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Abstract

This paper introduces mGPT, a multilingual
variant of GPT-3, pretrained on 61 lan-
guages from 25 linguistically diverse language
families using Wikipedia and the C4 Cor-
pus. We detail the design and pretraining
procedure. The models undergo an intrinsic
and extrinsic evaluation: language modeling
in all languages, downstream evaluation on
cross-lingual NLU datasets and benchmarks
in 33 languages, and world knowledge prob-
ing in 23 languages. The in-context learning
abilities are on par with the contemporaneous
language models while covering a larger num-
ber of languages, including underrepresented
and low-resource languages of the Common-
wealth of Independent States and the indige-
nous peoples in Russia. The source code and
the language models are publicly available
under the MIT license.

1 Introduction

The advent of the Transformer architecture
(Vaswani et al., 2017) has facilitated the develop-
ment of various language models (LMs; Liu et al.,
2020a). Although the well-established ‘‘pretrain
& finetune’’ paradigm has led to rapid progress
in NLP (Wang et al., 2019), it imposes sev-
eral limitations. Finetuning relies on an extensive
amount of labeled data. Collecting high-quality
labeled data for new tasks and languages is ex-
pensive and resource-consuming (Wang et al.,
2021). LMs can learn spurious correlations from
finetuning data (Naik et al., 2018; Niven and
Kao, 2019) and demonstrate inconsistent gener-
alization, catastrophic forgetting, or brittleness to
finetuning data order (McCoy et al., 2020; Dodge
et al., 2020). Last but not least, finetuning requires
additional computational resources and, therefore,

*Work done while at SaluteDevices.
fNow at University of Oslo.

alenush93@gmail.com,
vvmkhlvv@gmail.com,

58

mtihonovalhse.ru,
rybolos@gmail.com

aggravates the problem of a large carbon footprint
(Bender et al., 2021).

The latest approaches address these limitations
with zero-shot and few-shot learning, perform-
ing a task with LM scoring or conditioning on
a few demonstration examples without parame-
ter updates (Brown et al., 2020). Autoregressive
LMs adopted via these paradigms have been
widely applied in many NLP tasks (Schick
and Schiitze, 2021; Perez et al., 2021), no-
tably in cross-lingual knowledge transfer (Winata
et al., 2021) and low-resource language scenarios
(Lin et al., 2022). However, model development
for underrepresented typologically distant and
low-resource languages (Wu and Dredze, 2020;
Lauscher et al., 2020; Hedderich et al., 2021)
and cross-lingual generalization abilities of au-
toregressive LMs (Erdem et al., 2022) have been
left understudied.

This paper presents mGPT, a multilingual ver-
sion of GPT-3 (Brown et al., 2020) available
in 1.3B (mGPT,35) and 13B (mGPT;3) pa-
rameters. We aim (i) to develop a large-scale
multilingual autoregressive LM that inherits the
GPT-3’s generalization benefits and (ii) to in-
crease the linguistic diversity of multilingual LMs,
making the first attempt to address languages of
the Commonwealth of Independent States (CIS)
and under-resourced languages of the indigenous
peoples in Russia. We pretrain mGPT in 61 lan-
guages from 25 language families on Wikipedia
and Colossal Clean Crawled Corpus (C4; Raffel
etal., 2020). We analyze the mGPT’s performance
on various intrinsic and extrinsic tasks and com-
pare it with the contemporaneous generative LMs.

Key Findings The analysis reveals that (i)
mGPT 35 is comparable to XGLM;7s (Lin
et al.,, 2022) while having fewer weights and
covering a larger number of languages, (ii)) mGPT
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shows confident performance on Austronesian,
Austro-Asiatic, Japonic, Germanic, and Romance
languages on multiple tasks and prominent lan-
guage modeling abilities on the languages of the
indigenous peoples in Russia, (iii) adding more
demonstrations may result in performance degra-
dation for both mGPT and XGLM, and (iv) hate
speech detection is one of the most challenging
tasks, receiving random guessing performance in
the zero-shot and few-shot evaluation setups. Ex-
ternal validation by the NLP community since
the release' shows that mGPT; 35 can outperform
large-scale LMs on SuperGLUE tasks and pro-
mote strong solutions for multilingual clause-level
morphology tasks. We release the model evalua-
tion code,? the mGPT 35> and mGPT;35* models.
We hope to facilitate research on the appli-
cability of autoregressive LMs in non-English
languages and increase the linguistic inclusivity
of the low-resource languages.

2 Related Work

Multilingual Transformers Recent years have
featured the development of various monolin-
gual and multilingual LMs initially designed
for English. BERT (Devlin et al., 2019) has
been replicated in other high-resource languages
(Martin et al.,, 2020; Masala et al., 2020) and
language families, e.g., Indian (Kakwani et al.,
2020) and Balto-Slavic (Arkhipov et al., 2019).
Massively multilingual LMs—mBERT, XLM-R
(Conneau et al., 2020), RemBERT (Chung et al.,
2021), mBART (Liu et al., 2020b) and mT5 (Xue
et al., 2021)—have now pushed state-of-the-art
results on various NLP tasks in multiple lan-
guages (Kalyan et al., 2021). Such models support
more than 100 languages and vary in the ar-
chitecture design and pretraining objectives. By
contrast, our work presents one of the first mul-
tilingual autoregressive LMs covering more than
61 languages.

