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Abstract
Matching grant proposals to reviewers is a core
task for research funding agencies. We ap-
proach this task as a text similarity problem to
allow pre-filtering of a relevant subset of poten-
tial matches using pre-trained language models.
Given the scientific nature of our English text
corpus, we investigate the value of targeted
pre-training of BERT models towards scientific
documents for the matching task based on the
text similarity. We benchmark the performance
of BERT models with a classical bag-of-words
approach using TF-IDF. The results reveal a
clear benefit from pre-training BERT on sci-
entific texts and additionally augmenting by
citation graphs. Interestingly, the BERT mod-
els do not substantially out-perform TF-IDF
on the texts from any discipline. The results
are robust to various types of input data and
modelling choices.

1 Introduction

The role of research funding agencies is to support
scientific research by evaluating grant proposals
and deciding which of them are eligible for fund-
ing. As a part of the evaluation procedure, submit-
ted grant proposals need to be assigned to suitable
reviewers who assess the scientific quality of the
proposals (Hettich and Pazzani, 2006). Matching
proposals to reviewers is, however, a very time-
consuming task which requires scientific officers
to manually screen available reviewers and assess
their suitability to review given proposals. Such a
matching process involves reading grant proposals,
reading published works from reviewers, and in a
consistent manner determining their similarity.

In order to support this matching procedure, we
approach this task as a text similarity problem to
leverage the benefits of natural language process-
ing to pre-filter a subset of suitable reviewers. In
particular, we use NLP models to vectorize the
English texts of proposals and those of reviewers’
publications. We then compute a text similarity

measure between the proposals and reviewers’ pub-
lications. For each proposal we rank-order the simi-
larity scores of all potential reviewers to retrieve the
subset of best-matching reviewers. This subset then
serves the scientific officers as a pre-filtered pool
of suitable reviewers. Such pre-filtering substan-
tially reduces the time needed to screen all possible
reviewers and helps to more efficiently allocate the
resources of the scientific officers. Similar NLP-
based approaches of matching proposals to review-
ers have been suggested in the domains of grant
and journal peer review (Hettich and Pazzani, 2006;
Stelmakh et al., 2021) as well as scientific confer-
ences (Charlin and Zemel, 2013) and also from
the big bibliometric databases (e.g. Dimensions,
SpringerNature, Elsevier).

For the vectorization of the texts of proposals
and reviewers’ publications, we contrast a bag-
of-words approach using the TF-IDF (Term Fre-
quency - Inverse Document Frequency) weight-
ing (Spärck Jones, 1972) with a word embed-
dings approach using pre-trained transformer mod-
els (Vaswani et al., 2017). In comparison to TF-
IDF, transformers produce contextualized text em-
beddings thanks to their self-attention mechanism.
Transformer models became widely used for se-
mantic text similarity tasks (Reimers and Gurevych,
2019; Yang et al., 2020; Chandrasekaran and Mago,
2021), even though simple bag-of-words methods
such as TF-IDF often perform equally well (Shah-
mirzadi et al., 2019). Given the vast amount of
open-source pre-trained language models available
(Wolf et al., 2020), the choice of a suitable model
for a given setting is a priori not clear. Due to
the specific scientific domain of the grant proposal
texts as well as reviewers’ publication texts, we fo-
cus on models pre-trained specifically on scientific
texts in English and investigate the value added
by such targeted pre-training in comparison to a
model pre-trained on a general text corpus. As
such, we consider the BERT model (Devlin et al.,
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2018), being one of the most popular open-source
pre-trained models, as our baseline model. We
compare BERT to SciBERT (Beltagy et al., 2019),
the BERT extension pre-trained additionally on sci-
entific texts as well as to SPECTER (Cohan et al.,
2020), which is a further extension of SciBERT via
citation graph augmentation. In particular, we use
SPECTER2 (Singh et al., 2022), an updated version
of the original SPECTER model. As a benchmark
model we consider the TF-IDF weighting. For each
of the considered models, we vectorize the texts for
both grant proposals and reviewers’ publications
and compute their cosine similarities. Based on the
rank-ordered similarities, we select a subset of best
matching reviewers for each grant proposal. As
such, we effectively build a recommender system
based on text similarities. We evaluate the perfor-
mance of the models by contrasting the subset of
best-matching reviewers with the actual reviewer
matching based on a manual assignment by scien-
tific officers.

