
Evaluating the Ripple Effects of Knowledge Editing in Language Models

Roi Cohen1 Eden Biran1 Ori Yoran1 Amir Globerson1,2 Mor Geva1,2,∗
1Blavatnik School of Computer Science, Tel Aviv University, Israel 2Google Research, Israel

{roi1, edenbiran, oriy}@mail.tau.ac.il, {gamir, morgeva}@tauex.tau.ac.il

Abstract

Modern language models capture a large body
of factual knowledge. However, some facts
can be incorrectly induced or become obso-
lete over time, resulting in factually incorrect
generations. This has led to the development
of various editing methods that allow updat-
ing facts encoded by the model. Evaluation of
these methods has primarily focused on testing
whether an individual fact has been success-
fully injected, and if similar predictions for
other subjects have not changed. Here we
argue that such evaluation is limited, since in-
jecting one fact (e.g., ‘‘Jack Depp is the son of
Johnny Depp’’) introduces a ‘‘ripple effect’’
in the form of additional facts that the model
needs to update (e.g., ‘‘Jack Depp is the sib-
ling of Lily-Rose Depp’’). To address this, we
propose novel evaluation criteria that consider
the implications of an edit on related facts.
Using these criteria, we then construct RIPPLE-
EDITS, a diagnostic benchmark of 5K factual
edits, capturing various types of ripple effects.
We evaluate prominent editing methods on
RIPPLEEDITS, showing that they fail to introduce
consistent changes in the model’s knowledge.
In addition, we find that a simple in-context
editing baseline obtains the best scores on our
benchmark, suggesting a promising research
direction for model editing.1

1 Introduction

Modern language models (LMs) capture a large
volume of factual knowledge in their parame-
ters, which can be effectively utilized in down-
stream tasks (Petroni et al., 2019; Roberts et al.,
2020; Shin et al., 2020; Razniewski et al., 2021;
Heinzerling and Inui, 2021; Kadavath et al., 2022;
Cohen et al., 2023). However, factual beliefs cap-
tured by the model may be incorrect or become

∗Work done at Google DeepMind.
1We release RIPPLEEDITS and our code at https://

github.com/edenbiran/RippleEdits.

outdated over time, potentially affecting the mod-
el’s performance on downstream tasks, its reli-
ability, and its usability (Dhingra et al., 2022;
Lazaridou et al., 2021; Jang et al., 2022).

This limitation has prompted research on
knowledge editing (KE) methods, which modify
LMs to fix their factual errors (we provide a for-
mal definition in §2). Knowledge editing work
has focused on applying factual updates to LMs.
Given an entity-relation-object triplet (e, r, o) rep-
resenting a fact (e.g., ‘‘Lionel Messi plays for the
Inter Miami team’’), recent work proposed vari-
ous methods (Mitchell et al., 2022; Meng et al.,
2022, 2023; Hernandez et al., 2023b; Si et al.,
2023) to inject this fact into the parameters of a
given LM, while ‘‘overriding’’ beliefs the model
might have on e and r (e.g., that Messi plays for
Paris Saint-Germain).

A key question with KE is how to evaluate
the success of such editing operations. The most
basic ‘‘sanity-check’’ is that the model correctly
completes (e, r, ?), as well as other paraphrases
of this task, with o. However, this is not enough
as an evaluation, since one needs to check that
the model did not distort other facts. Indeed,
the standard evaluation protocol (Mitchell et al.,
2022; Meng et al., 2022, 2023) for KE focuses on
these two aspects of correctly completing various
paraphrases of the new fact, as well as ensuring
that other unrelated facts have not been changed.

In this work, we argue that to evaluate model
edits, one should go beyond the single fact that was
edited and check that other facts that are logically
derived from the edit were also changed accord-
ingly. For example, if z is the mother of e, then the
children of z are the siblings of e. Consequently,
once we modify the belief of a certain model that
z → z′ is the mother of e, then we should also
ensure that the model’s belief regarding the sib-
lings of e is also correct. Figure 1 illustrates an-
other example, where editing the Team for which
Lionel Messi plays modifies other related facts,
such as his country of residence, while other facts
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Figure 1: Illustration of the evaluation scope of
RIPPLEEDITS, compared to existing knowledge editing
benchmarks. For a given factual edit, we consider the
‘‘ripple effect’’ of the edit on the model’s knowledge.

should be retained. We refer to such changes that
are implied by a factual edit as ripple effects.

To account for ripple effects in the evaluation of
factual edits, we propose six concrete evaluation
criteria (see §3, Figure 2), for testing which facts
other than the edit itself should be modified or
retained post-editing. Our tests evaluate how well
the model integrates the edit with the rest of its
knowledge, through queries that involve logical
reasoning, complex composition of facts with the
edit as an intermediate step, subject aliasing, and
specificity across relations.

Building upon these criteria, we create
RIPPLEEDITS, a new benchmark for comprehensive
evaluation of KE of LMs (see §4). RIPPLEEDITS

includes 5K entries, each consisting of a factual
edit, along with a set of test queries that check if
the edit was successful in terms of its ripple effect.
Moreover, RIPPLEEDITS contains meta-data for
each edit, including information about the time-
stamp of the edit (i.e., recent versus old), and the
popularity of the entities (i.e., head versus tail).

We use RIPPLEEDITS to evaluate three popular
editing methods on five recent strong LMs (see
§5). We find that, even though current KE methods
are effective in modifying a particular fact, they
often fail to capture the ripple effects entailed
by that fact, and demonstrate poor performance
on most of our evaluation criteria. Moreover,
analyzing how editing performance varies across
model sizes and entity frequencies, we find that
(a) larger models handle ripple effects better, and
(b) editing frequent entities results in more logical
reasoning errors.