GPT-based Language Models Large-scale
generative LMs (e.g., GPT-3; Brown et al.,
2020) are triggering a shift from the ‘‘pretrain
& finetune’’ paradigm to prompt-based learning
(Liu et al., 2023a). The benefit of balancing the

TAs of the time of writing this paper, mGPT; 3z was
publicly available. Note that mGPT}3p is also now released.
2github.com/ai-forever /mgpt.
3hf.co/ai-forever /mGPT.
“hf.co/ai-forever/mGPT-13B.
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Language Family

Languages

Afro-Asiatic
Austro-Asiatic

Austronesian

Baltic

Basque

Dravidian

Indo-European (Armenian)

Indo-European (Indo-Aryan)
Indo-European (Germanic)

Indo-European (Romance)

Indo-European (Greek)
Indo-European (Iranian)

Arabic (ar), Hebrew (he)

Vietnamese (vi)

Indonesian (id), Javanese (jv), Malay (ms)
Tagalog (tl)

Latvian (lv), Lithuanian (It)

Basque (eu)

Malayalam (ml), Tamil (ta), Telugu (te)
Armenian (hy)

Bengali (bn), Marathi (mr), Hindi (hi),
Urdu (ur)

Afrikaans (af), Danish (da), English (en),
German (de), Swedish (sv)

French (fr), Italian (it), Portuguese (pt),
Romanian (ro), Spanish (es)

Greek (el)

Ossetian (0s), Tajik (tg), Persian (fa)

Japonic Japanese (ja)

Kartvelian Georgian (ka)

Koreanic Korean (ko)

Kra-Dai Thai (th)

Mongolic Buryat (bxr), Kalmyk (xal), Mongolian (mn)

Niger-Congo Swabhili (sw), Yoruba (yo)

Slavic Belarusian (be), Bulgarian (bg), Russian (ru),
Ukrainian (uk), Polish (pl)

Sino-Tibetan Burmese (my)

Turkic (Karluk) Uzbek (uz)

. . Bashkir (ba), Kazakh (kk), Kyrgyz (ky),

Turkic (Kipchak) Tatar (tt)

Turkic (Oghuz) ?S::Yy;t:na?:k()az), Chuvash (cv), Turkish (tr),

Turkic (Siberian) Tuvan (tyv), Yakut (sax)

Uralic Estonian (et), Finnish (fi), Hungarian (hu)

Table 1: A list of languages by the language
family.

pretraining costs and performing standardized
NLP tasks with a few demonstration examples
has stimulated the development of open-source
autoregressive LMs for English (e.g., Black
et al.,, 2022; Biderman et al., 2023; Dey et al.,
2023), Chinese (Zeng et al., 2021), and Russian
(Zmitrovich et al., 2023). A few contemporaneous
works extend the research on zero-shot and
few-shot learning, evaluating the in-context
abilities of GPT-based LMs in multilingual
scenarios. Winata et al. (2021) report that English
GPTs perform significantly better than random
guessing with monolingual and multilingual
prompts on typologically close languages, such
as French, Spanish, and German. Lin et al. (2022)
propose XGLM, a multilingual GPT-style LM
in 30 languages, and empirically show that it
can outperform its monolingual counterparts of
the comparable number of parameters. We use
XGLM as the main baseline in our experiments
and analyze the results of comparing mGPT; 3p
with other autoregressive LMs published after
our release, such as BLOOM (Scao et al., 2023).

3 Method

3.1 Pretraining Data

Language Selection Table 1 summarizes the
list of languages by their family. The pretraining
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Figure 1: Number of tokens for each language in the pretraining corpus on a logarithmic scale.

corpus consists of a typologically weighted set of
languages covered by cross-lingual benchmarks,
such as XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020). The motivation behind the lan-
guage choices is to narrow the gap between the
high-resource and low-resource languages (Ducel
etal., 2022). To this end, we include 20 languages
from the tail of the C4 language list, the list of
underrepresented languages of Russia, and the of-
ficial and resource-lean CIS languages (Orekhov
et al., 2016).

Data Preparation Pipeline Pretraining exten-
sive LMs requires large volumes of high-quality
data. Despite the explosive growth of web corpora
resulting in the pretraining data volume of up to
6T tokens (Xue et al., 2021), the data quality is of-
ten unsatisfactory (Kreutzer et al., 2022). General
approaches to maximizing the quality are based on
manually curated heuristics (Yang et al., 2019b),
the perplexity of LMs (Wenzek et al., 2020), and
data quality classifiers (Brown et al., 2020). Our
data preparation pipeline includes data collection,
deduplication, and filtration.

Data Collection The pretraining corpus repre-
sents a collection of documents from Wikipedia
and C4. The Wikipedia texts are extracted from
the dumps (v. 20201101) with WikiExtractor
(Attardi, 2015). The C4 data is downloaded using
the Tensorflow datasets® (Paper, 2021).

Deduplication The text deduplication includes
64-bit hashing of each text in the pretraining
corpus for keeping texts with a unique hash.

Filtration We follow Ortiz Suérez et al. (2019)
on the C4 data filtration. We also filter the docu-
ments based on their text compression rate using

Stensorflow. org/datasets/catalog/c4.
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z1ib.® The most strongly and weakly com-
pressing deduplicated texts are discarded. The
compression range for an acceptable text is em-
pirically defined as x 1.2 to x8. The texts with an
entropy of less than 1.2 contain code junk and en-
tities, while those of more than 8 contain repetitive
segments. The next step includes distinguishing
between low and high-quality documents with a
binary classifier. The classifier is trained with
Vowpal Wabbit’” on the Wikipedia documents as
positive examples and the filtered C4 documents
as negative ones. The remainder is cleaned by a
set of language-agnostic heuristics. The size of
the pretraining corpus is 46B (Wikipedia), and
442B UTF characters (C4), resulting in 600GB.
Figure 1 shows the total number of tokens for each
language, and the total number of documents in
the pretraining corpus is presented in Figure 2.

