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Abstract

Previous work in prompt engineering for
large language models has introduced dif-
ferent gradient-free probability-based prompt
selection methods that aim to choose the opti-
mal prompt among the candidates for a given
task but have failed to provide a comprehen-
sive and fair comparison between each other.
In this paper, we propose a unified frame-
work to interpret and evaluate the existing
probability-based prompt selection methods
by performing extensive experiments on 13
common and diverse NLP tasks. We find that
each of the existing methods can be inter-
preted as some variant of the method that
maximizes mutual information between the
input and the predicted output (MI). Utilizing
this finding, we develop several other com-
binatorial variants of MI and increase the
effectiveness of the oracle prompt selection
method from 87.79% to 94.98%, measured as
the ratio of the performance of the selected
prompt to that of the optimal oracle prompt.
Furthermore, considering that all the methods
rely on the output probability distribution of
the model that might be biased, we propose
a novel calibration method called Calibration
by Marginalization (CBM) that is orthogonal
to the existing methods and helps increase
the prompt selection effectiveness of the best
method to 96.85%, achieving 99.44% of the
oracle prompt F1 without calibration.1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance in solving var-
ious natural language processing tasks through

∗This project was initiated while the first author was a
Master’s student at KAIST (Nov 2022 - Feb 2023).

†Work done as an intern at KAIST.
1The code and datasets used in our work are available

at https://github.com/soheeyang/unified-prompt
-selection.

prompt-based learning without requiring addi-
tional task-specific training (Brown et al., 2020;
Dong et al., 2023). However, the performance
of LLMs can heavily fluctuate according to the
choice of prompts (Zhao et al., 2021; Holtzman
et al., 2021; Lu et al., 2022). While various prompt
engineering approaches have been proposed to
mitigate this issue, the nontrivial prerequisites
of many of these methods, such as training
an additional model and/or using an additional
component, have been a bottleneck to their real
application (Liu et al., 2023; Li and Liang, 2021;
Jiang et al., 2020; Prasad et al., 2023; Liu et al.,
2022; Rubin et al., 2022).

On the other hand, probability-based prompt
selection methods do not require any additional
parameter updates or additional components2 and
thus provide a promising and easily applicable
solution; these methods aim to select the prompt
from a set of prompts that is expected to be most
effective in helping a language model to make
correct predictions solely based on the probability
distribution of the model (Sorensen et al., 2022;
Lu et al., 2022; Wu et al., 2023; Liao et al., 2022;
Gonen et al., 2023). However, despite their ease
of utilization, there has been a lack of compre-
hensive comparative evaluation between exist-
ing probability-based prompt selection methods,
as each method is proposed in different setups
and evaluated on different datasets, evaluation in-
stances, sets of prompts, and models. In this paper,
we first carefully design a unified evaluation setup
to facilitate a fair comparison between different
prompt selection methods. Our unified evaluation
reveals that no single method consistently outper-
forms other methods across all datasets and that

2While the prerequisite is a set of candidate prompts to
select from, this data is relatively small in size and can be
easily obtained from the research community (Bach et al.,
2022) or via machine generation (OpenAI, 2023).
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Figure 1: (a) F1 of the prompts selected by dif-
ferent probability-based prompt selection methods,
averaged across 13 datasets. Per-dataset F1 and ac-
curacy are shown in Figure 9. The methods without
super/subscripts are the existing methods (Table 1),
while those with super/subscripts are our proposed
methods (Table 4 & Equation 1). (b) Ratio of the
prompts (out of 100) whose F1 on each dataset im-
proves by applying probability calibration for answer
selection, averaged across 10 models. Our proposed
calibration method, CBM (Equation 1), is consider-
ably more effective than CC and PMIDC (Table 5)
in enhancing the answer selection performance of the
prompts.

all existing probability-based prompt selection
methods roughly correspond to a sub-term of the
equation of Mutual Information (MI) (Sorensen
et al., 2022). We utilize this discovery to propose
several variants of MI that use different combina-
tions of the components of existing methods, and
the best combinational variant MIAGL increases
the scaled F1 (F1 divided by that of the oracle
prompt, showing the effectiveness of the prompt
selection method) from 87.79% to 94.98% (MIAGL

of Figure 1a).
Furthermore, we find the need for a better

approximation of the LLM’s output probability
distribution, considering that all probability-based
prompt selection methods rely on the proba-
bilistic estimates from the model that might
be biased. Therefore, by drawing a connection
between the existing model output probability
calibration methods (Zhao et al., 2021; Holtzman
et al., 2021), we propose an enhanced calibration
method, Calibration By Marginalization (CBM).
CBM significantly improves the prompt selection
performance of several methods when applied

to calibrate the output probability of LLMs, in-
creasing the best-scaled F1 to 96.85% (MI(PA)

A of
Figure 1a), achieving 99.44% of the oracle prompt
F1 under the uncalibrated scenario. CBM also
proves to show the most robust answer selection
enhancement across multiple datasets compared
to the existing calibration methods (Figure 1b).

2 Probability-based Prompt Selection

In this section, we perform a unified eval-
uation of existing probability-based prompt
selection methods. First, we describe the task of
probability-based prompt selection in Section 2.1.
Next, we briefly introduce each of the exist-
ing methods in Section 2.2. Then, we describe
our experimental setup for unified evaluation in
Section 2.3 and present the evaluation results in
Section 2.4.

2.1 Task Description

Probability-based prompt selection is the task of
selecting one or more prompts from a list of
prompts T , which are expected to help the lan-
guage model θ make the most accurate prediction
for the evaluation dataset X where the evaluation
instances are drawn from the data distribution,
x ∼ PX , utilizing only the output probability dis-
tributions of the model on X ,3 without knowing
the ground truth labels and using neither additional
gradient-based updates nor other trained compo-
nents. The performance of a probability-based
prompt selection method is evaluated by how high
the score of the evaluation metric obtained with
the selected prompt(s) is.

