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Abstract
In many NLP applications, to mitigate data de-
ficiency in a target task, source data is collected
to help with target model training. Existing
transfer learning methods either select a subset
of source examples that are close to the target
domain or try to adapt all source examples
into the target domain, then use selected or
adapted source examples to train the target
model. These methods either incur significant
information loss or bear the risk that after adap-
tation, source examples which are originally
already in the target domain may be outside
the target domain. To address the limitations
of these methods, we propose a four-level
optimization based framework which simul-
taneously selects and adapts source data. Our
method can automatically identify in-domain
and out-of-domain source examples and apply
example-specific processing methods: selec-
tion for in-domain examples and adaptation
for out-of-domain examples. Experiments on
various datasets demonstrate the effectiveness
of our proposed method.

1 Introduction

Transfer learning (TL) (Zhuang et al., 2020),
which aims at improving a model in a target
domain by utilizing data from a source domain,
has been broadly studied in natural language pro-
cessing. One paradigm of TL methods (Sun et al.,
2011; Song et al., 2012; Wang et al., 2017b; Patel
et al., 2018; Qu et al., 2018; Liu et al., 2019b)
focuses on selecting a subset of source examples
that are close to the target domain and using se-
lected examples as additional training data for the
target model. Another paradigm of TL methods
(Pan et al., 2010; Ganin et al., 2016; Bousmalis
et al., 2017) focuses on adapting the entire set of
source examples into the target domain and using
adapted source examples as additional training
data for the target model. The problem of selec-
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tion based methods is that unselected examples are
discarded. Though having a domain discrepancy
with target data, unselected examples still contain
useful information that can be leveraged to im-
prove the target model. Discarding them would
lead to information loss. The problem of adapta-
tion based methods is that some source examples
may already be in the target domain; performing
domain adaptation on these source examples is a
waste of effort; and, even worse, after adaptation,
these source examples may be outside the target
domain.

To address the limitations of both paradigms
of methods, we propose a new approach which
simultaneously performs selection and adaptation
of source examples: Our method automatically
identifies which source examples are in the same
domain as target data (referred to as in-domain
source data) and which are not (referred to as
out-of-domain source data); for in-domain source
data, they are directly used to train the target
model; for out-of-domain source data, they are
first adapted, then utilized to train the target model.
Compared with previous methods, our approach
has the following advantage: Instead of using
a single way to deal with all source examples
(either performing selection or adaptation), our
method applies example-specific ways to deal
with different examples based on whether they are
in-domain or out-of-domain.

Our method is based on four-level optimiza-
tion, which performs the following four stages
end-to-end. At the first stage, a domain distance
network is trained based on self-supervised learn-
ing. At the second stage, the domain distance
network is used to identify out-of-domain source
examples and adapt them into the target domain.
At the third stage, in-domain source examples se-
lected by the domain distance network and adapted
source examples are used to train a target model.
At the fourth stage, the trained target model is
evaluated on a validation set and data weights
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of the domain distance network are updated by
minimizing the validation losses. Experiments on
a variety of datasets demonstrate the effectiveness
of our proposed method. To summarize, the ma-
jor contributions of this work is that we propose
a four-level optimization based framework for
simultaneous selection and adaptation of source
examples in transfer learning and demonstrate the
effectiveness of our proposed method on two NLP
applications.

2 Related Works

Domain Adaptation (DA). DA (Pan et al.,
2010; Ganin et al., 2016; Bousmalis et al., 2017;
Sun and Saenko, 2016; Long et al., 2017b;
Ben-David et al., 2010; Hoffman et al., 2018;
Long et al., 2017a; Kang et al., 2019; Long et al.,
2015; Long et al., 2017b; Hoffman et al., 2018;
Mitsuzumi et al., 2021) considers the problem of
transferring knowledge from a label-rich source
domain to a label-deficient target domain where
the two domains have distributional discrepancies.
There are mainly two paradigms of approaches.
One paradigm (Sun and Saenko, 2016; Long
et al., 2017b; Ben-David et al., 2010; Kang et al.,
2019) is based on metric learning, where a distance
metric is defined to measure the distribution dis-
crepancy between domains and domain-invariant
representations are learned by minimizing the dis-
tance. The other paradigm is based on adversarial
learning (Hoffman et al., 2018; Long et al., 2017a;
Tzeng et al., 2017; Sankaranarayanan et al., 2018;
Motiian et al., 2017), which learns a domain
discriminator and a feature learning network ad-
versarially. The domain discriminator is trained
to tell whether an instance is from source domain
or target domain, while the feature learning net-
work learns domain-invariant features by fooling
the domain discriminator. CDAN (Long et al.,
2017a) uses multilinear conditioning to capture
the cross-covariance between feature represen-
tations and classifier predictions, and leverages
entropy conditioning to control the uncertainty of
classifier predictions. MME (Saito et al., 2019)
performs adaptation by maximizing the condi-
tional entropy of unlabeled target data w.r.t the
classifier and minimizing it w.r.t the feature en-
coder. SRDC (Tang et al., 2020) performs deep
discriminative clustering with source regulariza-
tion for unsupervised domain adaptation. These

methods perform adaptation on all source data,
which leads to waste of efforts and incurs a risk of
moving in-domain source data outside the target
domain.

Data Selection in Transfer Learning. Many
methods (Jiang and Zhai, 2007; Foster et al.,
2010; Moore and Lewis, 2010; Axelrod et al.,
2011; Ge and Yu, 2017; Ruder and Plank, 2017;
Sivasankaran et al., 2017; Zhang et al., 2017;
Guo et al., 2019; Liu et al., 2019a; Tang and
Jia, 2019; Wang et al., 2019a,b; Bateson et
al., 2020) have been developed for selecting
source data that is suitable for training target
models, based on reinforcement learning (Patel
et al., 2018; Qu et al., 2018; Liu et al., 2019b),
adversarial learning (Wang et al., 2019a), cur-
riculum learning (Zhang et al., 2017; Wang
et al., 2019b), entropy (Song et al., 2012; Wang
et al., 2017b), Bayesian optimization (Ruder and
Plank, 2017), multi-task learning (Ge and Yu,
2017), and bi-level optimization (BLO) (Ren
et al., 2018, 2020; Hu et al., 2019; Shu et al., 2019;
Wang et al., 2020a,b). BLO based approaches se-
lect data by minimizing a validation loss, where
the lower-level optimization problem trains net-
work weights on a training dataset and the upper-
level optimization problem learns data selection
variables on a validation set. These methods se-
lect part of source data and discard the rest, which
incurs information loss.