3.2 Tokenization

The design of the tokenization method may have
a significant impact on learning efficient repre-
sentations, model memorization, and downstream
performance (Mielke et al., 2021; Nogueira et al.,
2021; Pfeiffer et al., 2021; Rust et al., 2021).
We investigate the effect of the tokenization
strategy on the model perplexity. We pretrain
five strategy-specific versions of mGPT g3\ on a
Wikipedia subset of the pretraining corpus. The
tokenization strategy is selected based on their per-
plexity on a held-out Wikipedia sample (approx.
10.7MB), which is inferred as Equation 1.

I¢]

PPL(t) = exp(~p > logy,(wilr<i)) (1)
=0

%docs.python.org/3/library/zlib.
7github.com/VowpalWabbit /vowpal_wabbit.
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Figure 2: Number of documents for each language in the pretraining corpus on a logarithmic scale.

Strategy Tokenization Example

DEFAULT
CASE
ARITHMETIC
COMBINED

CHAR

22, Birds, +, 3, birds,
22, <case>, birds, +,
2, <case>, birds, |,
2, , B, i, 1, d s,

25, birds
3, birds, ...

BB
B3 ..

,
2,
2, , & I

Table 2: Different tokenization strategies ap-
plied to the sentence ‘22 Birds + 3 birds =
25 birds’’. The resulting tokens are highlighted in
the corresponding colors.

where ¢ is an input text, |¢| is the length of the text
in tokens, || is the length of the text in characters.
The perplexity is normalized over the number of
characters since the tokenizers produce different
numbers of tokens for ¢ (Cotterell et al., 2018).

Tokenization Strategies We considered five
tokenization strategies incorporating specific rep-
resentations of uppercase characters, numbers,
punctuation marks, and whitespaces. Table 2
presents examples of the tokenization strategies.

e DEFAULT: BBPE (Wang et al., 2020);

e case: Each uppercase character is replaced
with a special token <case> followed by

the corresponding lowercase character;

ARITHMETIC: The casg strategy combined
with representing numbers and arithmetic
operations as individual tokens;

COMBINED: The ARITHMETIC strategy combined
with representing punctuation marks and
whitespaces as individual tokens;

cHAR: Character-level tokenization.

Pretraining Details The models are pretrained
on 16 V100 GPUs for 600k training steps with a
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Strategy Avg. PPL
DEFAULT 6.94
CASE 8.13
ARITHMETIC 7.99
COMBINED 8.43
CHAR 9.47

Table 3: The average perplexity results. The best
score is put in bold, the second best is underlined.

Model Size Layers Amodel
GPT-2 1.5B 48 1600
GPT-3;3p 1.3B 24 2048
GPT-33p 13B 40 5120

Table 4: Comparison of GPT-2 and GPT-3. The
mGPT architecture replicates the parameters of
GPT-3 3 and GPT-3 35, and uses sparse attention
in alternating dense and sparse layers.

set of fixed hyperparameters: vocabulary size of
100k, context window of 2048, learning rate of
2¢—4, and batch size of 4.

Results The experiment results are presented in
Table 3. The peErauLT model achieves the best re-
sults, outperforming the rest of the models by up
to 2.5 of perplexity score. Based on this exper-
iment, we select the DEFAULT strategy to pretrain
the mGPT, 35 and mGPT;35 models.

3.3 Model Architecture

The mGPT architecture is based on GPT-3. We
use the architecture description by Brown et al.,
the GPT-2 code base (Radford et al., 2019) from
HuggingFace (Wolf et al., 2020), and Megatron-
LM (Shoeybi et al., 2020). Table 4 presents the
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Figure 3: Language-wise perplexity results. Lower is better.

description of the GPT-2 and GPT-3 architectures
of comparable sizes. With all the other hyperpa-
rameters equal, GPT-3 has fewer layers (Layers:
48 vs. 24) but a larger hidden size (d,04e;: 1600
vs. 2048) as opposed to GPT-2. GPT-3 also alter-
nates the classic dense and sparse attention layers
(Child et al., 2019).

34

The pretraining procedure mostly follows Brown
et al. We utilize the DeepSpeed library (Rasley
et al., 2020) and Megatron-LM (Shoeybi et al.,
2020). We pretrain our LMs with a total batch size
of 2048 and a context window of 512 tokens. The
total number of the training steps is 600k, and the
models have seen 400B tokens during pretraining.
The pretraining took 14 days on a cluster of
256 V100 GPUs for mGPT 35 and 22 days on
512 V100 GPUs for mGPT;35. We report the
computational, energy, and carbon costs in §7.2.

Model Pretraining

4 Experiments

4.1 Language Modeling

Method We estimate the language modeling
performance on the held-out sets for each lan-
guage. Here, perplexity is computed as described
in §3.2, except that perplexity is normalized over
the length of the input text ¢ in tokens |t|. We
also run statistical tests to analyze the effect
of linguistic, dataset, and model configuration
criteria:

e Language script: We divide the languages
into two groups by their scrip—Latin and
others (e.g., Cyrillic and Arabic)—and use the
Mann-Whitney U test (Mann and Whitney,
1947) to analyze the perplexity distributions
in the groups.

o Pretraining corpus size: We calculate the
Pearson correlation coefficient (Pearson,
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1895) to analyze the correlation between the
language perplexity and the number of doc-
uments in this language in the pretraining
corpus.

o Model size: We use the Mann-Whitney U test
to analyze the effect of the model size.

Results by Language Figure 3 presents the per-
plexity scores for each language on the held-out
sets. The mGPT;3g model achieves the best
perplexities within the 2-to-10 score range for
the majority of languages, including Dravidian
(Malayalam, Tamil, Telugu), Indo-Aryan (Bengali,
Hindi, Marathi), Slavic (Belarusian, Ukrainian,
Russian, Bulgarian), Sino-Tibetan (Burmese),
Kipchak (Bashkir, Kazakh), and others. Higher
perplexities up to 20 are for only seven languages
from different families. The mGPT,3g results
have similar distribution but are consistently
higher than mGPT}3p.