When one prompt is selected for the whole
dataset, the performance is upper bounded by the
performance obtained with the prompt with which
the model achieves the best metric score; we call
such a prompt the optimal oracle prompt.4 When
one prompt is selected for each x ∼ PX , different
t ∈ T can be chosen for each x; we call such a

3Note that one can perform a computation-efficient
prompt selection or transfer of prompt selection by (1) select-
ing one prompt using a subset ofX or a separate development
set X ′ and then (2) use the selected prompt for the target
evaluation dataset X to instantiate all x ∼ PX . However,
following the conventional setup of the previous studies and
for comparison with instance-wise prompt selection methods
where such an approach is not applicable by design, we do
not use a separate X ′.

4The number of oracle prompts can be greater than one,
but we use the singular form for a more concise presentation.
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Existing Method Abbr. Selected Prompt: argmaxt∈T · · ·

Mutual Information (Sorensen et al., 2022) MI H
(

1
|X|

∑
x p(y|x, t)

)
− 1

|X|
∑

x H (Y |x, t)

Entropy (Lu et al., 2022)

Global Entropy GE H
(

1
|X|

∑
x one hot(p(y|x, t))

)

Local Entropy LE 1
|X|

∑
x H (Y |x, t)

Minimum Description Length (Wu et al., 2023) MDL −H(Y |x, t)
Zero-Label Prompt Selection (Liao et al., 2022)

∑
x

[
1
{
argmaxy p(y|x, t) = argmaxy s(x,y)

}]
Log-probability Mean ZLP s(x,y) = 1

|T |
∑

t log p(y|x, t)
Probability Mean ZPM s(x,y) = 1

|T |
∑

t p(y|x, t)
Majority Vote ZMV s(x,y) =

∑
t 1{argmaxv∈Y p(y|x, t) = v}

Perplexity (Gonen et al., 2023) PPL − 1
|X|

∑
x

1
p(x,t)

Table 1: Summary of the existing probability-based prompt selection methods. Notations used in the
equations are explained in Sections 2.1 and 2.2.

prompt selection approach instance-wise prompt
selection.

Note that the definition of prompt can vary ac-
cording to the setup for which prompt selection is
performed. When prompt selection is applied to
zero-shot learning, prompts are defined as various
formats of text templates that are filled by evalu-
ation instances x ∼ PX to facilitate. On the other
hand, for few-shot (in-context) learning, prompts
are often defined as the demonstrations sampled
from a training/development set or texts of per-
mutations of such demonstrations. In our work, in
order to enable comparison between all the meth-
ods proposed either in zero-shot and few-shot
setup, we perform prompt selection in a zero-shot
setup with the former definition of prompt.5

Concrete Example Examples of prompts t ∈ T
include ‘‘Which category does the following news
article fall into? {text}’’, ‘‘The following news
article, {text}, covers the topic of’’, and ‘‘{text}
belongs in which category: Politics, Sports, Busi-
ness, Science and Technology’’. We say that x
instantiates the prompt t when x is inserted into
the placeholder {text} of the prompt template and
let ι(x, t) denote the instantiated prompt. Each of
the answer categories represents the concept of
politics, sports, business, and science/technology,

5We have performed additional experiments in a few-shot
learning setup using the texts of permutations of varying num-
bers of in-context learning demonstrations as the prompts.
However, we do not include these results in the paper due to
space limitations; also, the overall trend of the results stays
similar to that of the zero-shot learning setup.

and uses ‘‘Politics’’, ‘‘Sports’’, ‘‘Business’’, and
‘‘Science and Technology’’ as the verbalizer (the
actual text evaluated to score the answer choices),
respectively.

For instance, given OPT 2.7B (Zhang et al.,
2022a) as the language model, ‘‘King Charles
III’s Coronation watched by more than 18 million
viewers’’ as x, and the three prompts shown as
examples in the previous paragraph, a prompt
selection method should choose the prompt that
is most likely to help OPT 2.7B correctly predict
the answer y among the possible answer choices
Y which represent the concepts of politics,
sports, business, and science/technology. To
select such a prompt, the method must rely
solely on the output probability of the model
given the instantiated prompts as input, e.g.,
p(‘‘Politics’’|‘‘Which category . . . King . . . ’’).

2.2 Existing Approaches

Table 1 provides the summary of the existing
approaches for probability-based prompt selec-
tion. In the equations, we use p(y|x, t) ∈ R

|Y |

to express the output probability distribution of
the model over the answer choices, Pθ(Y |X =
x, T = t), when the instantiated prompt ι(x, t) is
given as the input. The probability for each y ∈ Y
is calculated as

p(y|x, t) = exp(log p̃(y|x, t))∑
y′∈Y exp(log p̃(y′|x, t)) ,

where log p̃(y|x, t) is the unnormalized logit
that the model outputs. When y’s verbalizer is
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tokenized into more than one token, we calcu-
late log p̃(y|x, t) as the mean of log-probability
over the tokens of the verbalizer for datasets
with fixed answer choices, and as the sum
of log-probability for datasets with dynamically
changing sentence-type answer choices, except
for the method proposed by Sorensen et al.
(2022) which explicitly specifies that the cal-
culation of p(y|x, t) uses only the logits of
the first token (dubbed as One-Token Response
(OTR) in their work). We use H(q(y)) to denote
the entropy of an arbitrary probability distribu-
tion q(y) ∈ R

|Y |, −
∑

y∈Y q(y) log q(y). When
q(y) = p(y|x, t), we use H(Y |x, t) to represent
its entropy H(Y |X = x, T = t).

Mutual Information (MI) Sorensen et al.
(2022) propose to select one prompt for the evalua-
tion dataset that maximizes the mutual information
between the evaluation instances X and their cor-
responding model predictions Y given prompt t,
I(Y ;X|t) = [H(Y |t)−H(Y |X, t)]. Since they use
the assumption that p(x|t) = PX(X = x) = 1

|X| ,
the equation becomes as shown in the first row of
Table 1. The intuition of the method is to select
the prompt that guides the model to make less
biased predictions on average (high H(Y |t)) and
confident predictions about the input data (low
H(Y|X, t)).

