06 1.5e-04 0.41 0.03 0.83
GPT-3.5-td003 8.36 1.44e-06 0.62 2.93e-04 1.0

Table 4: Results from Experiment 2A. Mean
Scores: Mean α (for models) and proxy (for hu-
mans) scores with p-values from paired t-tests
(df = 28). Correlations: Pearson correlation co-
efficients (R-values) between each model’s α
scores and human proxy scores, with derived
p-values (n = 29). α > 0: Proportion of data-
points where α/proxy score was positive.

Figure 4: From Experiment 2A—scatterplot ofα-scores
produced by text-davinci-003, against human
proxy scores for the same datapoints.

models fail to produce correlations that are sig-
nificant at p < 0.05; text-davinci-003 and
Llama 2 at 13B, however, both produce highly
significant correlation scores. The former also
produces the highest correlation score, at around
0.62. See Figure 4 for a scatterplot of its α-scores
against corresponding human proxy scores; the
plot lends further evidence to this correlation.

5.5.3 Proportion of Positive α-Scores

Lastly, we compute the proportion of datapoints
for which models produced positive α-scores,

which allows us to assess whether the models
behave consistently across datapoints. Like with
correlations, we observe an effect of model size:
Larger models perform well, with several yield-
ing positive α-scores for over 90% of the data,
and once again, text-davinci-003 performs
the best.

5.6 Discussion

These results suggest that a wide range of
LLMs may be sensitive to the meaning ambi-
guity in scope ambiguous sentences. The positive
mean α-scores provide evidence that larger or
more powerful models (i.e., those besides GPT-2
small) distinguish between scope ambiguous and
non-scope ambiguous sentences in a manner
consistent with their meanings. Similarly, the sta-
tistically significant correlations we see between
some models’ α-scores and human proxy scores
suggest that, at least for certain models, this behav-
ior correlates well with human judgments. These
models also produce positive α-scores for a high
proportion of the data, indicating a high level
consistency in this behavior.

Comparing chat and vanilla versions of Llama
2 also reveals an interesting pattern. As Table 4
shows, chat versions of Llama 2 produce slightly
higher mean α-scores and correlations than their
non-chat equivalents, but also lower proportions
of positive α-scores—indicating increased align-
ment with human judgments on several sentences,
but lower overall consistency.

The broader takeaway, however, is that several
LLMs appear sensitive to a meaning ambiguity
that arises from the presence of different possible
semantic structures, which vary vis-à-vis scope re-
lations. Consequently, although the current work
does not investigate how or where models repre-
sent scope, these results suggest that LLMs capture
scope-related phenomena.

6 Re-evaluation on Expanded Datasets

The results from Experiments 1A and 2A are
promising, but rely on relatively small data-
sets that contain 153 and 29 unique datapoints,
respectively—raising questions of how gener-
alizable our results are. As a follow-up, we
therefore considerably expand these two datasets,
and rerun the same experiments described in
Sections 4 and 5 on the expanded datasets.
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6.1 Dataset Expansion Process

Experiment 1 Dataset Expansion To expand
our Experiment 1A dataset, we begin by annotat-
ing it for both semantic operator and quantifier
types: whether an ambiguity arose out of a
negation-quantifier or quantifier-quantifier inter-
action, as well as whether the quantifier was
an existential quantifier, universal quantifier,
number or indefinite. Combined with scope read-
ing preference labels (see Section 4.2), this gave
us 13 categories of scope reading and operator
combinations (e.g., negation-indefinite
surface, or number-universal inverse).
Following this categorization, we add manually
handcrafted examples to any sparse categories,
so each contains at least 10 unique datapoints.

We then use GPT-4 to expand the dataset. For
each category in our annotated dataset, we ran-
domly sample 5 datapoints, and instruct GPT-4 to
produce 10 novel datapoints based on them. We
repeat this process ten times, such that we have
100 datapoints generated from each of our an-
notated categories. We then manually inspect the
combined 1,300 generated datapoints, removing
duplicates, and dropping or editing low-quality
datapoints; this left us with 1,062 datapoints. Fi-
nally, we run a crowd-sourced study via Prolific
(278 participants, ∼5 ratings per datapoint), sim-
ilar to those described in Sections 4.2 and 4.4, to
obtain our gold labels for preferred scope read-
ings, and filter out any datapoints that received
low inter-subject agreement. This process eventu-
ally yields 837 unique scope-ambiguous sentences
(with accompanying ‘options’, and human prefer-
ence labels); 534 receive a preferred surface scope
reading, and 303 an inverse scope reading.

Experiment 2 Dataset Expansion We use a
process similar to the one for Experiment 1A.