Last, we consider a simple in-context editing
baseline for KE that leverages the casual atten-
tion mechanism rather than explicit parametric
updates. While this method achieves the best re-
sults on our benchmark, outperforming current
parametric KE methods, there is still ample room
for improvement that calls for future research.

To conclude, our work makes multiple contri-
butions: (a) it highlights key limitations of KE
evaluation, specifically regarding ripple effects
and introduces comprehensive evaluation crite-
ria to mitigate those limitations, (b) it proposes
RIPPLEEDITS, a benchmark inspired by these cri-
teria, (c) it evaluates current methods for KE
and shows that they do not perform well on this
task, while demonstrating that in-context edit-
ing is a promising direction for KE. We release
RIPPLEEDITS and our code to facilitate future work
on KE.

2 Problem Setting

We consider editing of factual knowledge, where
facts are expressed as triplets (e, r, o) of a sub-
ject entity e (e.g., Lionel Messi), a relation r
(e.g., Team), and an object o (e.g., Inter Mi-
ami). We distinguish between two edit types,
based on the knowledge encoded in the model
before the edit: (a) modification of a fact that is al-
ready encoded in the model (e, r, o) → (e, r, o∗),
that is, updating the object o → o∗ for a given
subject e and relation r, and (b) injection of a
new fact (e, r, o∗) that is not captured by the
model. Moreover, we note that for one-to-one
relations like Date of birth, where there is
a single object for a given subject, an injection
edit can be viewed as populating an empty object
(e, r, ∅) → (e, r, o∗). In contrast, for one-to-many
relations, such as Sibling and Occupation,
an injection edit augments the set of objects (e, r,
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Figure 2: An illustration of our evaluation criteria, for an edit that simulates adding a sibling to the subject entity
Prince, shown at the top of each graph with a bold arrow and an edit sign over the Sibling relation. For
each criterion, the tested subject and target object are circles with dashed blue line and solid green line, respec-
tively, and other nodes in dotted orange line. For Logical Generalization (A), the additional fact that needs to
be inserted to the knowledge graph (KG) is presented with an edit sign next to the relation. We show the same
node in different colors for completeness, as the tested subject is also the object in the edit that needs to be in-
serted. For Compositionality I, II (B, C), the model needs to hop over the edit to arrive at the target. In Subject
Aliasing (D) we verify the edit also propagates to paraphrases of the input. In Preservation (E), we verify that
other targets of the edited subject-relation are preserved. In Relation Specificity, we verify other relations for the
subject are not modified.

{o1, .., on}) → (e, r, {o1, .., on, o∗}). Whether an
edit is viewed as a modification or injection, de-
pends on whether that information was captured
in the model before the edit. Moreover, evaluat-
ing if a specific fact (before or after an edit) is
encoded by a model is typically done by testing
if the model predicts the object for various input
queries that represent the subject and relation (see
more details in §3.2).

3 Ripple Effects of Factual Edits

We focus on evaluating the downstream effect of a
given edit, i.e., given an edit (e, r, o) → (e, r, o′),
we expect certain facts related to the edit to change
as well. Consider, for example, the edit shown in
Figure 1. Changing the team for which Messi plays
might also affect the league he plays in and his
country of residence. Formally, for a given model,
assume a knowledge-graph K := {(ei, ri, oi)}Ni=1

of N factual triplets, representing the model’s
knowledge, and let δ : (e, r, o) → (e, r, o′) be an
edit request for K. We define the ripple effect of
δ on K, as the set of triplets R(δ) that the model

implicitly needs to inject, modify, or delete from
K to reflect the world state after the edit.

Notably, different edits can cause ripple effects
of varying magnitudes. For example, changing the
country of Rome from Italy to France, will entail
many follow-up changes, such as the country
in which the Colosseum is located, the language
spoken in Rome, and so forth. In contrast, updating
the siblings of Prince (Figure 2) is both more
realistic and should result in a more local effect.
We refer to the number of facts affected by a
single edit δ (i.e., |R(δ)|) as its severity. In general,
editing popular entities that appeared frequently
during training is likely to introduce more changes,
and thus, editing their properties has a higher
severity.

3.1 Evaluation Criteria

We wish to evaluate how well models capture the
ripple effects of factual edits. However, given that
ripple effects can potentially span a large number
of implied edits, we focus on evaluating modified
facts that are within a 2-hop distance from the
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subject or object of the edit. Concretely, for an
edit δ : (e, r, o) → (e, r, o∗), we evaluate the
ripple effect R(δ), via the following evaluation
criteria (examples are shown in Figure 2):

1. Logical Generalization (LG): Relations in a
knowledge graph satisfy certain logical con-
straints. For example, the relation Sibling
is symmetric and therefore if (e, Sib-
ling, o) is true then (o,Sibling, e) is
also true, and vice versa (Figure 2A). Like-
wise, the relation Location is transitive so
(e,Location, o) ∧ (o,Location, z) ⇒
(e,Location, z). We wish to check that
such logical implications about the subject e,
the original object o, and the new object o∗,
hold after editing. We focus and elaborate
on specific constraints in §4.