The results reveal a clear pattern in favor of mod-
els with targeted pre-training on scientific texts. We
observe substantially better performance of SciB-
ERT in comparison to BERT, while SPECTER2
also considerably outperforms SciBERT. These
findings provide clear evidence for the value added
by targeted pre-training of base models on a spe-
cific text corpus for a matching/recommendation
task based on text similarity. In particular, addi-
tional pre-training of BERT on scientific texts im-
proves the overlap between the manually matched
and model-generated subset of reviewers. In ad-
dition to pre-training on scientific texts, incorpo-
rating the inter-document relatedness via citation
graph further improves the overlap. Despite the
clear improvements of scientific pre-training of the
BERT model, only the most sophisticated one, i.e.
the SPECTER2, clearly outperforms the TF-IDF
model. These results are robust to changes in the
types of text data inputs such as title and abstract
as well as the amount of text data provided. Fur-
thermore, the results do not depend on specific
modelling choices and are robust to changes in the
text embedding extraction such as mean pooling
or CLS tokens for BERT models and uni-grams or
n-grams for the TF-IDF model.

The code for the conducted analyses is publicly
available at https://github.com/snsf-data/snsf-grant-
similarity.1

1Due to data protection laws, the data cannot be shared.

2 Institutional Setting

Based on a government mandate, the Swiss Na-
tional Science Foundation (SNSF) supports scien-
tific research in all academic disciplines. The SNSF
is the leading Swiss organisation for the promotion
of scientific research. The main role of the SNSF
is the evaluation of scientific grant proposals; those
that are evaluated to be the best are awarded re-
search funding. Within the evaluation procedure,
the SNSF relies on external peer-reviewers as well
as on internal reviewers in the form of members of
the evaluation panels. In this study, we focus on the
latter evaluation step. For each evaluation panel,
the grant proposals need to be matched to at least
2 reviewers from a pre-defined pool of available
reviewers. These panel reviewers then assess the
quality of the grant proposal based on the external
peer reviews and their own evaluation of the pro-
posals. In order to warrant fair and professional
evaluation, the reviewers should have sufficient ex-
pertise in the fields of research of the respective
grant proposals.

The matching of grant proposals to reviewers
requires scientific officers to manually screen the
grant proposal texts and the texts of reviewers’ pub-
lications. Such a procedure is feasible if the number
of proposals and reviewers is limited. However, it
poses a great challenge as the number of proposals
and potential reviewers grows. In order to reduce
the manual labor, we approach the matching proce-
dure as a text similarity problem. We leverage the
benefits of the NLP models to vectorize the English
texts from grant proposals and texts from reviewers’
publications and compute their text similarities via
cosine distance. For each grant proposal, we rank-
order the similarity scores and select a subset of
best-matching reviewers. In other words, we build
a recommender system based on text similarities.
We further need to take additional constraints into
account, such as conflicts of interest and a maxi-
mum workload per reviewer. Finally, the suggested
matching of proposals to reviewers is validated
and approved by scientific officers before the fi-
nal assignment takes place. This procedure can be
summarized in the following steps:

1. Download publication metadata for each re-
viewer from a bibliometric database

2. Vectorize texts of reviewers and proposals

3. Match reviewers to proposals based on the
highest text similarity

https://github.com/snsf-data/snsf-grant-similarity
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4. Balance number of proposals across reviewers

5. Validate matching results by scientific officers

In this paper, we focus on the above steps 2 and
3 and investigate the value of pre-training trans-
former models targeted towards the scientific do-
main in contrast to a simple bag-of-words approach,
in order to determine the most efficient method of
pre-filtering suitable reviewers.