Entropy (GE, LE) Lu et al. (2022) propose
to select the prompt (finding the best ordering
of few-shot demonstrations for in-context learn-
ing in their setup) using entropy-based metrics.
While their proposed methods are intended specif-
ically for in-context learning, viewing prompts as
texts of permutations of demonstrations,6 we adopt
the methods for our zero-shot setup of selecting
among text template prompts and thus do not use
an additional training set or construct a probing
set. Global Entropy (GE) or Local Entropy (LE)
shown in the second row of Table 1 are used to se-
lect a single prompt among the prompt candidates
for the evaluation dataset.

Minimum Description Length (MDL) Wu
et al. (2023) propose to select the prompt (a
permutation of few-shot demonstrations in their
setup) that requires minimum codelength to com-
press and transmit testing label y given the testing

6They generate a probing set with demonstrations from
the training set and use the probing set to find the best order.

input x. With several assumptions and approxima-
tions presented in Section 4.3 of the work of Wu
et al. (2023), the equation boils down to finding
different t for each x ∈ X , argmint H(Y |x, t),
performing instance-wise prompt selection. As
their original setup for prompt selection is
few-shot learning, they perform demonstration
sampling as a set selection and then rank the texts
of different permutations of the demonstrations.
Here, we describe only the ranking part of their ap-
proach that we employ for our zero-shot learning
setup.

Zero-Label Prompt Selection (ZLP, ZPM,
ZMV) Liao et al. (2022) propose to make a
pseudo-label for each x by ensembling the outputs
for all prompts to make a score s(x, y) for each x,
and then choosing one prompt t for the evaluation
dataset whose cases of argmaxy∈Y p(y|x, t) =
argmaxy∈Y s(x, y) is the maximum. As shown
in Table 1, they propose three ways to calcu-
late s(x, y): using the ensemble of log-probability
mean, probability mean, and majority vote. We re-
fer to them as ZLP, ZPM, and ZMV, respectively.
While the authors of the original work applied
filtering of prompts, we observed from our pre-
liminary experiments that filtering does not have
a significant effect.

Perplexity (PPL) Gonen et al. (2023) propose
to select one prompt for the evaluation dataset with
which the language model exhibits the lowest av-
erage perplexity of the instantiated prompt ι(x, t)
as shown in the last row of Table 1. p(x, t) is calcu-

lated as
[
Π

|ι(x,t)|
i=1 p(ι(x, t)i|ι(x, t)<i)

] 1
|ι(x,t)|

, where
ι(x, t)i represents the i-th token of the instan-
tiated prompt ι(x, t). We include the geometric
mean to the definition of p(x, t) because the aver-
aged probability is often used to approximate the
probability of a sequence.

2.3 Experimental Setup
Evaluation Datasets Our dataset selec-
tion, aimed at fair measurement of various
probability-based prompt selection methods, is
guided by several factors. We favor the datasets
previously used in research, those encompassing
diverse domains, and datasets where prompt
selection is meaningful. We exclude the datasets
where all prompts underperform a random
baseline or where a naive baseline of selecting the
mode label could excel due to high imbalance.
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Dataset Full Name Split # Used
(# Orig.)

Category Label Ratio

0 1 2 3 4
imdb imdb test 1000 (25000) balanced 0.51 0.49
g-sst2 glue-sst2 valid 872 balanced 0.49 0.51
agnews ag news test 1000 (7600) balanced 0.27 0.25 0.25 0.24
g-rte glue-rte valid 277 balanced 0.53 0.47
newspop newspop train 1000 (93239) unbalanced 0.36 0.23 0.33 0.09
t-irony tweet eval-irony valid 955 unbalanced 0.60 0.40
t-emo tweet eval-emotion valid 374 unbalanced 0.39 0.25 0.09 0.27
sg-cb super glue-cb valid 56 unbalanced 0.41 0.50 0.09
sst5 SetFit/sst5 test 1000 (1101) unbalanced 0.13 0.29 0.18 0.23 0.18
copa super glue-copa valid 100 dynamic 0.55 0.45
piqa piqa valid 1000 (1838) dynamic 0.49 0.51
story story cloze-2016 test 1000 (1871) dynamic 0.51 0.49
hella Rowan/hellaswag valid 1000 (10003) dynamic 0.22 0.25 0.26 0.26

Table 2: Datasets chosen to evaluate various
probability-based prompt selection methods.

By excluding the datasets with high imbalance,
we aim to avoid the false positive cases where
a failed algorithm that collapses to select one
label regardless of the input is evaluated as a
competitive method by chance.

The selected datasets have diverse label types
and distributions, and we categorize them based
on their label distributions into balanced (label
distribution is about 1:1), unbalanced (otherwise),
and dynamic7 categories. The 13 datasets selected
through this process are shown in Table 2.8

Prompts We create a diverse range of 100
prompts for each of the 13 evaluation datasets,
which results in 1,300 prompts in total. For each
dataset, a few of the 100 prompts are taken from
PromptSource (Bach et al., 2022), and the rest
are generated using GPT 3.5 (OpenAI, 2023) to
speed up the prompt generation process and then
manually reviewed and corrected.9 The prompts
are designed to encompass various formats, with
the evaluation instance and sometimes the answer
choices appearing at different positions within the
prompt, to ensure that the prompt selection task is
meaningful. Table 3 shows a few examples of the
prompts. We use one-token words as the verbaliz-
ers for the answer choices in most prompts, except
for the prompts for the datasets of the dynamic
category.

7The answer choices are sentences and vary dynamically
for each evaluation instance. In these datasets, the label index
is not connected to some concept, unlike the datasets with
static choices (e.g., 0 is negative and 1 is positive in sst2),
so the ratio of labels is not meaningful. However, all the
datasets of dynamic categories that we use have balanced
label distribution.