We first split our Experiment 2A dataset into
categories based on whether the datapoints in-
volve negation-quantifier, adverb-quantifier or
quantifier-quantifier interactions. We then run the
same sampling, generation and manual filtering
process as with the Experiment 1A dataset, giv-
ing us 126 datapoints from 300 GPT-4 generated
datapoints. Finally, we run another study via Pro-
lific (223 participants, ∼8 ratings per sentence-
follow-up pair), and use this human judgement
data to further filter the dataset. Our final dataset
consists of 110 unique datapoints, where each

Source Accuracy Surface Acc. Inverse Acc.

test control test control test control

Llama2-7b 0.64 0.64 0.62 0.63 0.66 0.65
Llama2-7b-chat 0.57 0.58 0.58 0.58 0.56 0.58
Llama2-13b 0.71 0.66 0.75 0.66 0.65 0.67
Llama2-13b-chat 0.75 0.67 0.77 0.64 0.73 0.73
Llama2-70b 0.89 0.72 0.91 0.74 0.84 0.69
Llama2-70b-chat 0.83 0.65 0.83 0.64 0.82 0.67
GPT-3-davinci 0.64 0.60 0.68 0.62 0.58 0.58
GPT-3.5-td002 0.84 0.70 0.89 0.69 0.74 0.72
GPT-3.5-td003 0.87 0.70 0.90 0.72 0.80 0.68
GPT-3.5-turbo 0.79 0.65 0.86 0.65 0.68 0.65
GPT-4* 0.96 0.72 0.97 0.73 0.93 0.70

Table 5: Results from Experiment 1B: model
accuracy, as well as accuracy on sentences that
had a preferred surface or inverse reading. In the
test setting, the ambiguous sentence is present in
the prompt; in the control setting it is dropped.
*Expanded dataset was also generated by GPT-4,
albeit in a different setting and with a different
system prompt.

datapoint consists of a scope-ambiguous sentence,
control sentence, follow-up supporting an inverse
scope reading, and follow-up supporting a surface
scope reading.

6.2 Experiment 1B
We re-run Experiment 1A on the expanded
dataset; Table 5 shows our results. As can be
seen, the general patterns observed in Experi-
ment 1A (see Section 4.5) continue to hold true
even when the models are evaluated on a much
larger dataset. While some models either perform
around chance or do not show a major accuracy
drop in the control setting, models like GPT-4,
text-davinci-003 and Llama2-70b show
both high performance (all above 85% accuracy
in the test setting, with GPT-4 achieving ∼96%
accuracy, albeit on data it produced in a separate
context), as well as a drop-off in performance in
the control setting.

6.3 Experiment 2B
Similarly, we re-run Experiment 2A on the ex-
panded dataset; Table 6 shows our results. As
with Experiments 1A and 1B, the general pat-
terns observed continue to hold for the expanded
dataset. All models still produce positive mean
α-scores. Though not as high as on the origi-
nal dataset, text-davinci-003 once again
produces the highest correlation with human
data, with a R-value of roughly 0.48. Similarly,
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Source Mean Scores Correlations
α > 0

α/proxy score p-value R-value p-value

Human 1.34 5.36e-23 1.0 – 1.0
GPT-2-small 1.38 3.78e-09 0.25 7.73e-03 0.80
GPT-2-med 1.88 1.58e-11 0.29 1.88e-03 0.79
GPT-2-large 1.98 1.38e-11 0.37 5.87e-05 0.76
GPT-2-xl 2.87 7.08e-17 0.32 5.59e-04 0.86
Llama2-7b 3.94 1.67e-19 0.37 7.95e-05 0.88
Llama2-7b-chat 5.21 3.05e-20 0.42 4.38e-06 0.89
Llama2-13b 4.31 5.02e-23 0.44 1.31e-06 0.92
Llama2-13b-chat 5.12 4.45e-21 0.46 3.37e-07 0.89
Llama2-70b 4.64 2.26e-22 0.36 1.32e-04 0.88
Llama2-70b-chat 5.56 1.01e-20 0.46 3.65e-07 0.85
GPT-3-davinci 4.16 2.84e-18 0.37 6.01e-05 0.85
GPT-3.5-td002 4.69 1.99e-20 0.48 1.51e-07 0.87
GPT-3.5-td003 7.05 7.17e-22 0.48 1.09e-07 0.90

Table 6: Results from Experiment 2B.
Mean Scores: Mean α (for models) and proxy
(for humans) scores with p-values from paired
t-tests (df = 109). Correlations: Pearson correla-
tion coefficients (R-values) between each model’s
α scores and human proxy scores, with derived
p-values (n = 110). α > 0: Proportion of data-
points where α/proxy score was positive.

most models show a high level of consistency
in their behavior, producing positive α-scores
from, in the case of text-davinci-003 and
Llama2-13b, over 90% of the data.8 Once
again, Llama 2 chat models produce higher
correlations and mean scores than their vanilla
counterparts, but in two out of three cases, lower
proportions of positive α-scores.