3 Data

In general, it is challenging to objectively evaluate
the performance of text vectorization methods for
text similarity tasks as we cannot directly observe
the true underlying text similarity (Reimers et al.,
2016; Shah, 2022). In order to overcome this chal-
lenge, we evaluate the recommendations based on
the text similarity and rely on a manually annotated
dataset of matched reviewers provided by the sci-
entific officers from the SNSF. In particular, we use
the data from the Postdoc.Mobility funding scheme
from the August 2021 call. Postdoc.Mobility fel-
lowships enable early career researchers who have
recently completed their doctorates and would like
to pursue a scientific or academic career in Switzer-
land to conduct research projects abroad for up to
two years. The data includes 398 submitted grant
proposals across disciplines, and a pool of 150 po-
tential reviewers, making it an arguably representa-
tive case. For each grant proposal, we observe the
first-best and second-best reviewer according to the
best knowledge of the scientific officers.2 Most im-
portantly, this matching does truly reflect the best
possible assignment as it does not consider any ad-
ditional constraints such as conflicts of interest or
workload limits to manipulate the final assignment.
Thus it can be used as a validation for evaluating
the recommendations for matching based on the
underlying similarity between the grant proposals
and reviewer’s publications.

To assess the text similarity between the grant
proposals and reviewer’s publications, we rely on
the text of titles and abstracts. Titles and abstracts
are often used for semantic text similarity tasks,
especially in the scientific domain (Cohan et al.,
2020) and should provide a condensed summary of
the most important aspects of a scientific text. For
grant proposals we retrieve the titles and abstracts

2The assignment by scientific officers has been done in
accordance with the research area, whereas we do not restrict
the model-generated assignment as such.

directly from the submitted proposal documents.
For potential reviewers we download the titles and
abstracts from their scientific publications from a
bibliometric database.3 To ensure a clean evalua-
tion setup we restrict the texts of titles and abstracts
to English texts only, for both proposals and publi-
cations, and keep only those reviewers with at least
10 English publications available in the database.
This leaves us with a set of 320 grant proposals
and 125 potential reviewers.4 Table 1 below pro-
vides an overview of the data based on the research
areas:5

Area # Proposals (%) # Reviewers (%)
SSH 50 (15.6) 20 (16.0)

MINT 147 (46.0) 62 (49.6)
LS 123 (38.4) 43 (34.4)

Table 1: Overview of Research Area Distribution

To investigate the influence of data inputs on the
matching results, we vary the inputs along two di-
mensions. First, we vary the composition of the text
data and compare the matching results based on 1)
titles, 2) abstracts, and 3) concatenation of titles
and abstracts, to explore the value of the particular
types of texts. Second, we vary the amount of the
text data and compare the publications from the
last 5 years vs. publications from the last 10 years,
to examine the importance of the publications’ re-
cency. Note that although on average the increase
in number of publications is proportionate to the
recency of the publications, there is a lot of hetero-
geneity as well. Additionally, due to differences in
publication practices, the actual number of publica-
tions varies substantially across disciplines.6

4 Methods

Since their introduction, transformer models
(Vaswani et al., 2017) have gained considerable

3The present analysis uses data from the Scopus database
of Elsevier. In the future the SNSF will base its matchings on
the Dimensions database.

4These restrictions concern predominantly proposals and
reviewers from the disciplines of social sciences and humani-
ties due to the diverse type of outputs in these disciplines that
are covered less completely in bibliometric databases.

5We follow the official discipline classification of the SNSF
and distinguish between three high-level research areas: Hu-
man and Social Sciences (SSH), Mathematics, Natural- and
Engineering Sciences (MINT), and Biology and Medicine
(LS).