2. Compositionality I (CI): As δ alters one
edge in a knowledge graph, we can check
the composition of this edge with other
edges. Namely, we test if the model can
compose the edited fact with other facts
about the target object. Let (o, r′, z) and
(o∗, r′, z∗) be two facts of the same relation
about o and o∗, respectively. Also, denote
by r′′ = r ◦ r′ the complex relation express-
ing the composition of r and r′ (e.g., r′′ =
Profession of sibling for r =
Sibling and r′ = Profession). Then,
after the edit δ, we expect the following
change (e, r′′, z) → (e, r′′, z∗). For example
(Figure 2B), the professions of the siblings
of Prince can be modified once a new
sibling is injected.

3. Compositionality II (CII): We test if the
model can compose the edited fact with facts
about a different subject e′ 
= e. Formally,
let (e′, r′, e) be a fact about e′ with e as its
object, and denote by r′′ = r′ ◦r the complex
relation expressing the composition of r′ and
r (see an example in criterion 2). After the
edit δ, the following change is expected for
the subject e′: (e′, r′′, o) → (e′, r′′, o∗). For
instance (Figure 2C), changing the siblings
of Prince also modifies the siblings of
the founder of Paisley Park Records
(i.e., r′′ is a complex relation expressing
‘‘siblings of the founder’’).

4. Subject Aliasing (SA): We test that editing
a fact about e induces the same edit to other

entities e′ that are aliases of e, namely, (e′,
r, o) → (e′, r, o∗). For instance (Figure 2D),
modifying the siblings of Prince should
also modify the sibling of his alias, Prince
Roger Nelson.

5. Preservation (PV): If r is a one-to-many
relation, then adding a new object should
not affect the other objects encoded about
e. Hence, in such cases, we expect that any
existing triplet (e, r, o′) for an object o′ 
= o∗

would remain following the edit. For exam-
ple (Figure 2E), after inserting the sibling
Nicholas Carminowe for Prince, the
fact that Tyka Nelson is also his sibling
should be retained.

6. Relation Specificity (RS): We test that facts
about e, with relations whose objects are not
influenced by o, are indeed not affected by
the edit. For example (Figure 2F), modifying
the sibling of Prince should not change his
Mother. Note that these facts complement
those evaluated by Logical Generalization.

In §4.1, we describe how we generate factual ed-
iting evaluations, based on the above criteria.

3.2 Related Work

Knowledge Editing Methods Several methods
have been proposed to edit the factual knowl-
edge encoded in a model. De Cao et al. (2021)
and Mitchell et al. (2022) suggested using hyper-
networks to update the model weights. In addition,
Meng et al. (2022, 2023) proposed to modify en-
coded facts by updating the weights of MLP lay-
ers, following recent observations that these layers
can be cast as key-value memories (Geva et al.,
2021) that store factual knowledge (Dai et al.,
2022). Other methods learn encodings that update
the hidden representations created during model
inference (Hernandez et al., 2023a), or augment
the input context with edits (Zhong et al., 2023;
Zheng et al., 2023). In §5.1, we discuss state-of-
the-art KE methods used in this work in greater
detail.

Separately from factual KE, recent work has
also studied how to inject new facts into a model.
Previous methods suggested unsupervised pre-
training (Roberts et al., 2020; Zhang et al., 2021),
semi-parametric methods, where external infor-
mation is added from a knowledge-base (Zhang
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et al., 2019; Peters et al., 2019; Lewis et al., 2020;
Zhang et al., 2022), using adapters to store knowl-
edge (Wang et al., 2021a), or extending the MLP
layers (Yao et al., 2022).

Knowledge Editing Evaluation Recently,
there has been a growing interest in KE evalua-
tion (Yao et al., 2023). The prominent benchmarks
for evaluating factual KE are the Zero-Shot Rela-
tion Extraction (zsRE) (Levy et al., 2017; De Cao
et al., 2021) and CounterFact (Meng et al., 2022).
zsRE is a question-answering dataset for relation-
specific queries, which includes human generated
paraphrases that are used to measure robustness
to semantically equivalent inputs. For example,
for the triplet (x, Country, y), zsRE contains
queries such as ‘‘In which country is x?’’. Coun-
terFact offers a more challenging setting, where
edits are counterfactuals of a low probability,
such as changing the City of The Louvre
from Paris to Rome.

Evaluation in zsRE and CounterFact focuses
on three primary aspects of (a) efficacy: checking
that the model generates the target object post-
editing, (b) paraphrasing: testing robustness in
generating the target for paraphrases of the input,
and (c) specificity: verifying that facts not related
to the edit are unaffected. In addition, Counter-
Fact evaluates the generation quality of the edited
model when prompted with the edit’s subject,
measuring: consistency, i.e., similarity with sub-
jects that share the same property as the edited
object, and fluency in terms of repetitiveness of
the generated text. More broadly, previous work
evaluated to which extent LMs have beliefs (Genin
and Huber, 2022; Kassner et al., 2021; Hase et al.,
2023), and Hase et al. (2023) examined if updat-
ing beliefs propagates to entailed facts, extending
the Wikidata5m dataset (Wang et al., 2021b) to
test editing specificity.

Recently, Onoe et al. (2023) introduce the task
of entity knowledge propagation, aiming to exam-
ine the extent to which models are able to reason
about emergent entities that did not appear in pre-
training. In addition, Hoelscher-Obermaier et al.
(2023) show that existing KE methods can have
unwanted side effects and suffer from low speci-
ficity. A concurrent work by Zhong et al. (2023)
introduces MQUAKE, a benchmark that tests the
ability of models to perform multi-hop reasoning
after edits. While each of these benchmarks fo-
cuses on a single consequence of editing, RIPPLE-

EDITS provides a general framework for eval-
uating various types of edit ripple effects. Last,
Gupta et al. (2023) focus on editing commonsense
knowledge and introduce MEMIT-CSKPROBE,
a dataset for semantic generalization of common-
sense edits. RIPPLEEDITS is different from MEMIT-
CSKPROBE as it evaluates editing of factual
knowledge rather than commonsense knowledge.