7 Discussion

Our results, which indicate that LLMs are both
proficient at choosing the scope readings pre-
ferred by most humans, and sensitive to the mean-
ing ambiguity in scope ambiguous constructions,
offer further evidence of the capacity of large
language models to induce semantic structure
(see Pavlick, 2022), and linguistic structure more
generally (see Linzen and Baroni, 2021; Baroni,
2022).

On the other hand, these results contrast with
closely related work by Liu et al. (2023) and
Stengel-Eskin et al. (2023), who both find that
LLMs struggle to model ambiguity in zero-shot

8GPT-2 models also do much better on the expanding
dataset. This may be because in the expansion process, we
ensured that the contrast between acceptable and unaccept-
able sentence-follow-up pairs (see Figure 3) was more clear
cut than in the original dataset, often coming from gram-
matical cues, rather than world knowledge cues. GPT-2 may
recognize the former more than the latter, and thus perform
better here.

Model Mean T/F Accuracy Mean T/F Prob. Density

Llama2-7b 0.54 0.43
Llama2-7b-chat 0.44 0.99
Llama2-13b 0.51 0.24
Llama2-13b-chat 0.58 0.99
Llama2-70b 0.59 0.31
Llama2-70b-chat 0.57 0.98
GPT-3.5-turbo 0.64 NA
GPT-4 0.64 NA

Table 7: Results from running Liu et al.’s (2023)
T/F evaluation. Mean T/F Accuracy: Average
accuracy of model’s responses. Mean T/F Prob.
Density: Average probability density of the union
of ‘True’ and ‘False’ tokens as responses given
the prompt input.

contexts. What explains this contrast? One pos-
sible explanation is the difference in methodolo-
gies used. We assess models using Q&A- and
probability-based approaches (see Sections 4.1
and 5.1) that implicitly test models’ access to
different scope readings. Liu et al. (2023), on
the other hand, mostly use prompting-based ap-
proaches that elicit model responses on what an
ambiguous sentence may mean or entail, and
Stengel-Eskin et al. (2023) assess models in terms
of their abilities to logically parse ambiguous
inputs. It is possible that LLMs implicitly cap-
ture meaning ambiguities and human-preferred
interpretations, but cannot reliably produce meta-
linguistic judgments or logical translations con-
sistent with this information. This is would be
in line with findings from Hu and Levy (2023),
which suggest meta-linguistic prompting-based
approaches may underestimate LLMs’ linguistic
abilities.

To test this theory, we adapt a random sample
of our Experiment 2B dataset to the format Liu
et al. (2023) use in their True/False evaluation
of models (see Section 4.2 of Liu et al., 2023).
In this format, models are prompted to answer
whether it is true or false that, given one of its
disambiguations, an ambiguous input may, may
not, cannot, or can only mean the disambiguation.

We rerun their experiment on this subset of
our data; our results, shown in Table 7, are
similar to the authors’ findings on their own
data. Most models do poorly on this task, per-
forming around chance (50%), with GPT-4 and
GPT-3.5-turbo only achieving 64% accuracy.
As shown in Section 6.3, however, using the
dataset in our experimental format yields positive
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results that contrast this poor performance. This
divergence highlights the importance of diverse
approaches to investigating the linguistic capaci-
ties of language models; our results suggest that
probability- and prompting-based methods may
yield differing conclusions.

8 Conclusion

In this paper, we investigated how different
autoregressive language models treat scope ambi-
guities. In doing so, we introduced novel datasets
that contain a joint total of roughly 1,000 unique
and diverse scope-ambiguous sentences, anno-
tated for human judgments—the largest of this
kind. Our results indicate that LLMs are able to
exhibit behavior in line with human preferences of
interpretation—informed at least in part by back-
ground knowledge—as well as compatible with
different types of semantic structures. Finally, the
contrast between our findings and those of other
recent work emphasizes the need for diverse ap-
proaches in assessing the linguistic capacities of
large language models.

9 Limitations

Aside from its focus only on English, one con-
straint of this work is that it does not assess how
context affects scope reading preferences.

(12) Ada often studies with a few of her friends.

a. Context: Ada finds it hard to study
alone, so she generally invites others
for joint study sessions.

b. Context: Ada, Rohan, and Jo are good
friends in the same program, and pre-
pare for exams together.

(12) is ambiguous between a surface scope
reading ((12) refers to no friends in particular)
and an inverse scope reading ((12) refers to some
specific friends). Different background contexts
can prompt different readings: (12a) prompts the
surface scope reading, while (12b) prompts the
inverse scope reading. Our work does not address
such effects.

At a higher level, while this work shows how
LLMs treat scope-ambiguous inputs, it also does
not reveal how or where models represent scope.
Parallel work on model interpretability (such as

causal mediation analysis, e.g., Vig et al., 2020;
Finlayson et al., 2021; Geiger et al., 2022) could
provide exciting insights to this question.
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