6The average number of publications per referee is 44.7
for the last 5 years of record and 82.0 for the last 10 years. For
differences in research areas, see Table 3 in Appendix.

https://snf.ch/en/XIZpfY3iVS5KRRoD/funding/careers/postdoc-mobility
https://www.scopus.com/
https://app.dimensions.ai/
https://www.snf.ch/SiteCollectionDocuments/allg_disziplinenliste.pdf


attention in the field of applied natural language
processing (Tunstall et al., 2022). One of the key in-
novations of the transformer architecture is the self-
attention mechanism, which helps to capture the
context within the input sequence (Turner, 2023).
As such, transformers provide a text vectorization
in a form of contextualized text embeddings. Such
contextualized embeddings can be used for a vari-
ety of NLP tasks, including semantic text similarity
(Chandrasekaran and Mago, 2021). Furthermore,
the availability of open-source pre-trained mod-
els on platforms such as Hugging Face makes it
convenient to deploy these models for a particular
application (see e.g. Wolf et al., 2020).

In this study, we focus on the BERT-type models
(Devlin et al., 2018), i.e. deep bidirectional trans-
formers, which have gained large popularity for a
variety of applied NLP tasks. The BERT models
are pre-trained on large text corpus via bidirectional
representations, conditioning on both left and right
context in the text sequence in all layers of the
model (Devlin et al., 2018). The text corpus for the
pre-training of the base BERT model consists of
the BookCorpus (Zhu et al., 2015) and the English
Wikipedia. Given the specific scientific domain in
our setting of grant proposals and reviewers’ pub-
lications we compare the base BERT model with
its extended version that used additional scientific
texts from SemanticScholar for pre-training, the
so-called SciBERT (Beltagy et al., 2019), as well
as with a further extension of the SciBERT itself
- the SPECTER2 (Singh et al., 2022) - which has
been further augmented by citation graph in its pre-
training to capture the inter-document relatedness.

As collecting and labelling pairs of grant pro-
posal text data for specific fine-tuning of the mod-
els is costly and often infeasible in practice due
to the limited resources of the scientific officers,
we focus on evaluating the pre-trained models as
given, without additional fine-tuning. By doing
so, we can effectively assess the value added by
the specific pre-training of these models targeted
towards scientific texts and their suitability for a
matching/recommendation task based on the scien-
tific text similarity. The pre-trained models as such
can be used off-the-shelf for extracting the text em-
beddings via the so-called CLS token from the last
hidden layer of the network, a classification token
that provides an aggregate representation of the text
sequence (Devlin et al., 2018; Cohan et al., 2020).
An alternative representation for the text sequence

can be obtained by the so-called mean pooling,
which averages all 512 tokens from the last hidden
layer to get the text embedding. Such extractions
of the embeddings from pre-trained models is com-
mon for a variety of NLP tasks (Kjell et al., 2023;
Wu et al., 2023) as well as for text similarity in par-
ticular (May et al., 2019; Zhang et al., 2019; Qiao
et al., 2019), although it has been pointed out by
Reimers and Gurevych (2019) that such text embed-
dings might not lead to optimal performance unless
fine-tuned specifically for text similarity task.

To benchmark the performance of the BERT
models, we implement text vectorization via TF-
IDF weighting (Spärck Jones, 1972). TF-IDF is a
type of bag-of-words approach, where the numer-
ical representation of the text in vector space is
based on a token decomposition of the text, ignor-
ing the sequential nature of the text. The TF-IDF
then applies a weighting scheme that puts a higher
weight on words that appear frequently in one doc-
ument, but rarely across documents. The TF-IDF
vectorization results in high-dimensional sparse
vectors, which is in contrast to the dense vectors
resulting from the BERT models. Such TF-IDF
vectorization has proven to be very effective in text
similarity tasks, despite its simplicity (compare
e.g. Hettich and Pazzani, 2006; Shahmirzadi et al.,
2019). We pre-process the texts for TF-IDF as fol-
lows: we lower-case the texts first and split the text
sequence into separate words, i.e. tokens, while
removing stop words and performing stemming of
the remaining words.