Transfer Learning (TL). TL (Pratt, 1993;
Mihalkova et al., 2007; Niculescu-Mizil and
Caruana, 2007; Pan and Yang, 2009; Luo
et al., 2017; Zhuang et al., 2020) aims at train-
ing a better target model by utilizing source data.
Many TL methods have been developed, including
those based on 1) distribution alignment (Huang
et al., 2006; Foster et al., 2010; Wang et al.,
2017b; Ngiam et al., 2018), 2) regularization (Luo
et al., 2008; Tommasi et al., 2010; Duan et al.,
2012), 3) adversarial domain-invariant represen-
tation learning (Ganin et al., 2016; Long et al.,
2017a; Hoffman et al., 2018; Zhang et al., 2019),
and 4) latent space projection (Borgwardt et al.,
2006; Pan et al., 2010; Long et al., 2013; Wang
et al., 2017a). These methods either select part of
source data or adapt all source data, which leads to
information loss, waste of efforts, and the risk of
adapting in-domain source data outside the target
domain.
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Figure 1: The overall framework.

Bi-level Optimization (BLO). BLO finds broad
applications in hyperparameter tuning (Feurer
et al., 2015), data selection (Shu et al., 2019;
Ren et al., 2020; Wang et al., 2020b), training data
generation (Such et al., 2019), neural architecture
search (Liu et al., 2018), learning rate adapta-
tion (Baydin et al., 2017), meta learning (Finn
et al., 2017), etc. In BLO-based methods, model
weights are learned by solving an inner optimiza-
tion problem and meta parameters are learned by
solving an outer optimization problem. The two
optimization problems are nested. Different from
existing BLO-based methods, our method is based
on four-level optimization.

3 Methods

In this section, we present the method for simulta-
neous selection and adaptation of source examples
based on four-level optimization. We aim to train
a target model for a specific target domain us-
ing dataset Dt. In practical scenarios, the target
domain often suffers from a lack of labeled train-
ing data. This lack can lead to overfitting on the
training data and poor generalization on test data.
To address this issue, we utilize a dataset from
a source domain, Ds, which has an abundance
of labeled examples. However, there is a notable
discrepancy between the source and target data.
We categorize Ds examples into two types: those
that belong to the same domain as Dt (in-domain
source data) and those that do not (out-of-domain
source data). We aim to select in-domain source
data and adapt out-of-domain source data into
the target domain, and use selected and adapted
source data to train the target model. The overall
framework is shown in Figure 1. The notations are
shown in Table 1.

3.1 A Four-Level Optimization Framework
We propose a four-level optimization framework
to perform simultaneous selection and adaptation
of source data. The framework consists of four
learning stages which are performed end-to-end.

Notation Meaning
Dt Target dataset.
Nt The number of examples in Dt.
D

(tr)
t Training dataset of Dt.

D
(val)
t Validation dataset of Dt.

d
(tr)
t,i The i-th example in D

(tr)
t .

Ds Source dataset.
Ns The number of examples in Ds.
ds,i The i-th example in Ds.
q Query example.
R A set of examples.
o Binary label regarding whether q

and R are from the same domain.
M The number of SSL training exam-

ples.
W The DDMN’s weight parameters.
a The weight of an SSL training

example.
A The weights of all SSL training

examples.
W ∗(A) The optimal solution of W , which

depends on A.
f(q,Dt;W

∗(A)) A binary label regarding whether q
is out of the target domain.

W ∗
1 (A) The encoder in W ∗(A).

W ∗
2 (A) The rest of layers in W ∗(A) besides

W ∗
1 (A).

ẑ(q;W ∗
1 (A)) The latent representation of q

extracted by W ∗
1 (A).

z(q) The adapted representation of q.
z∗(q,W ∗(A)) The optimal solution of z(q), which

depends on W ∗(A).
γ A tradeoff parameter in Eq.(2).
λ A tradeoff parameter in Eq.(6).
U Target model.
Û A sub-network of U , which takes

z∗(q,W ∗(A)) as input.
�tgt The target model’s training loss.
Lt The target model’s training loss on

target training data.
Ls The target model’s training loss on

selected source data.
La The target model’s training loss on

adapted source data.

Table 1: Notations.

Stage I. At the first stage, we learn a domain
distance metric network via self-supervised learn-
ing (SSL) (He et al., 2019; Chen et al., 2020).
This network takes a query example q and a set
of examples R as inputs and predicts a binary
label representing whether q is in the domain of
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R. The architecture of this network is as follows.
For q and each example in R, an encoder is used
to generate a latent representation for the exam-
ple. Then self-attention (Vaswani et al., 2017) is
performed on these latent representations to gener-
ate attentive representations. Finally, the attentive
representation of q and the averaged attentive rep-
resentation of examples in R are concatenated and
fed into a feedforward layer to predict the binary
label.

To learn this domain distance metric network
(DDMN), we construct self-supervised training
examples. We randomly sample a subset of ex-
amples R from Dt, and randomly sample a query
example qt from Dt and a query example qs from
Ds. We label (qt, R) as a positive pair since qt
and R are both from target domain, and label
(qs, R) as a negative pair since qs is from source
domain and R is from the target domain. This
procedure repeats M times, yielding 2M train-
ing examples denoted by Dssl = {(qi, Ri, oi)}2Mi=1

where oi is a binary label representing whether
qi and Ri are from the same domain. Let W de-
note weight parameters of the DDMN. We learn
W by minimizing the binary classification loss:∑2M

i=1 �(qi, Ri, oi;W ) where � is a cross-entropy
loss.

Note that these self-supervised examples may
be noisy since the binary labels are given based
on heuristics without human scrutiny. It could be
the case that qs happens to be in the same domain
as R while qt is not. It is necessary to automat-
ically identify and remove these noisy examples.
To achieve this goal, we associate each example
(qi, Ri, oi) with a weight ai ∈ [0, 1]. The smaller
ai is, the more likely that (qi, Ri, oi) is noisy. We
multiply ai to the loss �(qi, Ri, oi;W ). If ai is
close to zero, ai�(qi, Ri, oi;W ) is made close to
zero, which effectively removes (qi, Ri, oi) from
the training set. This stage amounts to solving the
following optimization problem:

W ∗(A) = argminW

2M∑
i=1

ai�(qi, Ri, oi;W ), (1)

where A = {ai}2Mi=1. W ∗(A) denotes that W ∗

is a function of A. This is because W ∗ is a
function of the loss which is a function of A. A is
tentatively fixed at this stage and will be updated
at a later stage. A cannot be updated at this stage.
Otherwise, all the values in A would be zero.