8Maas et al. (2011); Wang et al. (2019b); Zhang et al.
(2015); Moniz and Torgo (2018); Barbieri et al. (2020);
Mohammad et al. (2018); Van Hee et al. (2018); Wang et al.
(2019a); Socher et al. (2013); Bisk et al. (2020); Mostafazadeh
et al. (2017); Zellers et al. (2019)

9The generation, review, and correction are done by the
first two authors of the paper.

Dataset Prompt Verbalizers for Y

imdb From the following review, can you tell whether the negative, positive
sentiment is positive or negative?

agnews Which category among Politics, Sports, Business, Politics, Sports,
Science would this news article fall under? Business, Science

g-rte Given the statement ‘‘{{sentence1}}’’, does it yes, no
necessarily follow that ’’{{sentence2}}’’ is true?

sg-cb If the above statement is true, can we conclude that Yes, no, maybe
‘‘{{hypothesis}}’’ is also true? Yes, no, or maybe?

sst5 What is the sentiment expressed in the following terrible, negative,
sentence? It’s either terrible or negative or neutral neutral, positive,
or positive or excellent. ‘‘{{ text }}’’ excellent

piqa Your task is to achieve: {{goal}}\n\nWhich of {{sol1}},
the following options is the most appropriate?\n\n- {{sol2}}
{{sol1}}\n- {{sol2}} \n\nAnswer:

Table 3: Examples of the created prompts. The
prompts are written in Jinja for the use of
PromptSource (Bach et al., 2022) APIs.

Models We conduct the majority of our exper-
iments with ten different models of varying sizes
ranging from 1.3B to 66B.10 However, to present
the experimental results and analysis more clearly,
we only display the results of OPT 2.7B through-
out the paper since the overall trend remains
mostly identical (shown in Section 5).

Evaluation Metrics Prompt selection perfor-
mance is assessed using macro F1 of the selected
prompts. To compare the effectiveness of the
prompt selection methods across different datasets
or models, we normalize the value by the perfor-
mance of the oracle prompt (upper bound) and
present it as scaled F1.

Implementation Details We use a modified
version of the codebase of Sanh et al. (2022)11

and PromptSource (Bach et al., 2022)12 to run
model inference and add custom prompts, respec-
tively. The inference is performed using one to
four NVIDIA V100 32GB GPUs.

2.4 Experimental Results
We find that there is no single probability-based
prompt selection method that consistently outper-
forms another across all 13 datasets and evaluation
categories. While PPL and LE do not rank first
in any dataset, every other method ranks first in
a few datasets. Figure 2 illustrates the selected
prompt performance averaged by category, along
with the performance of the best (oracle) and

10GPT-Neo (Black et al., 2021) 1.3B, OPT (Zhang
et al., 2022a) 1.3B, GPT2-XL (Radford et al., 2019),
GPT-Neo 2.7B, OPT 2.7B, BLOOM 3B (Workshop et al.,
2023), GPT-J 6B, OPT 6.7B, OPT 30B, and OPT 66B.

11https://github.com/bigscience-workshop/t
-zero.

12https://github.com/bigscience-workshop
/promptsource.
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Figure 2: F1 of the prompts selected by the existing
probability-based prompt selection methods, averaged
for each dataset category, with the task average also
shown.

worst prompts and the average performance of all
prompts. In the balanced category, GE and MDL
outperform others, with MI closely following. In
the unbalanced category, MI stands out, while
in the dynamic category, GE, MDL, and ZLP
perform the best. LE and PPL generally under-
perform in all of the datasets; their task average
does not even exceed the average performance of
all prompts.13 We conclude that no single existing
approach is significantly better than others, espe-
cially when dividing the evaluation dimensions
into balanced, unbalanced, and dynamic labels.

3 Improving MI via Unified Analysis

In this section, we first derive a unified view
of prompt selection methods in Section 3.1 and
show that each method other than MI roughly
corresponds to a sub-term of the equation of MI
and revisit the previous experimental results for
a unified analysis in Section 3.2. Then, from
the unified view and analysis, we identify the
differences between methods, particularly MI, GE,
and MDL, and derive a few combinational variants
by transferring design elements across methods
which improves the prompt selection performance
of MI.

3.1 Unified View: Identifying Connections
Between Methods

Prompt Selection Score (PSS) Figure 3 offers a
unified view of existing probability-based prompt
selection methods, highlighting that each method

13Interpretations of these results are provided in
Section 3.2.

Figure 3: The highlighted parts of the equation are
rough estimations of the Prompt Selection Score (PSS)
of each method, i.e., the score of which the prompt with
the maximum value is chosen by the prompt selection
method. They show the connection between different
probability-based prompt selection methods.

except for MI approximately corresponds to a
sub-term in the equation of MI. We denote the
highlighted parts as the Prompt Selection Score of
each method (PSSmethod); the score of which the
prompt with the maximum value is chosen by the
prompt selection method.

MI vs. GE and LE MI selects a prompt
that maximizes the first term of PSSMI,
argmaxt H

(
1

|X|
∑

x p(y|x, t)
)

, and minimizes

the second term, 1
|X|

∑
x H (Y |x, t). This means

that MI favors prompts that provide balanced pre-
dictions without label bias (interpretation of the
first term) and sharp answer prediction distribu-
tion across all instances in the dataset (interpre-
tation of the second term). These terms roughly
correspond to PSSGE and −PSSLE, respectively.
The difference between PSSGE and the first term
of PSSMI is that the former converts p(y|x, t)
to one-hot before taking the entropy of the mean.
In sum, the prompts selected by GE and MI
align, while those chosen by LE and MI tend to
be opposite. Note that one expected caveat of GE
is that it will be less effective when the dataset
itself has a label imbalance.