To investigate the influence of the choice of text
representation on the matching results, we evalu-
ate the performance of the transformer models for
both CLS token and mean pooling as these are the
commonly used embedding extractions in practice
(Reimers and Gurevych, 2019), as well as for uni-
grams and 3-grams in the case of TF-IDF as these
represent different levels of granularity of the text
(Shahmirzadi et al., 2019).

The matching procedure can be defined as fol-
lows. Consider a grant proposal i with i =
1, ..., N in total, while each proposal i is asso-
ciated with a single text sequence τi. Further
consider a reviewer j with j = 1, ..., J review-
ers in total, while each reviewer is associated
with k = 1, ...,K text sequences, resulting in a
reviewer-publication text sequence ρj,k. The raw
text sequences are then vectorized via vectoriza-
tion function υm(·) depending on the model used

https://en.wikipedia.org/wiki/English_Wikipedia
https://en.wikipedia.org/wiki/English_Wikipedia
https://www.semanticscholar.org/


M ∈ {BERT,SciBERT,SPECTER2,TF-IDF} re-
sulting in the text vectors as:7

Ti = υm(τi)

for i = 1, ..., N ; ∀m ∈ M
(1)

and

Pj,k = υm(ρj,k)

for j = 1, ..., J and k = 1, ...,K; ∀m ∈ M

(2)

Then for all possible pairs of proposals and re-
viewers’ publications, we estimate the text similar-
ity via cosine distance:

π̂i,j,k =
Ti · Pj,k

∥Ti∥∥Pj,k∥
. (3)

In order to bring the similarities π̂i,j,k onto
proposal-reviewer level, for a given proposal-
reviewer pair we sort the similarities along the pub-
lication level in a decreasing order as

π̂i,j,(1) ≤ π̂i,j,(2) ≤ · · · ≤ π̂i,j,(K) (4)

and average the similarities of the 20% most
similar publications as follows8

π̂i,j =
1

K20

K20∑
k=1

π̂i,j,(k). (5)

Given the average similarities between the pairs
of proposals and reviewers π̂i,j , for each proposal
i we rank-order the reviewers j according to their
average similarities and select the top R ranked
reviewers, with R ∈ {2, 5}, to provide a matching
recommendation for a subset of suitable reviewers
for each proposal as

ĴR
i ∈ Argmaxj(π̂i,j)

s.t. |ĴR
i | = R; ∀R ∈ {2, 5}.

(6)

In order to evaluate the quality of the matching
recommendation, we compute the Mean Average
Precision, i.e. MAP, a common metric for eval-
uation of recommender systems. (Chen and Liu,
2017). MAP is especially suitable in our case as

7We further suppress the dependence on a specific model
m for notational ease.

8We tested the influence of this threshold by varying it
between 10% and 50% and observed qualitatively similar
results.

it takes the ordering information of the proposed
matches into account. MAP combines both preci-
sion and recall as it approximates the average area
under the so-called precision-recall curve (Schütze
et al., 2008). In particular, MAP over all grant
proposals N can be defined as follows:

MAP =
1

N

N∑
i=1

(
1

Pi

R∑
r=1

µ(r)·
n
(
J̃P
i ∩ ĴR

i (r)
)

r

)
(7)

where Pi is the number of true positive cases, i.e.
the matches labelled by the scientific officers,9 µ(·)
is a so-called relevance function defined as an indi-
cator function equal to 1 if the matched reviewer at
rank r is relevant and 0 otherwise, J̃P

i is a set of P
true recommended reviewers as labelled by the sci-
entific officers, and ĴR

i (r), denotes indexing of the
ordered set of R model recommended reviewers up
to the r-th element. Intuitively, MAP equals 1 if
the recommended matches correspond exactly to
those labelled by the scientific officers for all grant
proposals, while it equals 0 if we do not get any cor-
rect recommendations. As MAP takes the ordering
information of the recommendations into account,
even if we on average always do find the true two
matches among R = 5 recommended ones, yet
only at the 4th and 5th rank, the MAP value would
correspond to 0.225. Similarly, if we on average
find only a single match among the recommended
ones, MAP would equal 0.5 if the match was on
the first rank, but it would equal only to 0.1 if the
match was on the fifth rank. This demonstrates how
MAP is a distance sensitive metric and penalizes
recommendations at lower ranks. In order to reflect
the variability in MAP, we additionally compute
the variance across the N proposals.