Stage II. At the second stage, we use the
learned domain distance network to identify
out-of-domain source examples and adapt them
into the target domain. For each data example q
from the source dataset Ds, we feed q and the tar-
get datasetDt intoW ∗(A), which predicts a binary
label f(q,Dt;W

∗(A)). If f(q,Dt;W
∗(A)) = 0,

it means q is out of the target domain, and we
use the domain distance network to adapt it
into the target domain. The adaptation is per-
formed in the following way. In W ∗(A), let
W ∗

1 (A) denote the encoder (containing all lay-
ers before self-attention) and W ∗

2 (A) denote the
rest of layers (including self-attention and feed-
forward layers) used for predicting the binary
label. Let ẑ(q;W ∗

1 (A)) denote the latent repre-
sentation of q extracted by W ∗

1 (A)—the layer
before self-attention. We learn another represen-
tation z(q) of q which falls into the target domain
(in the latent space) and is close to ẑ(q;W ∗

1 (A)).
Closeness is measured using L2 distance. To en-
courage z(q) to fall into the target domain, we
encourage W ∗

2 (A) to predict that z(q) is in the
target domain, i.e., minimizing the binary classi-
fication loss l(z(q), Dt, tq = 1;W ∗

2 (A)). At this
stage, we solve the following optimization prob-
lem for each source example q that is predicted to
be out-of-domain:

z∗(q,W ∗(A))
= argminz(q) l(z(q), Dt, tq = 1;W ∗

2 (A))︸ ︷︷ ︸
Encourage z(q) to fall into the target domain

+γ ‖z(q)− ẑ(q;W ∗
1 (A))‖22︸ ︷︷ ︸

Encourage z(q) to be close to ẑ(q;W ∗
1 (A))

(2)
where γ is a tradeoff parameter.

Stage III. At the third stage, we use selected and
adapted source examples, together with the target
training data D(tr)

t , to train the target model U . Let
�tgt denote the loss function of the target task, Ns

and Nt denote the number of examples in Ds and
Dt, and f(q,Dt;W

∗(A)) denote the binary label
predicted by the domain distance network W ∗(A)
regarding whether a source example q is in the
target domain. d(tr)t,i denotes the i-th example in

D
(tr)
t , ds,i denotes the i-th example in Ds. For a

source example which is predicted to be in the
target domain (where f(ds,i, Dt;W

∗(A)) = 1),
it is directly used to train the target model U
by minimizing the loss �tgt(U, ds,i). For a source
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example which is predicted to be out of the tar-
get domain (where f(ds,i, Dt;W

∗(A)) = 0), its
adapted representation z∗(ds,i,W

∗(A)) obtained
in the second stage is used to train the target
model. Note that since z∗(ds,i,W

∗(A)) is already
a latent representation, only part of weight pa-
rameters (denoted by Û ) in the target model U
is needed to make prediction on z∗(ds,i,W

∗(A)).
We define the loss on target training data as:

Lt(U) =

Nt∑
i=1

�tgt(U, d
(tr)
t,i ), (3)

the loss on selected source data as:
Ls(U,W

∗(A))

=
∑Ns

i=1 f(ds,i, Dt;W
∗(A))�tgt(U, ds,i),

(4)

and the loss on adapted data as:
La(Û ,W ∗(A))

=
Ns∑
i=1

(1− f(ds,i,Dt;W
∗(A)))�tgt(Û , z∗(ds,i,W ∗(A))).

(5)
At this stage, we solve the following optimization
problem:
U∗(W ∗(A))

= argminU Lt(U) + λ
(
Ls(U,W

∗(A)) + La(Û ,W ∗(A))
)
,

(6)
where λ is a tradeoff parameter.

Stage IV. At the fourth stage, we use the trained
target model to make predictions on the validation
dataset D(val)

t of the target task. We update the
weights A of self-supervised training examples in
the first stage by minimizing the validation loss:

minA L(U ∗(W ∗(A)), D
(val)
t ). (7)

A Four-level Optimization Based Frame-
work. Putting all these pieces together, we
have the following four-level optimization based
framework.

minA L(U∗(W ∗(A)),D
(val)
t )︸ ︷︷ ︸

Stage IV
s.t.

U∗(W ∗(A)) = argminU Lt(U) + λ
(
Ls(U,W ∗(A)) +La(Û,W ∗(A))

)
︸ ︷︷ ︸

Stage III

z∗(q,W ∗(A))

= argminz(q) l(z(q),Dt, tq = 1;W ∗
2 (A)) + γ‖z(q)− ẑ(q;W ∗

1 (A))‖22︸ ︷︷ ︸
Stage II

W ∗(A) = argminW

2M∑
i=1

ai�(qi,Ri, oi;W )

︸ ︷︷ ︸
Stage I

(8)
To make the objective at the third stage differen-
tiable, we approximate f(ds,i, Dt;W

∗(A)) using
the probability calculated by W ∗(A) regarding
whether ds,i and Dt are in the same domain.

3.2 Optimization Algorithm

We leverage a gradient-based method (Liu et al.,
2018) to solve the problem in Eq.(8). Convergence
of this algorithm has been analyzed (Ghadimi and
Wang, 2018; Grazzi et al., 2020; Ji et al., 2021;
Liu et al., 2021; Yang et al., 2021). At each level
of the optimization problem, the exact value of the
optimal solution (on the left-hand side of the equal
sign, marked with ∗) is computationally expensive
to compute. To address this problem, following
Liu et al. (2018), we approximate the optimal
solution using a one-step gradient descent update
and plug the approximation into the next level of
optimization problem. In the sequel, ∂·

∂· denotes
partial derivative. d·

d· denotes an ordinary deriva-
tive. Following Liu et al. (2018), we approximate
W ∗(A) using one-step gradient descent update of
W :

W ∗(A)≈W ′ =W − ηw∇W

2M∑
i=1

ai�(qi,Ri,oi;W ). (9)

We plug W ∗(A) ≈ W ′ into the loss function
at the second stage and get an approximated
objective. Let W ′

2 and W ′
1 denote the approxi-

mations of W ∗
2 (A) and W ∗

1 (A), respectively. The
approximated objective is O(z(q),W ′

2,W
′
1) =

l(z(q), Dt, tq = 1;W ′
2) + γ‖z(q) − ẑ(q;W ′

1)‖22.
We approximate z∗(q,W ∗(A)) using one-step
gradient descent update of z(q) w.r.t the
approximated objective:

z∗(q,W ∗(A)) ≈
z′(q) = z(q)− ηz∇z(q)O(z(q),W ′

2,W
′
1).