Results by Language Family Analyzing re-
sults by the language family (see Figure 4), we
find that mGPT35 shows consistently lower per-
plexities as opposed to mGPT ;5. Specifically,
mGPT) 35 underperforms mGPT; 35 on Basque,
Greek, Kartvelian, and Turkic families.

Correlation Analysis We present the results in
Table 5. We observe that the language modeling
performance depends on the language script and
model size. In particular, the non-Latin languages
receive lower scores on average, while mGPT3p
performs better than mGPT; 3 in this setting.
However, the positive correlation between the
pretraining corpus size and perplexity in particu-
lar languages can be attributed to the low diversity
of the text domains in the pretraining monolin-
gual corpora for the low-resource languages. Such
corpora contain Wikipedia articles on a limited
amount of general topics; therefore, the model
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Criterion Model Test p-value
Language script mGPT 35 M-W U test 0.000
.. . mGPT1_3B 0.137
Pretraining corpus size mGPT 3 Pearson 0307
. mGPTmB
Model size mGPT 3 M-W U test  0.0007

Table 5: Correlation analysis results.

learns the distribution in the corpora without be-
ing able to generalize well. In general, the results
align with Scao et al. (2023), who report that
the considered criteria can affect the knowledge
acquired by BLOOM ;g and BLOOM7¢g.

4.2 Downstream Evaluation

We conduct an extrinsic evaluation of mGPT and
baselines on classification and sequence labeling
tasks in zero-shot and few-shot settings. In the
zero-shot setting, the model is shown a test ex-
ample formatted as a prompt in natural language,
while in the few-shot setting, the model is pro-
vided with k£ demonstrations from the training data
specified via prompts. The prompt examples for
each task are presented in Table 6.

4.2.1 Classification

Tasks The classification tasks include common-
sense reasoning (XCOPA; Ponti et al., 2020),
natural language inference (XNLI; Conneau et al.
2018), Winograd schema challenge (XWINO;
Tikhonov and Ryabinin, 2021), paraphrase de-
tection (PAWSX; Yang et al., 2019a), and hate
speech detection (Davidson et al., 2017).

Method mGPT utilizes per-token cross-entropy
loss, which is reduced to negative log probability
due to one-hot encoding of the tokens. We select
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the target label associated with the prompt that
results in the lowest sum of negative log probabil-
ities for its tokens. The few-shot experiments are
run five times with different random seeds, while
the zero-shot experiments are run only once since
the model loss is determined.

Baselines The XGLM; 73 and XGLMj; s mod-
els are used as the baselines in the classification
experiments. We reproduce the XGLM evaluation
based on the methodology by Lin et al. (2022) and
use the model weights and code available in the
fairseq® library (Ott et al., 2019). We select
prompts according to the templates reported by
Lin et al. Prompts for non-English languages are
automatically translated with Google Translate.

Results Table 7 presents the classification re-
sults averaged across languages. The ‘‘[”ltag
marks k-shot settings not reported by Lin et al.
We do not perform them for reproducibility pur-
poses and fair comparison. The results by Lin
et al. are reproduced in the zero-shot setup, and
some scores are even slightly higher. However,
not all results are reproduced, e.g., PAWSX and
XNLI. We attribute this to potential differences in
the translated prompts.

Overall, we observe that mGPT) s is compa-
rable with XGLM;, 75 while having fewer weights
and is pretrained in twice as many languages.
mGPT3g performs better than XGLMj;sg in
zero-shot setting on all tasks except XNLI. At
the same time, it lags behind in a few-shot
setting being better than XGLM;sg only in
XNLI and PAWSX tasks. Comparing the per-
formance across languages, we find that English
receives the highest accuracy for all tasks. The

8github.com/pytorch/fairseq/xglm.
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Task Template Output Candidates
. Yes (Entailment); Also (Neutral)
?
XNLI <s> {sentence 1}, right? {label} {sentence 2} </s> No (Contradiction)
PAWSX <s> {sentence 1}, right? {label} {sentence 2} </s> Yes; No
XWINO <s> {sentence start}{candidate} {sentence end} </s> [
XCOPA <s> {sentence} because {candidate answer} </s>
<s> {sentence}so{candidate answer} </s> [
) sexist, racist, offensive, abusive, hateful (Positive)
Hate Speech <s> The sentence is {label}. {sentence} </s> normal, common, ok, usual, acceptable (Negative)
) I-LOC, I-MISC,
NER <s>lang: {lang} \n Tagged sentence: {sentence with tags} LLORG. L.PER, O
ADIJ, ADP, ADV, AUX,
POS <s>lang: {lang} \n Tagged sentence: {sentence with tags} CCONJ, DET, INTJ, NOUN,

NUM, PART, PRON, PROPN, PUNCT,
SCONIJ, SYM, VERB, X

Table 6: Prompt examples for each downstream task. The examples are in English for illustration

purposes.
Model k-shot XWINO PAWSX XCOPA XNLI Hate Speech Model k-shot en es pt pl it
0 562 531 555 406 500
| S0 513 519 361 e mGPT, 35 0 55.1 52.1 423 50.0 50.2
o %5 22 #8379 O GPT 0 590 552 469 500 54.6
0 593 515 582 426 531 M lise 4 522 500 508 534 51.0
mGPT 1 610 506 579 375 —
BB 4 618 516 583 414 51.5 0 54.8 51.8 523 50.0 54.5
16 92 551 573 333 - XGLMize 4 510 488 492 467 510
0 542 503 555 426  50.1
| 380 150 ses  3c4 o XGLM,q O 617 524 523 500 490
XCLMi7s 4 579 459 562 38.8 495 : 4 51.8 51.3 515 514 529
16 0 442 561 365 (|
0 592 501 555 447 50.1 Table 8: Accuracy scores (%) on hate speech
1 637 464 606 369 (| ; : :
XGLMish 4 o573 433 614 401 518 detection by languagf:. The b.est score is put in
16 ] 449 625 400 O bold, the second best is underlined.