4 The RIPPLEEDITS Benchmark

In this section, we describe a data generation
pipeline (§4.1) for factual edit requests and queries
for evaluating their ripple effects. Then, we apply
our pipeline to create the RIPPLEEDITS benchmark
for comprehensive KE evaluation (§4.2), and val-
idate the quality of the data (§4.3).

4.1 Data Generation Pipeline

We describe our data generation process (illus-
trated in Figure 3), that creates KE evaluation
examples, each consisting of a factual edit request
and a set of test queries that follow our criteria.
Since the pipeline involves manual writing of tem-
plates and logical rules per relation, we restrict the
edits and test queries to a fixed set of Nrel basic
relations.2

Step 1: Factual Triplet Collection The first
step of the pipeline (Figure 3A) is to collect facts,
from which we will later create edit requests. To
this end, we use WIKIDATA, a relational knowledge
base consisting of facts that are expressed as
triplets (e, r, o), where e is a subject entity, r is
a relation, and o is an object. We collect triplets
of three types:

• RECENT: To create ‘‘real’’ plausible edit re-
quests, we collect triplets that were inserted
to WIKIDATA only recently, and represent rel-
atively new facts. Therefore, they can be used
to create injection edit requests for models
that were trained before these facts were in-
troduced, to simulate cases of an out-of-date
model that requires factual updates. We col-
lect such facts by randomly sampling triplets
that have been modified during a range of
250 days after July 2022.

2The full list of relations is available in our codebase,
example relations are shown in Figure 4.
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Figure 3: Illustration of our data generation process. We start by sampling a fact from a KG (A), here
(Bill Gates,Spouse,Melinda Gates). Then, we generate the target triplet for the edit (B), in this case,
choosing an object (Ricciarda Cybo Malaspina) that shares the same type as the original object. Next, we
generate test queries (C) by sampling new triplets from the KG that should be retained or modified post-editing.
Last, we utilize pre-defined templates to translate the KG triplets to natural language phrases (D).

• RANDOM: We collect triplets corresponding
to random facts, for which we will later gen-
erate modification edits (similarly to Meng
et al., 2022). These edits simulate factual ed-
its that are meant to fix incorrect model pre-
dictions (e.g., predicting that the capital of
Germany is Frankfurt). To this end, we di-
vide the entities in WIKIDATA into 10 uniform
buckets, based on the number of triplets as-
sociated with them. Intuitively, this can be
viewed as a popularity measure. Then, we
sample Nent entities from each group and
randomly choose one triplet for each entity.

• POPULAR: The two previous triplet types are
randomly sampled from the entire knowledge
base, and most of them are likely to represent
facts about tail entities (except perhaps for a
small subset in the top bucket). Such entities
are often not captured by models (Mallen
et al., 2023), and therefore not suitable for
testing modification edits. To address this,
we sample triplets from WIKIDATA with a sub-
ject that is a popular entity, namely, it appears
in one of the top-viewed pages in Wikipedia.3

Importantly, these types of triplets allow con-
trolling for the ripple effect severity (§3),
i.e., how models handle the ripple effects of
popular entities versus tail entities.

Step 2: Edit Generation Once we obtain factual
triplets, we turn to generate edit requests for them
(Figure 3B). For RECENT, triplets represent new
facts that are meant to be injected to the model,
assuming that the latter was trained before these
facts were introduced to the world. Hence, for

3We extracted the entities whose corresponding
Wikipedia page was included in the top-1000 most viewed
pages in at least one month during 2020-2022.

RECENT, the target triplet for injection is the triplet
itself.

For RANDOM and POPULAR triplets, we create
an edit by generating a target triplet as follows.
First, for every relation r, we create a set of can-
didate object entities Or by sampling Ncand trip-
lets (e1, r, o1), . . . , (eNcand

, r, oNcand
) with the

relation r, and extracting their objects Or = {o1,
. . . , oNcand

}. Then, for every triplet (e, r, o) in
RANDOM and POPULAR, we sample a target ob-
ject o′ 
= o from Or. Sampling the target object
from triplets with the same relation makes the edit
request technically consistent with the original
triplet – the target object is of the same ‘‘type’’ as
the original object (for example, a triplet with the
relation Capital will get a new object of type
City). The new triplet (e, r, o′) will thus result
in a ‘‘fake’’ fact, since it attaches a wrong object
o′ to the pair (e, r). For example, if RANDOM con-
tains the triplet (France, Capital, Paris),
its edit could be (France, Capital, London).

Step 3: Evaluation Test Generation The next
step in the pipeline is to create ripple effect evalua-
tions for the factual edits we collected (Figure 3C).
To this end, we implement the evaluation crite-
ria introduced in §3.1, and generate test queries
for each criterion. Each test query corresponds
to a triplet of subject and object entities and a
possibly complex relation, that is expected to be
true post-editing. In what follows, we provide de-
tails on our implementation, using objects from
WIKIDATA.