MI vs. MDL MDL is the only method among
the presented probability-based prompt selec-
tion methods that selects a different prompt
for each evaluation instance x, i.e., performs
instance-wise prompt selection. Essentially, MDL
is an instance-wise version of the second term of
PSSMI, choosing prompts whose output probabil-
ity distribution p(y|x, t) has the lowest entropy,
and thus aligns with MI. Since MDL favors the
prompt that makes the model output a sharp prob-
ability distribution, one expected caveat of MDL
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is that it will not work well when the model fails
to solve the given task and collapses to a single
prediction regardless of the input with overly high
confidence.

MI vs. ZPM Zero-label prompt selection meth-
ods ensemble the results of all prompts to calculate
s(x, y), create pseudo labels by converting s(x, y)
to one-hot, and then choose the prompt with
predictions most similar to the pseudo labels.
Applying this view to PSSZPM with an assumption
of p(t|x) = 1

|T | results in an alternative form,

PSSZPM =
∑
x∈X

one hot(p(y|x,t))�one hot(s(x,y))

s.t. s(x,y)=
1

|T |
∑
t∈T

p(y|x,t)≈ p(y|x)

∴ PSSZPM ≈
∑
x∈X

one hot(p(y|x,t))�one hot(p(y|x))

≈ 1

|X|
∑
x∈X

p(y|x,t)� logp(y|x),

which roughly corresponds to the negation of
the second term of PSSMI, well-aligning the two
methods.14

MI vs. PPL PSSPPL is the most dissim-
ilar from PSSMI, along with PSSLE. Since
argmaxt

1
|X|

∑
x

1
p(x,t) = argmaxt

∑
x p(x, t),

PSSPPL can be expressed as
∑

x p(x, t). It is
clear that PSSPPL differs from PSSMI because
it considers the probability of x and t that PSSMI

neglects. Applying the probabilistic assumption
of MI

(
p(x|t) = p(x) = 1

|X|

)
to PSSPPL converts

the equation to
∑

x
p(t)
|X| , causing PPL to select the

prompt with the lowest perplexity irrespective of
the input. Since Gonen et al. (2023) even restrict
their prompt format for the input x to appear at
the beginning so that p(x, t) is calculated only
as the form of p(t|x)p(x), i.e., the probability of
prompt is always conditioned on x, the proba-
bilistic assumption of MI is incompatible with the
motivation of PPL.15

14One expected caveat of the methods of zero-label prompt
selection is that it might not work well when a large portion
of the prompts fail to solve the given task. Therefore, Liao
et al. (2022) propose a way to filter out low-quality prompts
in advance, but the filtering algorithm does not benefit their
proposed methods in our experimental setup.

15Note that our experimental setup also differs with the
setup of Gonen et al. (2023); we generated the prompts in
an unrestricted manner that x can appear anywhere in the
prompt.

3.2 Unified Analysis: Revisiting
Experimental Results

Revisiting the unified evaluation in Section 2.4,
the results align with our analysis from
Section 3.1. GE performs well in balanced
datasets but poorly in unbalanced ones due to
its preference for prompts that create balanced
predictions. GE also performs well in dynamic
datasets since the label distribution is balanced
by chance (Table 2). MDL performs comparably
to GE due to similar entropy calculations. LE’s
performance, however, is less satisfactory, given
that its optimization contradicts MDL. The
underperformance of PPL compared to that by
Gonen et al. (2023) might be due to our use of
diverse prompt formats.16

Note that in dynamic datasets, MI’s best, worst,
and average prompt performances differ due to its
distinct calculation of p(y|x, t) that uses only the
first token logits; for other methods, p(y|x, t) is
calculated using all tokens (Section 2.2).17 This
leads to a question: Is the difference in the calcula-
tion of p(y|x, t) the reason that MI performs well
in balanced and unbalanced cases but poorly in
dynamic cases? In addition, despite GE and MDL
maximizing MI’s sub-term, they outperform MI
in balanced datasets. This observation leads to an-
other question: Is their higher performance due to
their one-hot p(y|x, t) and instance-wise prompt
selection?

In the following subsection, we show that the
answers to both questions are yes, demonstrat-
ing that using all tokens to calculate p(y|x, t),
one-hot p(y|x, t), and instance-wise prompt selec-
tion improves the prompt selection performance
of MI.

3.3 Experimental Results: Transferring
Design Choices from Unified Analysis

p(y|x, t) calculation using all tokens helps MI.
To investigate the difference between using only

16We allow the input x to appear anywhere in the prompt,
unlike their restricted setup where x always comes at the
beginning.

17In balanced and unbalanced cases, the number of tokens
of most verbalizers is 1, so the best, worst, and average
prompt performances of the prompts whose performance is
calculated using only the first token are identical to the other
methods; on the other hand, the verbalizer is a sentence for
dynamic datasets and makes the difference.
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Figure 4: F1 of the prompts selected by MIA and
MI, averaged for each setup of a different number of
tokens of verbalizers and evaluation dataset category.
|v| denotes the number of tokens of the verbalizers.

A G L Prompt Selection Score

Existing Methods
GE ✓ ✓ – H

(
1

|X|
∑

x one hot(p(y|x, t))
)

MDL ✓ – ✓ −H(Y |x, t)
MI ✗ ✗ ✗ GEM + MDLM

Explored Variants
GEM ✓ ✗ – H

(
1

|X|
∑

x p(y|x, t)
)

MDLM ✓ – ✗ − 1
|X|

∑
x H (Y |x, t)

MIA ✓ ✗ ✗ GEM + MDLM
MIAG ✓ ✓ ✗ GE + MDLM
MIAL ✓ ✗ ✓ GEM + MDL
MIAGL ✓ ✓ ✓ GE + MDL

Table 4: Top: differences among GE, MDL, and
MI. Bottom: new variations created by trans-
ferring design choices from existing probability-
based prompt selection methods. A represents
p(y|x, t) using All tokens, G represents one-hot
p(y|x, t) like GE, and L represents instance-wise
selection (select for each x) like MDL.

the first token probability and the mean/sum of all
tokens to calculate PSSMI, we develop a variant
of MI called MIA (A of All). Unlike MI and like
other methods, MIA calculates p(y|x, t) by tak-
ing the mean of all token logits for balanced and
unbalanced datasets, and the sum for dynamic da-
tasets. Since the balanced and unbalanced data-
sets in our experimental setup (Section 2.4) mostly
use one-token verbalizers which result in the
same result of MI and MIA, we utilize new sets
of verbalizers of 1-2 tokens (1 ≤ |v| ≤ 2) or 2
tokens (|v| = 2) for all the prompts of our eval-
uation datasets and compare the two methods.
Our results in Figure 4 show that using all tokens
is more effective in all configurations except for
the 1-2 token-balanced tasks.