Table 7: Accuracy scores (%) on classification
tasks averaged across languages.

mGPT, 35 and mGPT, 3z models show high ac-
curacy for the Austronesian, Dravidian, Japonic,
Germanic, and Romance language families. Only
the Afro-Asiatic family gets low accuracy. The
mGPT models perform better than the XGLM
counterparts for Austronesian, Koreanic, and
Romance languages.

Our results on hate speech detection are con-
sistent with Lin et al. The performance is slightly
better across the five languages but still close to
random guessing (see Table 8). The manual anal-
ysis shows that the behavior is sensitive to the
input prompts, most notably for Polish. Increasing
the number of demonstrations can lead to perfor-
mance degradation on some classification tasks
for both mGPT and XGLM.
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4.2.2 Sequence Labeling

Tasks The sequence labeling tasks in-
clude named entity recognition (NER) and
part-of-speech tagging (POS) from the XGLUE
benchmark (Liang et al., 2020). To address other
medium-resource and resource-lean languages,
we use the Universal Dependencies treebanks
(UD; Nivre et al., 2016) to evaluate POS-tagging
in Armenian, Belarusian, Buryat, Kazakh, Tatar,
Ukrainian, and Yakut.

Method We use a modified approach to the se-
quence labeling tasks compared to §4.2.1. Given
a sentence of n words, we iteratively predict the
label for each word z; using the preceding words
Z<; and their predicted labels [; as the context
using a template “‘z;l.;’°, where ¢ is the cur-
rent token index and ‘‘_’’ is a placeholder. The
only exception is the first token z; used as the



Model de en es nl Avg.
Random 1.9 3.1 1.8 1.6 2.1
mGPT) 3 122 221 127 131 150
mGPT3p 56 209 104 6.7 109
M-BERTy,e 692 90.6 754 779 782
XLM-Rpase 704 909 752 795 79.0
Unicoder 71.8 911 744 816 79.7

Table 9: Fl-scores for NER by language. The
mGPT models are evaluated in the 4-shot setting.
The best score is put in bold, the second best is
underlined.

context. The placeholder is filled with each pos-
sible target label [ € L at each step. We select
the label with the lowest sum of losses per token
in the resulting string. The experiments are run
in the zero-shot and 4-shot settings.’

Example Consider an example for the
POS-tagging task “I [PRON] want [VERB] 1T
[PART] . [PUNCT]”, which requires 4 procedure
steps. First, we combine the placeholder in the
string “I_” with each possible POS tag and select
the most probable candidate. Next, we repeat the
procedure for “I_l; waNT_”, and so on.

Baselines We use results reported in Liang et al.
as the baselines: M-BERT, XLLM-R, and Unicoder
(Huang et al., 2019). Note that the baselines are
finetuned on the corresponding training set. The
performance is evaluated with the F1-score (NER)
and the accuracy score (POS-tagging)'? according
to the XGLUE methodology.

NER Results Table 9 shows counterintuitively
that mGPT 35 outperforms mGPT 35 on all lan-
guages. 4-shot falls behind finetuned models but
significantly outperforms random guessing for
both mGPT models. Per-language language anal-
ysis shows a large gap between English and other
languages (for mGPTsp the Fl-score on English
is more than twice higher than for any of the
other languages), while for German, both models
perform the worst. This pattern coincides with the
baseline results. In addition, it could be noted that
while for mGPT; 35 the Fl-score exceeds the 10

9We report the results only in the 4-shot setting since the
manual analysis reveals that the models have failed to capture
the task, giving constant predictions without any additional
examples.

OWe evaluate the sequence labeling tasks using the
XGLUE code: github.com/microsoft/XGLUE.
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percent threshold for all languages, this is not the
case for mGPT35.

POS-tagging Results POS-tagging results for
the XGLUE benchmark and resource-lean lan-
guages are presented in Table 10. Similarly to
the NER task, mGPT, ;g outperforms mGPTsp
practically in all languages except for Italian. On
average mGPT) 3p achieves accuracy score of 0.24
while mGPT 35 only scores 0.21. These results are
still far behind fine-tuned models; however, they
are significantly higher than random guessing.
Analyzing the results for the low-resource lan-
guages, it can be seen that mGPT) 35 performance
is comparable with its performance on XGLUE,
while the mGPT3p scores are lower.

4.3 Knowledge Probing

Method We probe our models for factual knowl-
edge in 23 languages using the mLAMA dataset
(Kassner et al., 2021). The task is to complete a
knowledge triplet <subject, relation, object> con-
verted to templates for querying LMs. Consider
an example from the original LAMA (Petroni
et al., 2019) for English, where <Dante, born-in,
X> is converted to the template ‘‘Dante was born
in [MASK]”’. We follow Lin et al. to design the
probing task. As each such query contains hun-
dreds of negative candidates on average, we limit
the number of candidates to three, i.e., one is the
ground truth candidate and the other two candi-
dates are randomly sampled from the provided
knowledge source. The probing performance is
evaluated with precision@1 averaged over all
relations per language.