(10)
We plug z∗(q,W ∗(A)) ≈ z′(q) andW ∗(A) ≈ W ′

into the objective at the third stage and get an
approximated objective. Let g(ds,i, Dt;W

∗(A))
denote the probability that ds,i and Dt are in the
same domain. We approximate U ∗(W ∗(A)) using
one-step gradient descent update of U w.r.t the
approximated objective:

U∗(W ∗(A))

≈ U ′ = U − ηu∇U

(
Lt(U) + λ

(
Ls(U,W

′) + La(Û ,W ′)
))

.

(11)
Finally, we plug the approximationU ∗(W ∗(A)) ≈
U ′ into the validation loss at the fourth stage and
update A by minimizing the approximated loss
using gradient descent:

A ← A− ηa∇AL(U
′, D

(val)
t ). (12)
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while not converged do
1. Update the approximation W ′ of
W ∗(A) using Eq.(9)

2. Update the approximation z′(q) of
z∗(q,W ∗(A)) using Eq.(10)

3. Update the approximation U ′ of
U ∗(W ∗(A)) using Eq.(11)

4. Update A using Eq.(13)
end

Algorithm 1: Optimization algorithm.

For ∇AL(U
′, D

(val)
t ), it can be computed as:

∇AL(U ′,D(val)
t )

= dW ′
dA ( ∂U ′

∂W ′ +
Ns∑
i=1

dz′(ds,i)
dW ′

∂U ′
∂z′(ds,i)

)∇U ′L(U ′,D(val)
t ),

(13)
where

∂U ′
∂z′(ds,i)

= −ηuλ(1− g(ds,i,Dt;W
′))∇2

z′(ds,i),U
�tgt(Û , z′(ds,i)),

(14)
dz′(ds,i)
dW ′

= −ηz∇2
W ′,z(q)(l(z(q), Dt, tq = 1;W ′

2)

+γ‖z(q)− ẑ(q;W ′
1)‖22),

(15)

∂U ′

∂W ′

= −ηuλ∇2
W ′,U

∑Ns

i=1(g(ds,i, Dt;W
′)�tgt(U, ds,i)

+(1− g(ds,i, Dt;W
′))�tgt(Û , z′(ds,i)))

(16)
dW ′

dA
= −ηw∇2

A,W

2M∑
i=1

ai�(qi, Ri, oi;W ) (17)

The gradient descent update of A in Eq.(13)
can run one or more steps. After A is updated,
the one-step gradient-descent approximations in
Eq.(9), (10), and (11), which are functions of
A, change with A and need to be re-updated.
Then, the gradient of A, which is a function of
one-step gradient-descent approximations, needs
to be re-calculated and is used to refresh A. In
sum, the update of A and the updates of one-step
gradient-descent approximations mutually depend
on each other. These updates are performed iter-
atively until convergence. Algorithm 1 shows the
algorithm.

In the gradient of A calculated using the chain
rule, the number of chains is the same as the
number of levels in our proposed four-level
optimization formulation. This shows that this
optimization algorithm preserves the four-level
nested optimization nature of the proposed
formulation.

3.3 Reduce Computation and Memory Costs
To reduce computation and memory costs, we
adopt the following methods.

• We reduced the frequencies of updating
(including calculating hypergradients of)
the weights A of self-supervised train-
ing examples. They were updated every
8 mini-batches (i.e., iterations) instead of
on every mini-batch. We empirically found
that this greatly reduced computational costs
without significantly sacrificing accuracy.
The rest of the parameters were updated on
every mini-batch.

• We added a decorrelation regularizer
(Cogswell et al., 2015) on W and U , which
significantly speeds up convergence and
allows reducing the number of epochs by
half without sacrificing convergence quality.

• Parameter tying was performed to reduce
the number of weight parameters and com-
putation costs. We let W and U share the
same feature learning layers. These layers
account for >95% of parameters in each of
these models. Sharing them across models
significantly reduces the number of total pa-
rameters, which reduces the computational
costs of updating these parameters.

• We optimized the implementation of our
method to speed up computation by leverag-
ing techniques including 1) automatic mixed
precision (Micikevicius et al., 2017), 2) using
multiple (4, specifically) workers and pinned
memory in PyTorch DataLoader, 3) using
cudNN autotuner, 4) kernel fusion, and so
forth.

3.4 Applications
In this section, we apply the proposed four-level
optimization framework for two NLP applications.

Text Classification. In many text classification
problems, training data in a target domain is lim-
ited. To address the lack of target training data,
one can leverage data from a source domain.

Visual Question Answering on Pathology Im-
ages. Pathology imaging (Mohan, 2015) is
broadly used for identifying the causes and effects
of diseases or injuries. Given a pathology image,
being able to answer questions about the clinical
findings contained in the image is very important
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Domain Dataset Label Type Train Dev Test Classes

Biomedical
CHEMPROT relation classification 4169 2427 3469 13
RCT abstract sent. roles 180040 30212 30135 5

Computer ACL-ARC citation intent 1688 114 139 6
Science SCIERC relation classification 3219 455 974 7

News
HYPERPARTISAN partisanship 515 65 65 2
AGNEWS topic 115000 5000 7600 4

Reviews
HELPFULNESS review helpfulness 115251 5000 25000 2
IMDB review sentiment 20000 5000 25000 2

Table 2: Statistics of datasets used in Gururangan et al. (2020).

for medical decision-making (He et al., 2020).
However, collecting a large-scale visual question
answering (VQA) dataset is challenging, due to
the lack of doctors for making questions and an-
swers from pathology images. A dataset collected
in He et al. (2020) has about 33K question-answer
pairs generated from around 5K pathology images.
Although largest of its kind, it is still relatively
small compared with common VQA datasets. To
mitigate the deficiency of training data, we collect
an auxiliary source dataset. From the pathology
literature, we collect 1792 pathology figures and
create 36,471 VQA questions using the method
proposed in He et al. (2020).

4 Experiments

In this section, we present experimental results
on text classification and visual question answer-
ing on pathology images. Following the common
data assumption in transfer learning, the amount
of labeled source data in our experiments is sig-
nificantly larger than that of target data. Every
experiment runs 4 times with different random
initializations. For all experiments, we performed
significance tests using double-sided t-tests. The
p-values of our methods against baselines are all
less than 0.001, which shows that our methods are
significantly better than baselines.