Figure 5: F1 of the prompts selected by different
probability-based prompt selection methods, averaged
for each dataset category, with the task average also
shown. The methods with subscripts are the combi-
national variants proposed in this subsection, whose
Prompt Selection Scores are shown in Table 4. The
methods with subscript M are combinational variants
that use the component of MI; the methods with L
perform instance-wise prompt selection like MDL; the
methods with G utilize one-hot p(y|x, t) like GE. The
methods with A use All tokens to calculate p(y|x, t).

One-hot p(y|x, t) and instance-wise prompt se-
lection benefits MI. We create combinational
variants of GE, MDL, and MI (outlined in
Table 4) to study whether their differences con-
tribute to MI’s lower performance in balanced
datasets. For instance, PSSGEM is an MI-like ver-
sion of GE employing p(y|x, t) without one-hot
encoding, while PSSMDLM is an MI-like MDL
version using the average of H(Y |x, t) for all x
to select a single prompt. Contrarily, MIAG and
MIAL are variants of MI, with the former emu-
lating GE and the latter mirroring MDL, on top
of MIA. MIAGL is another MI variant employing
the sum of PSSGE and PSSMDL as PSS, using
one-hot p(y|x, t) for the first term calculation and
instance-wise selection. Figure 5 compares these
variants with existing methods. The variants that
use instance-wise prompt selection (MIAGL, MIAL,
MDL) perform better in balanced and unbalanced
datasets but underperform in dynamic ones. Par-
ticularly in balanced datasets, MIAGL, MIAL, and
MIA show significant improvement. While no
method is consistently superior across all datasets
(as observed in Section 2.4), MIAGL significantly
improves scaled F1 to 94.98% (0.6454/0.6795)
compared to that of the best existing method
(GE), which is 87.79% (0.5965/0.6795).
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4 Improving Prompt Selection Through
Enhanced Probability Calibration

While the previous section enhances prompt se-
lection performance using combinatorial variants,
in this section, we explore an orthogonal approach
to further improve prompt selection: model output
probability calibration.

Since all the prompt selection methods except
for PPL depend on the model output probabil-
ity p(y|x, t) to calculate Prompt Selection Score
(PSS), the stability and reliability of p(y|x, t) af-
fect their prompt selection performance. However,
previous works have pointed out that p(y|x, t)
is unstable without calibration.18 To address the
issue, Zhao et al. (2021) suggest Contextual Cali-
bration (CC), which reduces bias towards each
answer choice by employing content-free in-
puts (‘‘N/A’’, ‘‘[MASK]’’, ‘‘’’), while Holtzman
et al. (2021) present Domain Conditional Point-
wise Mutual Information (PMIDC) by reweighting
each answer choice based on its task-specific prior
likelihood. We summarize the two methods for
answer selection in Table 5; argmaxy q̃(y|x, t)
is selected as the answer, where q̃(y|x, t) is the
calibrated score.

One might assume that these existing calibration
methods would effectively calibrate p(y|x, t) for
PSS. However, through the experiments described
in Section 4.1, we reveal in Section 4.2 the results
that these methods have limitations for prompt se-
lection and even answer selection across numerous
datasets. In response, we propose an enhanced cal-
ibration method, Calibration By Marginalization
(CBM), in Section 4.3. Section 4.4 shows that
CBM notably improves prompt selection for most
methods, particularly MI and MDLM, enabling
them to achieve the highest prompt selection
performance compared to all other methods. Fur-
thermore, CBM’s answer selection enhancement
is the most robust across various datasets when
compared to existing calibration methods.

4.1 Experimental Setup for
Probability Calibration

We compare the prompt selection performance
with four different scenarios of calibration:

18Zhao et al. (2021) find that the probability in few-shot
learning tends to favor certain answer choices appearing at the
end of the prompt or common in pretraining data. Holtzman
et al. (2021) note that ranking based on string probability can
be probabilistic due to surface form competition.

Existing Method Equation for Answer Selection

Contextual Calibration C = {‘‘N/A’’, ‘‘[MASK]’’, ‘‘’’}
(CC) (Zhao et al., 2021) p̃cf =

1
|C|

∑
c∈C p̃(y|c, t)

W = diag(p̃cf)
−1,b = 0

q̃(y|x, t) = Wp(y|x, t) + b

Domain Conditional
PMI (PMIDC)
(Holtzman et al., 2021)

q̃(y|x, t) = log p̃(y|x,t)
p̃(y|xdomain,t)

Table 5: Existing calibration methods proposed for
answer selection. argmaxy q̃(y|x, t) is selected
as the answer for the prompt t instantiated by in-
put instance x. Note that the actual calculation of
CC in the official code uses pcf, mean-normalized
p̃cf; thus, we also use it in our experiments.

without applying any calibration; (A) applying
calibration only for Answer selection, comput-
ing q̃(y|x, t) where argmaxy q̃(y|x, t) is selected
as the answer; (P) applying calibration only for
Prompt selection; and (PA) applying calibration
for both Prompt selection and Answer selection.