5 Results

Table 2 below presents the MAP results at R = 5,
i.e. for the top 5 recommended reviewers, depend-
ing on the type of text embedding, number of recent
years and the type of input text. We focus on the
R = 5 case as our main objective is pre-filtering a
subset of suitable reviewers, from which the scien-
tific officers can easily choose the two most suitable
reviewers. We provide the results for the case of
R = 2 in Appendix to benchmark the results with

9In our setting, Pi is almost always equal to 2. For a
handful of cases Pi = 1, if only a single reviewer with at least
10 English publications was available, as well as Pi = 3, if
scientific officers labelled one extra reviewer as being suitable.



the case of pre-filtering the exact subset of review-
ers needed for the final assignment.

Focusing on the first set of results based on the
text embeddings via mean pooling, we observe a
clear pattern for the BERT models. Regardless
of the number of years and the type of input text
sequence considered, the MAP is monotonically in-
creasing when switching from BERT to SciBERT
and further from SciBERT to SPECTER2. This
documents the value added of targeted pre-training
of the BERT model on scientific texts and addi-
tionally the citation graphs for the matching task
based on the text similarity. Interestingly, the TF-
IDF model based on 3-grams performs surprisingly
well too, in many cases achieving similar perfor-
mance as the SciBERT model. The unanimously
best performance exhibits the SPECTER2 model,
which benefits from the pre-training on the citation
networks in addition to pre-training on scientific
texts.

Looking at the differences based on the vary-
ing number of years and text inputs, we uncover
additional clear patterns. First, the overall perfor-
mance of all considered models is only marginally

better for the case of including last 10 years of
publications instead of 5. As such, additional but
less recent data on reviewer’s publications do not
substantially improve the matching performance
on average, although the improvement is greater
for the SSH domain as will be discussed below.
Second, we observe a sizeable increase in perfor-
mance, when including abstracts in addition to ti-
tles, whereas the performance is de facto the same,
whether abstracts are included alone or in combina-
tion with titles. This pattern is documented for all
considered models. Thus, it appears that titles do
not contain information that is not also available
from the abstract.

Comparing the results based on the mean pool-
ing with those of the CLS tokens, we identify few
differences. For the BERT and SciBERT model
the performance clearly deteriorates when only the
CLS token is used, even more so for SciBERT than
for BERT. This provides evidence in favor of text
embeddings extraction via mean pooling for the
matching task based on text similarity for these par-
ticular models. In contrast, the performance of the
SPECTER2 model is robust, regardless of the type

Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.3117 0.3167 0.3745 0.2316
(0.1020) (0.1054) (0.1092) (0.0804)

mean pooling / 3-gram 5 abstract 0.3684 0.3949 0.4518 0.3932
(0.1110) (0.1018) (0.1128) (0.1115)

mean pooling / 3-gram 5 title + abstract 0.3653 0.3905 0.4536 0.3925
(0.1101) (0.1012) (0.1144) (0.1101)

mean pooling / 3-gram 10 title 0.3175 0.3316 0.3842 0.2585
(0.1054) (0.1093) (0.1141) (0.0893)

mean pooling / 3-gram 10 abstract 0.3675 0.4205 0.4687 0.4000
(0.1067) (0.1053) (0.1136) (0.1106)

mean pooling / 3-gram 10 title + abstract 0.3696 0.4184 0.4619 0.4033
(0.1071) (0.1052) (0.1161) (0.1101)