For an entity e, we denote by S(e) the set of
triplets in WIKIDATA in which e is the subject, and
by T (e) the set of triplets in which e is the ob-
ject. Moreover, for every relation r, we manually
define a set Dr of relations that semantically de-
pend on it. Namely, for a given subject, changing
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r’s target object is expected to change the target
objects for the relations Dr. For instance, the set
Dr for the relation r = Mother, includes the
relations Sibling, Sister, Brother, Aunt,
and Uncle, among others. Then, for every rela-
tion r′ ∈ Dr, we craft a logical rule for obtaining
the new target for that relation post-editing. For
instance, for the relation r = Sibling, we set a
logical rule for r′ = Mother such that if (e, r, e′)
and (e′, r′, z′) are true for entities e, e′, z′, then
(e, r′, z′) should also be true.

Given an edit (e, r, o) → (e, r, o∗), we use Dr

to generate test queries for Logical Generaliza-
tion and Relation Specificity. For Logical Gener-
alization, we apply the rule corresponding to each
relation r′ ∈ Dr to obtain a set of test queries
(x, r′, z′) about x ∈ {e, o, o∗}, where z′ is the
target obtained from the logical rule. For Relation
Specificity, we create a test query for every triplet
in S(e) with a relation that is not in Dr (but is in
our set of Nrel relations).

To generate text queries for Compositionality
I, we iterate through S(o∗) and for each triplet
(o∗, r′, z) ∈ S(o∗), we construct a two-hop query
(e, r ◦ r′, z) about e, with z as the answer. Simi-
larly, for Compositionality II, we iterate through
T (e) and for each triplet (z, r′, e) ∈ T (e), we
construct a two-hop query (z, r′ ◦ r, o∗) about z
with o∗ as the answer. For Subject Aliasing, we
use information maintained by WIKIDATA to cre-
ate a test query (e′, r, o∗) for every alias e′ of
e. Last, for Preservation we create test triplets
(e, r, o1), . . . , (e, r, on) that check if the model re-
tained the original objects {o1, . . . , on} in addi-
tion to the new edited object o∗.

Step 4: Phrasing in Natural Language At this
point (Figure 3D), we have factual edit requests
and their corresponding test queries. To use them
as inputs to LMs, we convert them from triplet-
form to natural language (NL). To this end, we
manually craft a template NL phrase per relation
(this is feasible since we use a fixed set of rela-
tions), and use it to convert all the triplets with
this relation. For instance, the template ‘‘The
date of birth of <e> is’’ converts trip-
lets with the relation r = Date of Birth and
a subject entity e.

For the Preservation triplets generated for an
edit (e, r, {o1, . . . , on}) → (e, r, {o1, . . . , on, o∗}),
where o∗ is a new object added to a set of possibly
multiple (n ≥ 0) objects, we form a single NL

RECENT RANDOM POPULAR

# of factual edits 2,000 1,000 1,000
# of queries per edit 26.8 18.8 25.6
# of queries per criterion 5.24 3.1 4.2

# of LG queries 2.5 3.6 2.6
# of CI queries 11.7 4.7 6.1
# of CII queries 5.1 5.1 3.9
# of SA queries 1.8 1.3 4.7
# of PV queries 0.6 0.4 0.5
# of RS queries 5.1 3.7 7.8

Subject triplets count 31.7 13.3 115.2
Subject page back-links 278.1 121.6 3934.5
Subject page views 189.6 67.91 7376.5

Object triplets count 192.4 46.4 39.5
Object page back-links 18634.2 3065.0 2136.0
Object page views 2852.4 1379.7 1176.7

Table 1: Statistics per subset of RIPPLEEDITS, show-
ing the average of different metrics. Breakdown by
evaluation criteria shows the number of queries of
each criterion per edit. For a given subject/object
entity, triplets count is the number of WIKIDATA

facts it is associated with, page back-links is the
number of Wikipedia pages with a link to the en-
tity’s page, and page views is the recent average
daily view count of the entity’s page.

query about other objects than the edited one, e.g.,
‘‘The award received by <e> which
is not <o∗> is’’.

4.2 Data Statistics

We used our data generation pipeline to collect
edits for 2,000 RECENT facts, 1,000 RANDOM facts,
and 1,000 POPULAR facts, focusing on Nrel = 54
basic relations for which we manually crafted NL
templates and logical rules.4 To obtain the RAN-
DOM subset, we set Nent = 200 to sample 200
facts from each entity group in WIKIDATA. For
edit generation of RANDOM and POPULAR, we set
Ncand = 100, 000. We call our diagnostic bench-
mark RIPPLEEDITS, and publicly release it to the re-
search community. Notably, RIPPLEEDITS focuses
on ripple edits and is meant to complement exist-
ing benchmarks, and so it does not include pre-
vious evaluations, such as subject specificity and
model consistency.

Statistics on RIPPLEEDITS are presented in
Table 1, showing that our generation process re-
sulted in 18-26 test queries per edit and over 3
queries per evaluation test, on average. Moreover,

4We release the templates and rules in our codebase.
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Figure 4: Most frequent relations and their frequency, in each subset of RIPPLEEDITS.

POPULAR edits contain more popular subjects (as
intended), while RECENT edits have more popu-
lar objects. Figure 4 shows the top relations and
their frequency in each subset of RIPPLEEDITS,
demonstrating the diversity of the generated facts.

4.3 Data Quality

We conducted a manual analysis to validate that
our generation pipeline produces valid test queries.
Concretely, we sampled 200 random test queries
from RIPPLEEDITS and checked the following two
requirements: (a) soundness: the triplet that repre-
sents a given test query should be semantically
correct, namely, the entity type of the object
should match the relation type and the relation
type should match the entity type of the sub-
ject. For example, queries such as ‘‘The capital
of Hilary Clinton is’’ or ‘‘The sibling of Lebron
James is Los Angeles’’ would have been disquali-
fied. (b) grammatically correct: we check that the
phrasing of the test query in natural language is
grammatical.