4.1 Text Classification
Dataset. Following Gururangan et al. (2020),
we experiment with four domains: biomedical,
computer science, news, and reviews. For the
biomedical domain, we use two target datasets:
CHEMPROT (Kringelum et al., 2016) and RCT
(Dernoncourt and Lee, 2017), and one source
dataset which contains 2.68 million full-text pa-
pers from S2ORC (Lo et al., 2019) with 7.55
billion tokens. For the computer science domain,

we use two target datasets: ACL-ARC (Jurgens
et al., 2018) and SCIERC (Luan et al., 2018), and
one source dataset which contains 2.22 millon
full-text papers from S2ORC (Lo et al., 2019)
with 8.1 billion tokens. For the news domain,
we use two target datasets: HYPERPARTISAN (Kiesel
et al., 2019) and AGNEWS (Zhang et al., 2015), and
one source dataset which contains 11.9 million ar-
ticles from RealNews (Zellers et al., 2019) with
6.66 billion tokens. For the reviews domain, we
use two target datasets: HELPFULNESS (McAuley
et al., 2015) and IMDB (Maas et al., 2011), and
one source dataset which contains 24.75 million
articles from Amazon Reviews (He and McAuley,
2016) with 2.11 billion tokens. Statistics of the
target datasets are summarized in Table 2. In our
method, we split the original target training set
into a new training set and a validation set, with a
ratio of 1:1. The new training set is used as D(tr)

cls

and the validation set is used as D(val)
cls . Note that

baseline methods are trained on the combination
of D(tr)

cls and D
(val)
cls .

Baselines. We compare our method with the fol-
lowing baselines. In baseline methods, the target
data used for training the target model includes
both training and validation sets.

• Domain adaptive pretraining (DAPT)
(Gururangan et al., 2020): Given an
RoBERTa-base model which has been
pretrained on large amounts of corpora (used
in Liu et al., 2019c), we continue to pretrain
it on source data, then finetune it on target
data.

• Task adaptive pretraining (TAPT)
(Gururangan et al., 2020): Given an
RoBERTa-base model which has been
pretrained on large amounts of corpora (used
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in Liu et al., 2019c), we continue to pretrain
it on input texts of each target dataset.

• Data selection methods for transfer learn-
ing, based on Bayesian optimization (BO)
(Ruder and Plank, 2017), minimax game
(MMG) (Wang et al., 2019a), learning to
select instance (LSI) (Huan et al., 2021).

• Domain adaptation methods, including
DANN (Ganin et al., 2016), CDAN (Long
et al., 2017a), MME (Saito et al., 2019),
SRDC (Tang et al., 2020), SSDA (Kim and
Kim, 2020), GDA (Mitsuzumi et al., 2021),
and ATDOC (Liang et al., 2021).

• SimCSE (Gao et al., 2021): A contrastive
learning method. The same input sentence
is fed into a pretrained RoBERTa encoder
twice by applying different dropout masks,
to get two different embeddings. These two
embeddings are labeled as being ‘‘similar’’.
Embeddings of different sentences are la-
beled as being ‘‘dissimilar’’. Contrastive
learning is performed on these ‘‘similar’’
and ‘‘dissimilar’’ pairs.

Implementation Details. In the domain distance
network, the hyperparameters of self-attention and
feed-forward layer are the same as those in Trans-
former (Vaswani et al., 2017). The subset R has
varying cardinality (sampled uniformly). M is set
to 10k. The tradeoff parameter γ and λ is set
to 0.1 and 0.5 respectively. Baselines and our
method receive a similar amount of tuning time
and efforts. F1 is used as the evaluation metric.
We use RoBERTa-base as a data encoder. For a
fair comparison, most of our hyperparameters are
the same as those in Gururangan et al. (2020).
The maximum text length was set to 512. For all
datasets, we used a batch size of 16 with gradi-
ent accumulation. We used the AdamW optimizer
(Loshchilov and Hutter, 2017) with a warm-up
proportion of 0.06, a weight decay of 0.1, and an
epsilon of 1e-6. In AdamW, β1 and β2 are set to
0.9 and 0.98, respectively. The maximum learning
rate was 2e-5. For the reader’s convenience, we
summarize the hyperparameters as follows.

• The number M of self-supervised training
examples: 10k

• Tradeoff parameters γ and λ: 0.1, 0.5

• Maximum text length: 512

• Batch size: 16

• Optimizer: AdamW

• Warm-up proportion, weight decay, and
epsilon in AdamW: 0.06, 0.1, and 1e-6

• β1 and β2 in AdamW: 0.9, 0.98

• Maximum learning rate: 2e-5

To tune the hyperparameters, we randomly split
the validation set into two equal-sized subsets, de-
noted by A and B. For each configuration of
hyperparameters, we use the validation set A to
learn the importance weights of self-supervised
training examples. Then we measure the perfor-
mance of the trained model on validation set B.
Hyperparameter values yielding the best perfor-
mance on validation set B are selected. Each
baseline method received an equal amount of
tuning effort as that for our method.