Normalization of q̃(y|x, t) is not required for
answer selection, as it does not affect the argmax
of the scores. However, to obtain PSS, it is essen-
tial to normalize q̃(y|x, t) so that the sum equals
one, thereby preserving the original probabilistic
motivation of different methods. Consequently,
we apply the softmax function to convert q̃(y|x, t)
into a proper probability distribution q(y|x, t).19

4.2 Experimental Results:
Underperformance of Existing
Calibration Methods

We check the prompt selection performance of
each method across the four calibration scenar-
ios. Surprisingly, for both CC and PMIDC, we
find that all three calibration scenarios show de-
graded performance compared to the scenario of
no calibration. Not only does the prompt selection
performance degrade, but the best, worst, and av-
erage prompt performance also drops in the case
of A (only answer selection). This is unexpected,
as CC and PMIDC have been reported to improve

19To calculate PMIDC, it is necessary to manually se-
lect xdomain for each prompt in every dataset. Nonetheless,
our experiments involve a total of 1,300 unique prompts,
making a manual determination of different xdomain for each
prompt a tedious task. Therefore, we use the prompt in-
stantiated with an empty input (xdomain = ι(‘‘’’, t)) for each
prompt.
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performance in slightly different setups (our re-
sults are in a zero-shot setting, while the main
setup of Zhao et al. (2021) is few-shot, and the
choice of xdomain differs for PMIDC).

To further investigate the subpar performance in
case A, we analyze the proportion of prompts (out
of 100) that exhibit improved performance after
applying calibration for answer selection across
ten different models and 13 datasets. Figure 1b
displays the average ratio for all models. The fig-
ure indicates that the existing calibration methods
do not result in better answer selection for the
majority of our evaluation datasets. For instance,
more than half of the prompts displayed decreased
performance after applying CC in 7 out of 13
datasets. A similar pattern holds when applying
PMIDC.

4.3 Enhanced Calibration Method:
Calibration By Marginalization (CBM)

Table 5 shows that the equation for CC can be
alternatively expressed as follows:

q̃(y|x, t) = diag(p̃cf)
−1p(y|x, t) + 0 =

p(y|x, t)
p̃cf

=
p(y|x, t)

1
|C|

∑
c∈C p̃(y|c, t)

,

which turns CC into a special case of PMIDC,20

where p̃(y|xdomain, t) =
1
|C|

∑
c∈C p̃(y|c, t). Addi-

tionally, upon revisiting the motivation of PMIDC

and considering the equation of pointwise mutual
information PMI(x, y) = log p(y|x)

p(y) , it becomes
evident that p̃(y|xdomain, t) approximates p(y|t).
Therefore, the distinction between CC and PMIDC

lies solely in how they approximate p(y|t). How-
ever, since the approximation for CC relies on
three inputs and PMIDC on just one, both meth-
ods fall short of providing a stable approximation.
This limitation naturally leads to the following
question: Could there be a way to approximate
p(y|t) in a more stable manner?

Encouragingly, the answer to the question
is yes. A better approximation of p(y|x, t)
can be calculated using the law of marginal
probability: p(y|t) =

∑
x∈X p(y, x|t) =∑

x∈X p(y|x, t)p(x|t). With this more stable
approximation of p(y|t) and the probabilistic
assumption of MI that p(x|t) = 1

|X| , we introduce
a new calibration method called Calibration By

20We can ignore the lack of log because it does not change
the result of argmax.

Figure 6: F1 of the prompts selected by different
probability-based prompt selection methods, aver-
aged across 13 datasets, for each scenario of CBM
calibration.

Marginalization (CBM) that employs the follow-
ing equation for answer selection:

q̃(y|x, t) = p(y|x, t)
p(y|t) =

p(y|x, t)
1

|X|
∑

x′∈X p(y|x′, t)
.

(1)

Since the calculation of p(y|x, t) for all t ∈ T
and x ∈ X is already done to perform prompt
selection, CBM does not introduce any additional
computational cost for calibration, unlike CC or
PMIDC that require inference on additional inputs
such as ‘‘N/A’’, ‘‘[MASK]’’, ‘‘’’, and xdomain.

4.4 Experimental Results: Improvement
with CBM Calibration

Figure 6 presents the prompt selection perfor-
mance of each probability-based prompt selection
method across the four calibration scenarios of
applying CBM. Applying CBM calibration for
answer selection (A) enhances prompt selection
performance across all methods. Scenarios involv-
ing calibration for prompt selection (PA, P) mostly
result in unchanged or decreased prompt selection
performance compared to the cases without cali-
bration, and applying calibration solely for prompt
selection (P) consistently results in diminished
performance.

The methods displaying the most significant
performance improvements in the PA scenario
are MIAG, MIA, MI, and MDLM, particularly
with the prompt selection performance of MI(PA)

A
and MDL(PA)

M being the highest among differ-
ent methods. On average, MI(PA)

A increases the
scaled F1 from 87.79% (0.5965/0.6795) to 99.44%
(0.6757/0.6795) compared to the best existing
method (GE) when the oracle prompt without
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Figure 7: Scaled F1 and correlation of F1 of the selected prompts and Prompt Selection Score of different
probability-based prompt selection methods for different models, averaged across 13 datasets.

calibration is used as the target of comparison.
The scaled F1 of MI(PA)

A calculated with respect
to the oracle prompt with calibration is 96.85%
(0.6757/0.6977).

Next, we assess the effectiveness of CBM cal-
ibration for answer selection by examining the
proportion of prompts (out of 100) that show im-
proved performance after applying calibration for
answer selection. Figure 1b indicates that CBM is
considerably more effective than CC and PMIDC

in enhancing the performance of the prompts. The
performance of more than half of the prompts
increases after applying CBM in all 13 datasets.
Additionally, the performance of nearly 100%
of prompts improves with CBM calibration in 7
datasets. While CC and PMIDC improved almost
none of the F1 of the prompts in story and hella,
the performance of approximately 70% of the
prompts increased with CBM calibration, possi-
bly due to the more accurate calculation of p(y|t)
as discussed in Section 4.3.