We found that 100% of the queries were sound
(i.e., semantically clear and correct), showing that
the data curating process was designed properly.
Furthermore, 98.5% of the queries were gram-
matically correct, while the ones which were not
contain entity representations in a non-English lan-
guage. This shows that our templates are general
enough to properly fit various entity names.

5 Experiments

We use RIPPLEEDITS to evaluate recent KE meth-
ods, and show that despite substantial progress

on existing benchmarks, current methods struggle
to introduce consistent changes to the model’s
knowledge after an edit. Moreover, a simple in-
context editing baseline that conditions the gen-
eration on the edited fact obtains better results,
while leaving ample room for improvement for
future research.

5.1 Evaluation Setting

Data To evaluate how well an editing method
handles the ripple effects resulting from editing a
given model, the data first needs to be adjusted
such that (a) only cases of successful edits are
evaluated, and (b) only test queries that the model
answered correctly pre-editing are used for evalu-
ation. Concretely, for an editing method F and a
model M, an edit request x : (e, r, o) → (e, r, o′)
is included in the evaluation if the following con-
ditions are met when applying F to M and x: (a)
M successfully generates the original objects for
the test queries before applying the edit, and (b)
M successfully generates o′ when queried about
e and r, namely, the edit has successfully been
applied. For example, we verify that the model
can predict the children of o′ before asking about
e’s new siblings.

Editing Methods We evaluate three KE meth-
ods: MEND (Mitchell et al., 2022), ROME (Meng
et al., 2022), and MEMIT (Meng et al., 2023).
MEND trains a network that modifies gradients
to produce local edits. ROME makes rank-one
updates to the weights of the Transformer’s MLP
layers to modify specific factual associations, and
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Figure 5: An example modification edit from our
ICE baseline. The color code of the KG is similar
to that described in Figure 2. We prepend the prefix
‘‘Imagine that’’ to the input prompt, as counterfactu-
als can contradict knowledge embedded in a model’s
parameters.

MEMIT is an extension of ROME that is adjusted
to editing many facts at once.

Baseline Motivated by the recent success of
LMs to learn in-context and follow instructions
(Brown et al., 2020; Ouyang et al., 2022; Liu et al.,
2023), specifically for knowledge editing (Zhong
et al., 2023; Zheng et al., 2023), we experiment
with an in-context editing (ICE) baseline for fac-
tual editing. Unlike the above methods, it does
not introduce changes to the model parameters,
but rather generation is conditioned on the new
fact. Concretely, given an edit (e, r, o) → (e, r, o∗)
and a test query q, we use the following prompt
to obtain an answer from the model: ‘‘Imag-
ine that <o∗> would have been <Pr>’’,
where Pr is a manually-written proposition of
r, such as ‘‘The mother of <e>’’ when r =
Mother and e is the subject. An example is
depicted in Figure 5.

Models We use 4 recent auto-regressive
decoder-only LMs of different sizes: GPT-2 XL
(Radford et al., 2019) with 1.5B parameters, GPT-J
(Chen et al., 2021) with 6B parameters, LLaMA
with 7B parameters, (Touvron et al., 2023), and
GPT-NeoX with 20B parameters (Black et al.,
2022). In addition, as our baseline does not
require access to the model parameters, we also
evaluate it on the closed-source model GPT-3

RECENT RANDOM POPULAR

Edits Tests Edits Tests Edits Tests

GPT-2 853 29% 689 33% 722 71%
GPT-J 801 33% 717 34% 760 76%
GPT-NEO 989 45% 801 46% 828 86%
LLAMA 847 44% 796 49% 784 87%
GPT-3 822 55% 760 74% 665 94%

Table 2: (a) Number of edits considered in our
evaluation (i.e., that have successfully applied),
from each subset, averaged over ROME, MEMIT,
and MEND, for the models: GPT-2, GPT-J,
GPT-NEO and LLAMA, and the ICE baseline for
GPT-3. (b) Portion of queries, on average, that
were used in our evaluation.

text-davinci-003 with 175B parameters
(Brown et al., 2020). However, for the baseline
we do not include results for GPT-2 and GPT-J as
the number of testable edits for these models is
rather small (≤ 20% for each of the data subsets).

For all model-method combinations, except for
ROME with LLAMA, we use the official imple-
mentation and hyperparameters from Meng et al.
(2022). We adjust ROME to LLAMA by following
the authors’ method and codebase. Table 2 shows
the number of edits and test queries left, for every
model, after filtering out non-successful edits and
inapplicable test queries (as described above).

Evaluation Each model-method pair is evalu-
ated separately, on every subset of RIPPLEEDITS.
For each evaluation criterion, we first compute the
average accuracy over the test queries per exam-
ple, and then average over all the examples. For a
given test query, we let the model generate a max-
imum of 20 tokens. A generation is considered
successful if one of the aliases of the target ob-
ject appears in the text. In cases of multiple gold
target objects (as in Preservation), we evaluate
each target object separately and consider the gen-
eration as correct if it matches at least one object.

5.2 Results

Tables 3, 4, 5 show the evaluation results on the
RECENT, RANDOM, and POPULAR subsets, respec-
tively. Considering the average scores across all
subsets, we observe that existing editing meth-
ods struggle to handle the ripple effect induced
by editing facts, with low average accuracy of
38–66 across all models. This suggests that, while
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LG CI CII SA PV RS Avg.