Results Figure 5 outlines the results for
mGPT) 3z and mGPTj35. The overall pattern is
that the performance is equal to or above 0.6
for Germanic, Romance, Austro-Asiatic, Japonic,
and Chinese languages. However, Uralic, Slavic,
Koreanic, and Afro-Asiatic languages receive
scores of lower than 0.5. We also find that scaling
the number of model parameters usually boosts
the performance for high-resource languages up
to 5 points, while no significant improvements are
observed in the other languages. Comparing our
results with Lin et al., we conclude that our mod-
els achieve lower performance than XGLMj7sp
almost in all languages and perform on par with
GPTS-CUI’iG@jB .


https://github.com/microsoft/XGLUE/tree/master/evaluation

Model XGLUE CIS & Low-Resource UD

ar bg de el en es fr hi it nl pl pt ru th tr ur vi zh Avg.| be bxr hy Kkk sah tt uk
Random 65 65 60 52 44 57 55 67 66 66 59 47 60 64 68 12 70 71 58| 13 57 59 26 96 87 48
mGPT| 35 16,5 245 30.6 209 400 243 270 162 254 288 283 246 294 129 304 150 256 195 244|215 284 147 228 199 214 225

mGPT;35 117 218 268 161 360 222 250 123 265 265 242 21.8 218 95 268 127 215 125 209|106 77 73 94 118 92 109
M-BERTpye 524 850 887 815 956 868 87.6 584 913 880 818 883 788 433 692 538 543 583 747 | [1 [ [ [I [ I [J
XLM-Rpye 67.3 888 922 882 962 89.0 89.9 745 92.6 885 854 897 869 579 727 621 552 604 798| [ [ [ [ [ [ [
Unicoder ~ 68.6 885 920 883 961 89.1 894 69.9 925 889 83.6 89.8 867 57.6 750 598 563 602 79.6 | [1 [ [ [ [ 1 [

Table 10: Accuracy scores (%) for XGLUE and Universal Dependencies POS-tagging by language.
mGPT models are evaluated in the 4-shot setting. The best score is put in bold, the second best is
underlined.

de pt it fr vi es r fi eu ko el ru ur bg ar bn hi th

- = mGPT-XL (Avg.) ~-- mGPT-13B (Avg.) mmm mGPT-XL  m=m mGPT-13B

Figure 5: Knowledge probing results for 23 languages. The performance of a random baseline is 0.33.

SuperGLUE 0-shot

Ax-b Ax-g BoolQ CB wiC wsC
100 100 . ® 100 100 100 100
= [ ] ’
80 s 80 80 e o 80 ] 80 80
a ®

60 g 60 o @ 8 L ' 60 ® 60 8 0 @ | '

-9 ___ _!‘ ____________________ e__. o-8-8 3.8 ---Co- 8

(] €] g ® g e

40 40 40 ® ® 40 o ® 40 40 o
20 20 20 20 20 20

0 0 0 0 0 0
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mGPT (1.3B) GPT-J (6B) TO (11B) ® OPT (175B) ® BLOOM (176B)
Figure 6: The SuperGLUE evaluation results in the zero-shot and one-shot settings (Scao et al., 2023).
4.4 External Evaluation comparable performance despite having fewer

General Language Understanding  Scao et al. weights. In the zero-shot setting, the perfor-
(2023) compared the performance of BLOOM ,¢5, ~ mance of mGPT; 33, BLOOM 76, OPT75p, and
mGPT)| 35, OPT)7s5 (Zhang et al., 2022), GPT-Jgp GPT-Jsg on the considered tasks is above random
(Wang and Komatsuzaki, 2021), and TO; 5 (Victor guessing. We also observe the strong performance
et al., 2022) on subset of tasks from the Super-  of mGPT,3p on the Winogender Schema Diag-
GLUE benchmark (Wang et al., 2019) in the  nostics (Ax-g). In the one-shot setting, mGPT) 3p
zero-shot and one-shot settings. The results of  performs on par with GPT-Jeg, and the result-
evaluating the models using five prompts are pre-  ing variability is significantly reduced across
sented in Figure 6. The mGPT; 35 model has all prompts.
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ISO Avg. length Distinct;  Vocabulary size  Unique; Entropyy, TTR MSTTR
en 39.13 + 22.61 0.071 387 103 6.175 0.097 0.228
fr 23.53 +17.92 0.128 486 181 6.875 0.159 0.346
de 30.85 £ 17.33 0.113 453 159 6.850 0.151 0.340
es 12.71 £ 15.54 0.102 413 124 6.818 0.148 0.315
zh 3.157 +2.39 0.492 188 124 7.055 0.525 0.526

Table 11: The results for lexical diversity of generated texts on the GEM story generation task.

Multilingual Clause-level Morphology The
first shared task on Multilingual Clause-level
Morphology (Goldman et al., 2022) covers nine
languages and includes three sub-tasks: (i) inflec-
tion (generating a word form given a lexeme and a
set of morphosyntactic features), (ii) reinflection
(reinflect an input sentence according to a given
set of morphosyntactic features), and (iii) detect a
root and its features in an input sentence. Acikgoz
et al. (2022) develop a first-place solution based
on mGPT; 3 and prefix-tuning method, outper-
forming other solutions and baselines on the
third task.

4.5 Generation Evaluation

Method We compute seven lexical diversity
metrics from Gehrmann et al. (2021) using the
mGPT outputs!! on 100 test set samples from the
story generation task in five languages: English,
French, German, Spanish, and Chinese (Chen
et al., 2022). The diversity metrics include the
Shannon Entropy over unigrams (Entropy;), the
mean segmented type-token ratio over segment
lengths of 100 (MSTTR), the ratio of distinct
unigrams over the total number of unigrams
(Distinct; ), and the counter of unigrams that ap-
pear once in the collection of generated outputs
(Unique)).

Results The results are presented in Table 11.
The diversity metrics scores for Chinese are the
highest, while the mean generated text length is the
shortest. This is likely due to its logographic writ-
ing. The results for the Indo-European languages
are similar (French, German, and Spanish), in-
dicating that mGPT, ;g generates diverse texts
in these languages. Surprisingly, the metrics are
lower for English, with the average text length

lwe use the generation hyperparameters:
temperature = 1, max_length = 100, top_-k = 5,
top_p = 0.9.
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being longer. Our current natural language gener-
ation evaluation approach lacks downstream tasks,
which we leave for future work.