Results and Analysis. Table 3 shows the
results. From this table, we make the following ob-
servations. First, our method outperforms source
data selection methods including BO, MMG, and
LSI. In these baseline methods, out-of-domain
source examples are discarded, which incurs in-
formation loss. In contrast, our method adapts
out-of-domain source examples into the target
domain and uses the adapted examples to train
the target model. Second, our method works bet-
ter than domain adaptation methods including
DANN, CDAN, MME, SRDC, SSDA, GDA, and
ATDOC. The reason is: These methods perform
adaptation on all source examples without identi-
fying which ones are already in the target domain;
as a result, some in-domain source examples may
be adapted out of the target domain. In contrast,
our method first identifies which source exam-
ples are already in-domain and only performs
adaptation on out-of-domain examples. Third,
our method outperforms vanilla RoBERTa-base
which does not leverage source data to learn rep-
resentations. This demonstrates that leveraging
source data is helpful for improving the tar-
get model. Fourth, our method performs better
than DAPT. In DAPT, all source examples are
leveraged to pretrain the target encoder without
considering the fact that some source examples
have large domain discrepancy with the target
domain and are not suitable for pretraining the
target encoder. Fifth, our method outperforms
TAPT and SimCSE. These methods do not lever-
age auxiliary source data or select/adapt source
data.
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Method CHEMPROT RCT ACL-ARC SCIERC HYPERPARTISAN AGNEWS HELPFULNESS IMDB Average
RoBERTa-base 81.91.0 87.20.1 63.05.8 77.31.9 86.60.9 93.90.2 65.13.4 95.00.2 81.3
TAPT 82.60.4 87.70.1 67.41.8 79.31.5 90.45.2 94.50.1 68.51.9 95.50.1 83.2
DAPT 84.20.2 87.60.1 75.42.5 80.81.5 88.25.9 93.90.2 66.51.4 95.40.1 84.0
SimCSE 83.20.2 87.60.1 69.52.6 80.50.7 90.92.7 94.70.1 68.71.7 95.70.1 83.9
BO 83.30.2 87.51.0 75.43.3 79.11.3 88.14.2 94.00.2 68.42.1 95.30.2 83.9
MMG 83.00.4 87.41.0 75.14.1 79.60.8 87.92.1 94.20.1 66.71.5 95.70.1 83.7
LSI 83.20.3 87.51.0 75.34.5 80.20.6 88.71.9 94.50.1 68.61.0 95.40.1 84.2
DANN 83.50.3 87.70.1 75.53.7 80.51.1 90.43.0 94.30.1 66.82.8 95.20.1 84.2
CDAN 83.80.2 87.40.1 75.92.4 80.91.4 88.75.5 94.10.2 67.33.4 95.80.2 84.2
MME 84.00.1 87.40.1 75.75.1 80.50.8 89.22.8 94.60.2 68.92.7 95.40.1 84.5
SRDC 84.30.3 87.30.1 75.73.4 80.71.0 88.93.5 94.10.1 67.63.0 95.10.1 84.2
SSDA 83.90.5 87.90.1 75.92.7 81.01.4 88.52.6 94.40.1 67.01.6 95.70.2 84.3
GDA 84.10.3 87.30.1 75.42.4 80.80.9 90.54.1 94.20.2 66.82.4 95.50.1 84.3
ATDOC 84.50.2 87.50.1 75.63.6 81.11.2 89.05.7 93.90.2 67.42.8 95.10.1 84.3
No-Adapt 84.10.2 87.30.1 75.92.2 81.41.0 90.34.2 94.10.1 66.93.3 95.30.2 84.4
No-In-Domain 84.50.1 87.50.1 75.54.5 81.61.7 88.83.9 94.60.2 67.13.1 95.60.1 84.4
Separate 85.30.5 88.10.1 75.82.9 82.70.9 90.13.6 94.00.2 68.31.5 95.20.1 84.9
MMD 85.90.4 88.30.1 75.54.9 82.31.1 89.51.8 94.10.1 68.91.2 95.40.2 85.0
AD 85.60.2 88.70.1 75.93.1 82.60.8 90.33.0 94.70.2 67.41.7 95.80.1 85.1
WMVL 85.50.4 88.50.1 75.72.8 81.91.3 90.64.6 94.60.1 68.12.3 95.10.1 85.0
H-Divergence 85.40.3 88.70.1 75.94.6 82.10.9 89.21.9 94.20.1 68.52.6 95.30.1 84.9
Our full method 87.10.2 90.40.1 77.62.3 84.40.7 92.41.2 95.70.1 70.90.8 96.60.1 86.9

Table 3: Text classification results. Following Gururangan et al. (2020), the results are micro-F1 for
CHEMPROT and RCT, and macro-F1 for other datasets. For each xy entry, x and y represent the mean
and standard deviation of four random runs, respectively.

4.2 Visual Question Answering on
Pathology Images

Datasets. For the target dataset, we use
PathVQA (He et al., 2020), which contains 1,670
pathology images and 32,795 question-answer
pairs. Of these, 16,466 questions are open-ended,
with the following types: what, where, when,
whose, how, why, how much/how many. The
rest are close-ended ‘‘yes/no’’ questions. Based
on images, the dataset is split into a training,
validation, and test set with a ratio of 3:1:1
approximately. Note that baseline methods are
trained on the combination of the training and
validation sets. We collected a source dataset
containing 1792 pathology figures extracted from
papers in medRxiv where each figure has a
caption. We create 36,471 VQA questions using
the method proposed in He et al. (2020). This
source dataset will be made available publicly.

Implementation Details. For the target model,
we experimented with two state-of-the-art VQA
models—LXMERT (Tan and Bansal, 2019) and
bilinear attention networks (BAN) (Kim et al.,
2018)—each containing an image encoder, a ques-
tion encoder, and an answer generation head.
Hyperparameters mostly follow those in previous
work (Tan and Bansal, 2019; Kim et al., 2018;
Yang et al., 2016). For LXMERT, the hidden size
of the text encoder was set to 768.

The initial learning rate was set to 5e-5 with
the Adam (Kingma and Ba, 2014) optimizer used.
The batch size was set to 256. The model was
trained for 200 epochs. For BAN, words in ques-
tions and answers were represented using GloVe
(Pennington et al., 2014) vectors. The initial
learning rate was set to 0.005 with the Adamax
optimizer (Kingma and Ba, 2014) used. The batch
size was set to 512. The model was trained for 200
epochs.

From questions and answers in the PathVQA
dataset, we create a vocabulary of 4,631 words
that have the highest frequencies. Data augmen-
tation is applied to images, including shifting,
scaling, and shearing. We compare with base-
lines similar to those in Section 4.1. The Pretrain
baseline works as follows: We pretrain the tar-
get encoder using source data, then finetune
the target encoder using target data. Three met-
rics were used for evaluation, including BLEU
(Papineni et al., 2002), macro-averaged F1 (Goutte
and Gaussier, 2005), and accuracy (Malinowski
and Fritz, 2014). We implement the methods us-
ing PyTorch and perform training on four GTX
1080Ti GPUs.