GPT-2

ROME 20.2 35.6 46.8 86.8 100 55.4 57.5

MEMIT 21.8 30.3 46.2 92.9 100 56.8 58.0

MEND 28.9 23.7 20.7 87.1 100 51.9 52.1

GPT-J
ROME 15.2 29.5 50.5 90.3 99.4 60.0 57.5

MEMIT 18.0 35.0 48.1 88.4 98.6 42.2 55.0

GPT-NEO
ROME 27.2 54.3 69.4 98.9 98.4 80.3 71.4

ICE 48.3 29.0 62.2 100 99.4 80.7 69.9

LLAMA
ROME 16.7 47.8 50.0 93.6 97.6 59.3 60.8

ICE 59.6 74.8 85.0 100 99.5 77.9 82.8

GPT-3 ICE 33.3 100 91.3 100 100 73.1 82.8

Table 3: Accuracy on the RECENT subset, by
MEND, ROME, MEMIT, and the ICE baseline,
on GPT-2, GPT-J, GPT-NEO, LLAMA, and GPT-3.

LG CI CII SA PV RS Avg.

GPT-2

ROME 53.6 31.6 44.4 94.9 9.9 38.9 45.5

MEMIT 58.4 30.5 49.8 100 20.0 36.2 49.1

MEND 62.5 16.7 14.6 91.3 17.7 30.1 38.8

GPT-J
ROME 53.8 40.8 49.9 93.8 15.2 39.4 48.8

MEMIT 53.0 35.7 48.2 95.6 18.2 39.9 48.4

GPT-NEO
ROME 61.6 49.4 57.1 100 30.8 50.7 58.3

ICE 78.6 90.0 55.6 100 100 61.9 81.0

LLAMA
ROME 54.3 35.5 49.5 96.0 17.8 38.9 48.7

ICE 71.1 73.8 80.3 100 100 69.6 82.5

GPT-3 ICE 69.0 83.3 89.7 100 100 100 90.3

Table 4: Accuracy on the RANDOM subset, by
MEND, ROME, MEMIT, and the ICE baseline,
on GPT-2, GPT-J, GPT-NEO, LLAMA, and GPT-3.

KE methods demonstrate high capability in mak-
ing local updates to the model’s knowledge, these
changes are mostly applied at a surface-level with-
out propagating to other related facts. Moreover,
we observe that our ICE baseline obtains the best
overall results. Specifically, it outperforms ROME
by more than 10 points for GPT-NEO and 29 points
for LLAMA, on average across subsets. Although
GPT-3 with ICE performs best on average, the 7B
LLAMA is highly competitive, performing better
or similarly on the RECENT and POPULAR subsets.

Next, comparing results across evaluation cri-
teria shows that some ripple effects are handled
better than others. For example, while Subject
Aliasing accuracy is consistently high (≥ 86.8
across all settings), the accuracy on other crite-
ria is generally lower and varies greatly between
models, methods, and edits (e.g., Logical Gener-
alization accuracy for ROME on GPT-J is 53.8 on

LG CI CII SA PV RS Avg.

GPT-2

ROME 5.7 46.4 21.8 100 100 18.5 48.7

MEMIT 6.7 45.2 21.2 100 100 24.3 49.6

MEND 25.9 10.7 5.4 100 100 21.2 43.9

GPT-J
ROME 5.5 44.1 21.0 98.6 99.0 22.3 48.4

MEMIT 7.0 45.9 23.7 100 100 24.8 50.2

GPT-NEO
ROME 36.4 29.4 41.6 100 100 50.8 59.7

ICE 37.5 92.4 40.1 100 100 74.4 74.1

LLAMA
ROME 22.0 37.4 16.2 100 100 20.6 49.4

ICE 57.2 85.1 67.6 100 100 78.0 81.3

GPT-3 ICE 31.0 86.1 65.6 100 100 83.8 77.7

Table 5: Accuracy on the POPULAR subset, by
MEND, ROME, MEMIT, and the ICE baseline,
on GPT-2, GPT-J, GPT-NEO, LLAMA, and GPT-3.

Figure 6: Accuracy averaged over evaluation criteria
of ROME, as a function of the model’s number of pa-
rameters, for the following models: GPT2-M, GPT2-L,
GPT2-XL, GPT-J, LLAMA, and GPT-NEO.

the RANDOM subset, compared to only 5.5 on the
POPULAR subset).

Results Across Model Size We analyze how
editing performance on RIPPLEEDITS is influenced
by the model size. To this end, we further evalu-
ate ROME on smaller versions of GPT-2 – with
345M (GPT2-M) and 762M (GPT2-L) parame-
ters, and plot the average accuracy over the three
subsets as a function of model size. Figure 6
presents the results, showing that editing perfor-
mance increases with model size, with ROME
obtaining substantially higher accuracy when ap-
plied to larger models. Nevertheless, our results
(Tables 3, 4, 5) show that when using ICE, the
7B LLAMA is competitive with the much larger
GPT-3, suggesting that simply scaling the model
size may not be sufficient to fix the drawbacks of
current editing methods.
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MEND ROME MEMIT

Relation Specificity 34.4 37.6 39.1

Logical Generalization 39.1 26.5 29.0

Compositionality I 17.0 37.9 35.3

Compositionality II 13.6 37.7 39.1

Table 6: Accuracy of MEND, ROME, and
MEMIT, using GPT-2, averaged over the three
RIPPLEEDITS splits - RECENT, RANDOM and POPULAR.