5 Discussion

Our key takeaways on pretraining and evaluating
large-scale multilingual autoregressive LMs are
summarized below.

5.1 Model Scaling

Empirical Results The language modeling re-
sults for mGPT; 35 and mGPT35 suggest that
the model scaling improves its generation abili-
ties for all given languages (see §4.1). However,
it does not improve performance on the down-
stream and probing tasks (see §4.2; §4.3). Overall,
the language modeling performance depends on
the model size and the pretraining corpus size
in a language, and smaller models may better
encode linguistic information than larger ones.
These findings align with Scao et al. (2023).

Takeaways Our work had been conducted a
year before the Chinchilla scaling laws were
introduced (Hoffmann et al., 2022). According
to the advanced methods of scaling LMs, our
pretraining corpus can be sufficiently extended
to improve the generalization abilities of the
mGPT 35 model. At the same time, the pretraining
corpus design can promote the model underfitting
and overfitting on particular languages. We be-
lieve it can be accounted for by aggregating the
language-specific cross-entropy loss and producing
language weights similar to Xie et al. (2023).

5.2 Lack of Data

Empirical Results Another challenging factor
is the lack of high-quality data for the low-resource
languages. Although mGPT shows promising re-
sults on the language modeling and sequence
labeling tasks for the underrepresented languages
(see §4.1, §4.2), the low amount of evaluation



Language HuggingFace URL PPL

1.7
54
7.1
27.7
152
17.6
28.8
16.9
14.0
34
8.2
21.2
44
18.7
334
34
6.5
3.7
28.5
40.8
7.1
6.8
10.6

Armenian 3B-armenian
Azerbaijan
Bashkir
Belorussian
Bulgarian
Buryat
Chuvash
Georgian
Kalmyk
Kazakh
Kirgiz
Mari
Mongol
Ossetian
Persian
Romanian
Tajik
Tatar
Turkmen
Tuvan
Ukranian
Uzbek
Yakut

.co/ai-forever/mGPT-1.
.co/ai-forever/mGPT-1.3B-azerbaijan
.co/ai-forever/mGPT-1.3B-bashkir
.co/ai-forever/mGPT-1.3B-belorussian
.co/ai-forever/mGPT-1.3B-belorussian
.co/ai-forever/mGPT-1.3B-buryat
.co/ai-forever/mGPT-1.3B-chuvash
.co/ai-forever/mGPT-1.3B-georgian
.co/ai-forever/mGPT-1.3B-kalmyk
.co/ai-forever/mGPT-1.3B-kazakh
.co/ai-forever/mGPT-1.3B-kirgiz
.co/ai-forever/mGPT-1.3B-mari
.co/ai-forever/mGPT-1.3B-mongol
.co/ai-forever/mGPT-1.3B-ossetian
.co/ai-forever/mGPT-1.3B-persian
.co/ai-forever/mGPT-1.3B-romanian
.co/ai-forever/mGPT-1.3B-tajik
.co/ai-forever/mGPT-1.3B-tatar
.co/ai-forever/mGPT-1.3B-turkmen
.co/ai-forever/mGPT-1.3B-tuvan
.co/ai-forever/mGPT-1.3B-ukranian
.co/ai-forever/mGPT-1.3B-uzbek
.co/ai-forever/mGPT-1.3B-yakut

Table 12: A list of the mGPT, 33 models contin-
uously pretrained on monolingual corpora for 23
languages.

resources limits the scope of analyzing the model
generalization abilities. The correlation between
the model performance and the amount of pre-
training data in a language (see §4.1, and, e.g.,
Lauscher et al., 2020; Ahuja et al., 2022) further
highlights the need for creating text corpora in
such languages.

Takeaways The question of addressing the dis-
crepancy in data distribution across the world’s
languages remains unresolved. Our data collection
and filtration approach is equivalent for all consid-
ered languages. Extending the language-agnostic
heuristics is restrained due to the lack of linguistic
expertise. However, we assume that experiment-
ing with the training data for the text quality
classifiers can improve the resulting quality of
the corpora for the low-resource languages (e.g.,
training the classifiers on different mixtures of
data in the medium and high-resource languages).

As the follow-up work, we release 23 versions
of the mGPT, 3z model continuously pretrained
with language modeling objective on monolingual
corpora for medium-resource and low-resource
languages collected through collaboration with
the NLP community. Table 12 summarizes the
models by language and the language model-
ing performance on the held-out monolingual test
sets. Examples of the corpora include Eastern
Armenian National Corpus (Khurshudyan et al.,
2022), OpenSubtitles (Lison and Tiedemann,
2016), and TED talks. Continued pretraining on
additional data improves the language modeling
performance.
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5.3 Language Selection

Empirical Results Results of mGPT;3g on
most of the classification tasks are on par or
better than the results of the XGLM, 75 given
that mGPT covers twice as many languages
(see §4.2). However, mGPT underperforms the
baselines on several multi-class classification and
probing tasks.

Takeaways We find that balancing the pre-
training corpus by the language family helps
improve the language modeling abilities for un-
derrepresented languages due to their typological
similarity with the medium and high-resource lan-
guages (see §4.1). However, increasing language
diversity can lead to performance degradation be-
cause of the curse of multilinguality and a limited
model capacity (Conneau et al., 2020).

5.4 Tokenization

Empirical Results We conduct an ablation
study to analyze the impact of the tokenization
strategy on language modeling performance. We
find that the considered strategies do not improve
the model’s perplexity. However, the main draw-
back of the perplexity-based evaluation is that it
only partially assesses the model generalization
abilities.