5 Discussion

In this section, we discuss various findings that
are relevant to our main experiments.

Figure 7a shows that the effectiveness of a
probability-based prompt selection method re-
mains consistent across models of different types
and numbers of parameters, justifying our choice
of using a single model (OPT 2.7B) as the repre-
sentative for all experiments. Figure 7b shows that
the trend of correlation between Prompt Selection
Score and performance of the selected prompt is
also quite consistent between different models.

Figure 8 shows the mean and standard devia-
tion of the result of prompt selection among five
different subsets of 50 prompts randomly sam-
pled from the full set of 100 prompts, using the

Figure 8: Mean and standard deviation of prompt se-
lection among five sets of 50 prompts, sampled from
the full set of 100 prompts.

mainly discussed methods. The result shows that
the performance of instance-wise prompt selec-
tion methods (MIAGL, MIAL, MDL) is not stable,
likely due to the noisy nature of selecting one
prompt for each instance. However, the perfor-
mance of MI(PA)

A and MDL(PA)
M still achieves the

highest performance and also shows the lowest
standard deviation, proving the effectiveness of
CBM.

Through additional analysis, we find that (1)
while strong performance in prompt selection does
not consistently correlate with Prompt Selection
Score, a broadly positive correlation is observed
when averaged across most methods; (2) CBM
improves the performance of MDLM by miti-
gating overconfidence; (3) MI, GE, and CBM
methods face limitations when applied to dy-
namic datasets with extreme label imbalance; (4)
top-performing prompt selection methods from
the zero-shot setting, like MI(PA)

A and MDL(PA)
M ,

retain their effectiveness in the few-shot setting,
further validating their robustness across differ-
ent conditions.
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Figure 9: F1 (top) and accuracy (bottom) of the prompts selected by the different probability-based prompt
selection methods, shown for each dataset.

6 Related Works

Recent advances in LLMs have created the
paradigm of prompt-based learning, which gives
the benefit that a single pretrained LLM can
be used to solve a great number of tasks with
task-specific prompts. However, the performance
of LLMs can heavily fluctuate according to the
choice of prompts (Zhao et al., 2021; Holtzman
et al., 2021; Lu et al., 2022). To mitigate this issue,
prompt engineering attempts to find the prompt
that results in the most effective performance on
the downstream task (Liu et al., 2023).

Automatic prompt engineering methods can
be largely divided into two groups: the meth-
ods that use discrete prompts where the prompts
are human-understandable actual text strings, and
the methods that optimize continuous prompts
where the prompts lie in the embedding space
of the model (Li and Liang, 2021; Shin et al.,
2020). Probability-based prompt selection meth-
ods that we study in this work (Section 2.2) fall
into the former group; most of the methods of
the latter group require gradient-based training,
while probability-based prompt selection does not
perform any gradient-based update.

Prompt engineering methods using discrete
prompts include prompt paraphrasing, prompt
generation, and prompt selection. Among these,
prompt paraphrasing or generation approaches can
be used together with probability-based selection
methods; prompt selection can be performed on

the prompts generated through prompt paraphras-
ing or generation (Jiang et al., 2020; Mishra et al.,
2022; Gao et al., 2021; Wang et al., 2023; Prasad
et al., 2023; Kim et al., 2022; Deng et al., 2022).
Among prompt selection methods other than the
probability-based approaches, a large portion of
the methods are not easily utilizable since they re-
quire training an additional model and/or the use of
an additional component. Zhang et al. (2022b) use
reinforcement learning for demonstration selec-
tion of in-context learning; Chang and Jia (2023)
train a scorer and estimator for demonstration se-
lection; Kumar and Talukdar (2021) and Xu et al.
(2022) use a genetic algorithm; Liu et al. (2022),
Lyu et al. (2023), and Rubin et al. (2022) use
retrieval from a corpus to select the prompts.

On the other hand, probability-based prompt
selection offers the advantage of prompt selec-
tion requiring only the output probabilities of the
LLM. While the prerequisite is a set of candidate
prompts to select from, this data is relatively small
in size and can be easily obtained from the research
community (Bach et al., 2022) or via machine gen-
eration (OpenAI, 2023). One limitation of these
methods, though, is that one cannot use them for
closed-source LLMs that are only available via
proprietary LLM APIs that do not provide output
probability distributions. Also, when the num-
ber of candidate prompts |T | and the size of the
dataset used to select the prompt |X| is large, the
calculation for prompt selection becomes compu-
tationally heavy; using a smaller set X ′ ∈ X to
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choose the prompt for X can be helpful in such
a case.

7 Conclusion

In this paper, we address the need for a
comprehensive evaluation to compare the exist-
ing probability-based prompt selection methods,
which have been proposed and evaluated under
varying conditions and datasets. To achieve this,
we introduce a unified evaluation setup to compare
these methods, conduct a thorough evaluation,
and develop a unified framework of the existing
probability-based prompt selection methods. Our
analysis within this unified framework has pro-
vided insights into the relationship among existing
methods, enabling the development of several
combinational variants that improve performance.
Furthermore, our research on probability cali-
bration has revealed the limitations of existing
calibration methods and led to the proposal of
an enhanced calibration method, Calibration By
Marginalization (CBM). CBM not only signif-
icantly improves prompt selection performance
but also demonstrates robust answer selection
enhancement across multiple datasets. We hope
that our unified setup provides a foundation for
fair evaluation between various prompt selection
methods and that our findings yield deeper insights
into probability-based prompt selection.
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Smith, Stéphane Requena, Suraj Patil, Tim

Dettmers, Ahmed Baruwa, Amanpreet Singh,
Anastasia Cheveleva, Anne-Laure Ligozat,
Arjun Subramonian, Aurélie Névéol, Charles
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