Figure 7: The average accuracy of GPT-2 on different
evaluation criteria in RIPPLEEDITS. Results are averaged
over editing methods (ROME, MEMIT, and MEND);
error bars indicate standard deviation.

Results Across Methods Table 6 shows the ac-
curacy of MEND, ROME, and MEMIT, on GPT-2
across our evaluation criteria, averaged over the
three subsets. Interestingly, MEND outperforms
ROME and MEMIT in Logical Generalization,
but is worse in Compositionality I and Compo-
sitionality II, suggesting that different methods
might better capture different types of ripple
effects.

Results Across Data Splits The subsets of
RIPPLEEDITS differ in whether edited facts are coun-
terfeit or real, and in the popularity of the edited
entities. These differences allow us to control for
the edit severity, as popular entities are expected to
introduce larger ripple effects (see §3). In Figure 7,
we show the accuracy on each subset and evalua-
tion criterion, averaged over the different editing
methods. Comparing RANDOM and POPULAR, that
differ in the popularity of the edited entities, we
see that while Logical Generalization accuracy
is substantially higher for RANDOM, Preservation
accuracy is higher for POPULAR. This suggests that,
although retaining correct knowledge is easier for
popular entities, modifying other facts that log-
ically follow from an edit is harder for popular
entities, which could be explained by the severity

No effect Abstaining Noise

GPT-2
ROME 27% 31% 42%

ICE 32% 27% 41%

GPT-NEO
ROME 24% 40% 36%

ICE 10% 65% 25%

LLAMA
ROME 20.5% 45% 34.5%

ICE 11% 71% 18%

Table 7: Error type distribution on 200 failures
of ROME and ICE, on GPT-2, GPT-NEO, and
LLAMA.

of these edits (i.e., the high number of facts that
are semantically related to them).

5.3 Error Analysis

ROME versus ICE We qualitatively analyze
the effect induced by KE methods to the model’s
knowledge. To this end, for each of ROME and
our ICE baseline and each of the models GPT-2,
GPT-NEO, and LLAMA, we sample 200 test
queries from RIPPLEEDITS on which the model fails
post-editing. We then label these failures using
three categories: (a) no effect, for cases when the
model predicts the original object, i.e., the edit in-
troduced no ripple effect, (b) abstaining, when the
model abstains from answering by generating text
like ‘‘unknown’’ or ‘‘a mystery’’, and (c) noise,
when the model generates an incorrect object or
unrelated text. Table 7 presents the results, show-
ing that in most cases (≥ 68% across all settings)
factual editing introduces erroneous changes to the
model’s knowledge rather than making no change.
Interestingly, for both GPT-NEO and LLAMA,
where editing performance is better than GPT-2,
ROME introduces more incorrect changes while
ICE causes the model to abstain from answering.

GPT-3 versus LLAMA using ICE We further
looked into the performance on the LG tests, where
applying ICE to GPT-3 is notably inferior to ICE
on LLAMA (see Tables 3, 4, 5). Specifically, we
collected responses from each of the models to 100
random LG queries, and analyzed them using the
same categories as described above. We observed
that GPT-3 abstains from answering the query
much more often than LLAMA (49% of the cases
for GPT-3 compared to only 28% in LLAMA),
which could explain the lower performance of
ICE on GPT-3 on these queries.
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6 Conclusion and Discussion

We introduce the notion of ripple effects in knowl-
edge editing, suggesting that editing a particular
fact implies further updates of related facts. We
additionally propose evaluation criteria for ripple
effects and create RIPPLEEDITS, a diagnostic bench-
mark designed to evaluate how well KE methods
handle the ripple effects of various edits. We eval-
uate prominent KE methods and show that they
often fail to introduce consistent edits that capture
the ripple effects of an edit, suggesting that fu-
ture development of KE methods should consider
those effects more carefully. Last, we show that a
simple in-context editing method achieves the best
results on RIPPLEEDITS, highlighting the potential
of such editing approaches.

Notably, our benchmark covers a small fraction
of all possible ripple-edits. For example, one could
consider ripple effects that involve more than two
hops, and explore the graph structure of different
edits. In addition, while we focus on ripple effects
of single edits, future work can consider the effect
of editing multiple facts in a single batch. Finally,
it would be interesting to consider cases where
models succeed in capturing ripple-edits, and an-
alyze how these are implemented mechanistically
in the transformer architecture (Geva et al., 2023).

Limitations Our data generation pipeline relies
on information from an existing knowledge-base
(WIKIDATA in our case), which could be incom-
plete or outdated. While RIPPLEEDITS does not aim
to cover all the possible ripple-edits in WIKI-
DATA, these concerns might be a major issue
when seeking a comprehensive evaluation or con-
sidering domain-specific knowledge-bases, which
often tend to be incomplete. A possible solution
to explore in that case is to use LMs internal
knowledge instead of an external knowledge-base
(Cohen et al., 2023).

With RIPPLEEDITS focusing on the ripple effect
of edits, it does not include tests, such as para-
phrasing of the edit and subject specificity, that
evaluate the edit itself and are covered by exist-
ing benchmarks (e.g., CounterFact). In addition,
it does not verify that many other facts that are
distantly related to the edit, i.e., triplets that are
not included in the close neighbourhood of the
edit, were retained post-editing. For example, we
expect that editing the capital of France would
not affect the population of Poland, yet this is not

explicitly checked. We note that building such an
evaluation is hard, since there are many facts to
consider and it is unclear how to determine auto-
matically which triplets should and should not be
affected by a certain edit.
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