Takeaways The optimal tokenization method
and vocabulary size remain an open question,
particularly in the multilingual setup (Mielke
et al., 2021). There are no established methods
for defining the vocabulary size based on the
amount of textual data in different languages.
Our experiments are limited to a fixed vocabulary
size, and we leave further investigation of the to-
kenization strategies and their configurations for
future work.

5.5 Zero-shot and Few-shot Performance

Empirical Results

e Increasing the number of demonstrations
does not always lead to improvements
but decreases the performance on some
downstream tasks (see §4.2.1; §4.2.2). This
observation aligns with Lin et al. (2022) and
Brown et al. (2020).

The zero-shot and few-shot performance may
not exceed the random guessing on particular
tasks, which points to the failure of a model
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to follow the guidance in the demonstration
examples (see §4.2.1; §4.2.2).

e The prompting approach is unstable and
hardly universal across languages, as in-
dicated by the model sensitivity to the
prompts.

e The mGPT models can assign higher proba-
bilities to the most frequent tag in the input
for the sequence labeling tasks (see §4.2.2).

Takeaways

e The stability of the models with respect
to the prompts may be improved using
prompt-tuning (Liu et al., 2023b) and contex-
tual calibration (Zhao et al., 2021) as shown
in §4.4.

The generalization capabilities of the autore-
gressive LMs in sequence labeling tasks is an
underexplored area. While our LMs achieve
results higher than random guessing, the low
performance can be attributed to the probabil-
ity distribution shifts between the pretraining
corpora and the prompts. We leave the in-
vestigation of the alternative prompt design
(Liu et al., 2023a) and structured prediction
methods (Liu et al., 2022) for future work.

6 Conclusion

We introduce the mGPT) 33 and mGPT ;35 models,
which cover 61 languages from linguistically di-
verse 25 language families. Our model is one of the
first autoregressive LMs for economically endan-
gered and underrepresented CIS and low-resource
languages. The architecture design choices are
based on the preliminary tokenization experiments
and their perplexity-based evaluation. The model
evaluation experiments include language mod-
eling, standardized cross-lingual NLU datasets
and benchmarks, world knowledge probing, and
social bias tasks. We evaluate the in-context learn-
ing abilities in zero and few-shot settings with a
negative log-likelihood probability. We present
a detailed analysis of the model performance,
limitations, and ethical considerations. Despite
the space for further quality growth and solv-
ing the highlighted limitations, the model shows
significant potential and can become the basis
for developing generative pipelines for languages
other than English, especially the low-resource
ones. This initiative has been developed for 23
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diverse languages through collaboration with the
NLP community. We hope to benefit cross-lingual
knowledge transfer, annotation projection, and
other potential applications for economically
challenged and underrepresented languages and
diversify the research field by shifting from the
Anglo-centric paradigm.

7 Ethical Statement and Social Impacts

7.1 Low-resource Languages

NLP for resource-lean scenarios is one of the
leading research directions nowadays. The topic’s
relevance has led to proactive research on
low-resource languages. Our work falls under this
scope, introducing the first autoregressive LM for
61 languages. To the best of our knowledge, we
present one of the first attempts to address this
problem for 20 languages of the Commonwealth
of Independent States and the indigenous peoples
in Russia.

7.2 Energy Efficiency and Usage

Pretraining large-scale LMs requires many com-
putational resources, which is energy-intensive
and expensive. To address this issue, we used the
sparse attention approach suggested by Brown
et al. (2020) and reduced the computational
resources required to achieve the desired per-
formance. The CO2 emission of pretraining the
mGPT models is computed as Equation 2 (Strubell
etal., 2019):

PUE %« kWh % [€02
1000

co2 = (2)

The power usage effectiveness (PU E) of our
data centers is not more than 1.3, the spent power is
30.6k kWh (mGPT, 3p) and 91.3 kWh (mGPT)3p),
and the CO2 energy intensity (I©?) in the re-
gion is 400 grams per kWh. The resulting CO2
emission is 15.9k kg (mGPT;3p) and 47.5k kg
(mGPTy35). The emission is comparable with a
single medium-range flight of a modern aircraft,
which usually releases about 12k kg of CO2 per
1k km. Despite the costs, mGPT can be efficiently
adapted to the user needs via few-shot learning,
bringing down potential budget costs in the scope
of applications in multiple languages, such as gen-
erating the content, augmenting labeled data, or
summarizing news. The multilingual pretraining
saves on data annotation and energy consumption,



alleviating the carbon footprint. Model compres-
sion techniques, e.g., pruning and distillation, can
reduce inference costs.

7.3 Social Risks of Harm

Stereotypes and unjust discrimination present in
pretraining corpora lead to representation biases
in LMs. LMs can reflect historical prejudices
against disadvantaged social groups and reproduce
harmful stereotypes about gender, race, religion,
or sexual orientation (Weidinger et al., 2022).
We have analyzed mGPT’s limitations on social
risks of harm involving hate speech on the hate
speech detection task. Our results are similar to
Lin et al. (2022) in that the performance is close to
random guessing. This may indicate a significant
bias in the pretraining corpus, a mutual influence
of languages during training, or methodological
problems in the test set. We do not claim that
our evaluation setup is exhaustive, and we assume
that other biases can be revealed through a direct
model application or an extended evaluation.

7.4 Potential Misuse

The misuse potential of LMs increases with their
ability to generate high-quality texts. Malicious
users can perform a socially harmful activity that
involves generating texts, e.g., spreading propa-
ganda and other targeted manipulation (Jawahar
et al., 2020). We recognize that our models can
be misused in all supported languages. However,
adversarial defense and artificial text detection
models can mitigate ethical and social risks
of harm. Our primary purpose is to propose
multilingual GPT-style LMs for research and
development needs, and we hope to work on the
misuse problem with other developers and experts
in mitigation research in the future.
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