Results and Analysis. The results are shown
in Table 4. From this table, we make similar
observations as those in Table 3. The analysis of
reasons is similar to that for results in Table 3. The
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Accuracy(%) BLEU-1(%) BLEU-2(%) BLEU-3(%) F1(%) Average Runtime(h)
LXMERT (Tan and Bansal, 2019) based experiments
Vanilla LXMERT (Tan and Bansal, 2019) 57.6 57.4 3.1 1.3 9.9 25.9 29
Pretrain (He et al., 2016) 59.3 59.0 4.6 2.6 11.3 27.4 35
BO (Ruder and Plank, 2017) 59.5 58.9 3.8 2.7 11.4 27.3 41
MMG (Wang et al., 2019a) 59.3 58.4 3.7 2.6 10.9 27.0 38
LSI (Huan et al., 2021) 59.2 58.8 3.5 2.8 10.6 27.0 32
DANN (Ganin et al., 2016) 59.9 59.4 4.3 3.2 11.2 27.6 30
CDAN (Long et al., 2017a) 60.2 58.9 4.7 3.3 11.9 27.8 35
MME (Saito et al., 2019) 59.7 59.0 3.6 2.9 11.7 27.4 30
SRDC (Tang et al., 2020) 58.8 58.7 4.8 2.9 12.2 27.5 39
SSDA (Kim and Kim, 2020) 59.3 58.3 4.4 3.0 12.0 27.4 34
GDA (Mitsuzumi et al., 2021) 59.8 59.1 4.6 2.8 12.3 27.7 36
ATDOC (Liang et al., 2021) 59.6 59.6 4.3 3.1 12.2 27.8 30
Ours 62.5 61.1 5.2 3.7 12.9 29.1 29
BAN (Kim et al., 2018) based experiments
Vanilla BAN (Kim et al., 2018) 55.1 56.2 3.2 1.2 8.4 24.8 25
Pretrain (He et al., 2016) 58.4 58.6 4.3 1.6 10.3 26.6 28
BO (Ruder and Plank, 2017) 58.3 58.5 4.2 2.0 10.9 26.8 32
MMG (Wang et al., 2019a) 58.7 58.1 4.6 2.3 11.2 27.0 29
LSI (Huan et al., 2021) 58.3 58.7 4.3 2.1 11.5 27.0 30
DANN (Ganin et al., 2016) 58.8 58.4 4.3 2.3 11.0 27.0 31
CDAN (Long et al., 2017a) 58.6 58.6 4.5 2.5 11.4 27.1 33
MME (Saito et al., 2019) 59.1 58.9 4.9 2.3 11.1 27.3 26
SRDC (Tang et al., 2020) 58.9 58.7 4.7 2.5 11.6 27.3 35
SSDA (Kim and Kim, 2020) 59.3 59.0 4.4 2.6 11.4 27.3 32
GDA (Mitsuzumi et al., 2021) 59.5 58.8 4.9 2.4 11.7 27.5 30
ATDOC (Liang et al., 2021) 59.1 59.1 5.0 2.7 11.5 27.5 29
Ours 62.4 61.7 5.6 3.2 12.5 29.1 26

Table 4: Results on the PathVQA dataset. Runtime (hours) for training is measured on a 1080TI GPU.

Figure 2: Randomly sampled source pathology figures
identified by our method as being out of the target
domain.

training time of our method is similar to that of
baselines. Figure 2 shows some randomly sampled
source pathology figures identified by our method
as being out of the target domain. These images
contain subfigures and texts, which are different
from the target dataset.

4.3 Ablation Studies

4.3.1 Ablation by Removing
Certain Components

To better understand the contributions of individ-
ual components in our framework, we perform the
following ablation studies.

• No-Adapt. Out-of-domain source examples
are discarded instead of being adapted.
This is equivalent to removing stage II
and the loss term I(f(ds,i, Dt;W

∗(A)) =

0)�tgt(Û , z∗(ds,i,W
∗(A))) in Eq.(6) of stage

III.

• No-In-Domain. In-domain source exam-
ples are discarded instead of being used
for training the target model. This is
equivalent to removing the loss term
I(f(ds,i, Dt;W

∗(A)) = 1)�tgt(U, ds,i) in
Eq.(6) of stage III.

• Separate. Different stages are performed
separately instead of jointly.

Table 3 shows ablation study results. From this
table, we make the following observations. First,
our full method works better than No-Adapt. This
shows that it is beneficial to adapt out-of-domain
source examples into the target domain and use
adapted examples to train the target model, and
our method is effective in achieving this goal. Sec-
ond, our full method outperforms No-In-Domain,
which demonstrates that the source examples se-
lected by our method are useful for training the
target model. Third, our full method achieves bet-
ter performance than Separate. Our full method
performs source data selection, adaptation, and
target model training jointly, which enables these
different tasks to mutually influence each other
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Figure 3: How the micro F1 on CHEMPROT changes with
λ.

to achieve the best overall performance. Such a
mechanism is lacking in Separate.

4.3.2 Ablation on the Adaptation Component

We perform an ablation study of the adapta-
tion component in stage II of our framework by
replacing it with the following baselines.

• Maximum mean discrepancy (MMD) (Kang
et al., 2019), which is a broadly used metric
for measuring discrepancies of two distribu-
tions. MMD-based adaptation method learns
latent representations so that the selected
out-of-domain source examples and the tar-
get examples have small MMD in the latent
space.

• Adversarial adaptation (AD) (Ganin et al.,
2016), which learns latent representations
so that a domain discriminator cannot tell
whether an example is from the source or
from the target.

Table 3 shows the results. As can be seen, our
adaptation method works better than the baselines.
The reason is: The domain distance metric in
our method is learned using many self-supervised
training examples; it can better measure domain
discrepancy and facilitate domain adaptation.

4.3.3 Ablation on the Selection Mechanism

We perform an ablation study of the selection
mechanism in our framework by replacing it with
the following baselines.

• Each source example is associated with a
weight in [0, 1]. A larger weight indicates the
example is more likely to be in the target
domain. We learn these data weights by min-
imizing the validation loss (WMVL) of the
target model.

• We use an H-divergence (Elsahar and Gallé,
2019) based metric to measure domain sim-
ilarity between a source example and the
target dataset.

Table 3 shows the results. As can be seen, our
selection mechanism works better than the base-
lines. The reason is: In our framework, the domain
distance network (DSN) is learned in a dis-
criminative way by performing classification on
self-supervised training examples. Discriminative
training can enable the DSN to better distinguish
in-domain source examples from out-of-domain
ones. In contrast, the selection mechanisms in the
two baselines lack discriminability.

4.3.4 Ablation on the Tradeoff Parameter λ

We investigate how the performance of our
method is affected by the tradeoff parameter λ.
Figure 3 shows the test accuracy on ImageCLEF.
As can be seen, when λ increases from 0.01 to
0.1, the accuracy improves. This is because the se-
lected and adapted source data is used as additional
training resources for the target model. However,
as λ further increases, the accuracy drops. This is
because the source data is not as reliable as the
target data. An excessively large λ renders too
much emphasis to be put on less-reliable source
data.

4.3.5 Ablation on the Train-Validate Ratio

In the next ablation study, we investigate how the
performance of our method varies under different
split ratios between target training and valida-
tion datasets. The study was performed on the
text classification task. Table 5 shows the re-
sults. As can be seen, a more balanced ratio (e.g.,
1:1) yields better performance. When the ratio is
largely imbalanced (e.g., 1:9, 1:4, 1:0.1, 1:0.25),
the performance is worse. If the target training
dataset D(tr)

t is much smaller than the target val-
idation dataset D(val)

t , the target model’s weight
parameters U , which are trained on D

(tr)
t , will not

be sufficiently trained due to the lack of training
data and thereby yield poorer performance. On the
other hand, if D(val)

t is much smaller than D
(tr)
t ,

the weights A of SSL training examples, which
are optimized by minimizing the loss on D

(val)
t ,

will not be sufficiently optimized due to the lack
of data and thereby yield worse performance as
well. Note that since D(val)

t and D
(tr)
t are obtained
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Train-val ratio CHEMPROT RCT ACL-ARC SCIERC HYPERPARTISAN AGNEWS HELPFULNESS IMDB Average
1:9 79.40.4 86.90.1 73.72.7 78.51.3 87.22.3 93.00.2 65.53.0 93.30.1 82.2
1:4 82.00.4 87.80.1 75.13.9 81.01.5 89.63.0 94.10.1 68.22.7 94.10.2 84.0
1:2 84.20.1 89.10.1 76.45.0 83.20.9 91.74.2 94.50.1 70.00.3 95.90.2 85.6
1:1 87.10.2 90.40.1 77.62.3 84.40.7 92.41.2 95.70.1 70.90.8 96.60.1 86.9
1:0.5 86.80.4 90.60.1 77.12.9 84.01.2 92.81.7 95.60.1 70.41.1 96.10.1 86.7
1:0.25 86.40.2 89.90.1 76.94.2 83.81.6 91.91.9 95.20.2 69.91.6 95.30.2 86.2
1:0.1 85.30.5 88.50.1 76.32.8 82.60.9 91.72.2 94.90.1 69.40.8 95.00.1 85.5

Table 5: Text classification results of our method under different split ratios between target training and
validation sets.

Method CHEMPROT RCT ACL-ARC SCIERC HYPERPARTISAN AGNEWS HELPFULNESS IMDB Average
BLO 85.30.4 88.70.1 75.42.9 83.11.1 90.74.5 94.90.2 68.32.2 95.00.1 85.2
Ours 87.10.2 90.40.1 77.62.3 84.40.7 92.41.2 95.70.1 70.90.8 96.60.1 86.9

Table 6: Ablation study results of the BLO method on text classification.

by splitting the original target training dataset, it
is always possible to obtain a balanced split.

4.3.6 A Bi-level Optimization Based
Ablation Setting

We also perform an ablation study which reduces
the proposed four-level optimization problem to
a BLO problem. The study was conducted on the
text classification task. For each source example
ds,i, we learn a weight bi ∈ [0, 1]. A larger weight
indicates that ds,i is more likely to be in the target
domain. Let B = {bi}Ns

i=1 where Ns is the num-
ber of source examples. We use the Transformer
(Vaswani et al., 2017) T to perform domain adap-
tation. It takes a source text t as input and generates
an adapted text f(t, T ) which is expected to be
in the target domain. The Gumbel-Softmax (Jang
et al., 2017) trick is used to deal with the non-
differentiability of generated texts. At the lower
level in the BLO formulation, we train the target
model U . We define the training loss on selected
source data as:

Ls(U,B) =

Ns∑
i=1

bi�tgt(U, ds,i), (18)

and the training loss on adapted source data as:

La(U,B, T ) =

Ns∑
i=1

(1− bi)�tgt(U, f(ds,i, T )).

(19)
The optimization problem at this level is:

U ∗(B, T ) =
argminU Lt(U) + λ (Ls(U,B) + La(U,B, T )) ,

(20)
where Lt(U) is the training loss on target training
data, as defined in Eq.(3). At the upper level,

Method Accuracy
BO (Ruder and Plank, 2017) 79.9
MMG (Wang et al., 2019a) 82.1
LSI (Huan et al., 2021) 83.9
Separate 83.5
WMVL 81.7
H-Divergence 84.0
Our full method 88.2

Table 7: Human evaluation results.

we evaluate U ∗(B, T ) on the target validation set
D

(val)
t and update B and T by minimizing the

validation loss:

minB,T L(U ∗(B, T ), D
(val)
t ). (21)

The overall BLO formulation is:

minB,T L(U ∗(B, T ), D
(val)
t )

s.t. U ∗(B, T ) =
argminU Lt(U) + λ (Ls(U,B) + La(U,B, T )) .

(22)
Table 6 shows the results. As can be seen, this
BLO method performs worse than our method.
The reason is: Our method uses self-supervised
learning to learn domain discrepancy (in stage
I) and leverages the learned domain discrepancy
metric to perform domain adaptation (in stage II).
Such mechanisms are lacking in the BLO method.
This further demonstrates the necessity of stage I
and II in our method.

4.4 Human Evaluation
We perform a human evaluation on whether the
identified in-domain and out-of-domain source ex-
amples are indeed in or out of the target domain.
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The study is performed on CHEMPROT, RCT, and
ACL-ARC. For each dataset, we randomly sample
200 source texts. Three undergraduates were asked
to label whether these source texts are in-domain
or out-of-domain. Majority vote is leveraged to
decide the final label. The Kappa score among
the annotations is 0.75, which indicates a strong
level of agreement among the annotators. Differ-
ent methods are applied to predict whether each
source text is in-domain or not. Table 7 shows the
results. Our method achieves the best accuracy in
identifying in-domain and out-of-domain source
examples, due to its mechanism of learning the
domain distance network in a discriminative way
(as analyzed in Section 4.3).

5 Conclusions and Discussion

We propose a framework for simultaneous se-
lection and adaptation of source examples in
transfer learning. Our method automatically iden-
tifies which source examples are in or out of the
target domain, and performs example-specific op-
erations (either selection or adaptation). This is
different from previous methods, which 1) discard
out-of-domain source examples, leading to infor-
mation loss; or 2) try to adapt all source examples
into the target domain, incurring a risk of mov-
ing in-domain source examples outside the target
domain. Our framework is based on four-level
optimization. Experiments on text classification
and visual question answering demonstrate the
effectiveness of our proposed method.
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