CLS token / uni-gram 5 title 0.1937 0.3104 0.3908 0.2305
(0.0743) (0.0968) (0.1110) (0.0767)

CLS token / uni-gram 5 abstract 0.2456 0.2001 0.4554 0.3792
(0.0764) (0.0708) (0.1127) (0.1087)

CLS token / uni-gram 5 title + abstract 0.2719 0.1941 0.4520 0.3692
(0.0921) (0.0668) (0.1170) (0.1020)

CLS token / uni-gram 10 title 0.2000 0.3298 0.4034 0.2504
(0.0807) (0.1119) (0.1142) (0.0842)

CLS token / uni-gram 10 abstract 0.2718 0.2123 0.4605 0.3900
(0.0921) (0.0716) (0.1227) (0.1077)

CLS token / uni-gram 10 title + abstract 0.2917 0.1908 0.4576 0.3811
(0.1047) (0.0652) (0.1219) (0.1036)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 2: Results on the Mean Average Precision (MAP) at R=5 across models



of embedding. In case of TF-IDF, the results are
also quite robust to the type of vectorization as the
performance based on uni-grams is similar to that
of 3-grams. In terms of the differences based on
the number of years and the type of text inputs, we
observe the same patterns as for the mean pooling
and 3-grams respectively.

We further investigate the overall results by un-
covering the heterogeneity with respect to research
areas (see Tables 5, 7 and 9 in Appendix).10 In
general, we observe similar patterns in terms of
the performance of the considered models. How-
ever, we observe a substantial differences in the
performance of all the models across the research
areas. Most importantly, the results reveal lower
performance for the SSH domain in particular. This
might be partly due to the under-representation of
the SSH domain within the publication data (see
Table 3 in Appendix for details). In this regard, for
SSH domain we observe a sizeable improvement
in the performance of the SPECTER2 model in par-
ticular, when including texts of the past 10 years as
opposed to 5 years, as can be seen in Tables 5 and 6
in the Appendix. This suggests that including more
publication data is valuable for a better matching
of reviewers in the SSH domain.11 Interestingly,
TF-IDF performs rather well for the SSH domain,
although the contextual information that might be
particularly important is not taken into account by
this method.

Comparing the overall results with the case of
recommending a subset of top 2 most similar re-
viewers, i.e. R = 2, we generally observe the same
patterns as for the case of R = 5. Based on the con-
ducted analyses, the SPECTER2 model provides
the best and most robust performance across differ-
ent model choices, data inputs, and research areas.
Interestingly, a classical TF-IDF model turns out to
be also well-performing and robust choice for the
matching task based on text similarity.

6 Discussion

In this study, we investigated the value of pre-
training BERT models towards scientific domain
for the matching task based on text similarity and

10Results for R = 2 by research area are provided in Ap-
pendix in Tables 6, 8 and 10.

11This improvement might stem from the increased amount
of text data itself as well as from the content of the text data
which might be more similar across time for SSH than for
other research areas, or perhaps that fields within SSH are
more distinct from other fields even as the fields themselves
change across time.

compared the performance with a classical bag-of-
words approach. The results reveal two main find-
ings: First, pre-training on scientific texts and addi-
tionally considering the citation networks clearly
improves the overlap between the actual and the
recommended proposal-reviewer matches. Second,
BERT models do not substantially out-perform TF-
IDF in the matching tasks, unless both scientific
documents and the citation networks are taken into
account in the pre-training, i.e. the SPECTER2
model.

These results are in line with the findings of
Shahmirzadi et al. (2019), who find the TF-IDF
model to perform equally well as other more com-
plex neural models. Nevertheless, the similar per-
formance of the transformer models and TF-IDF
is rather surprising, given the large conceptual dif-
ferences in the text vectorization. One of the possi-
ble reasons for this phenomenon might be the fact
that extracting raw BERT embeddings is not opti-
mal, unless specifically fine-tuned for the task of
text similarity as argued by Reimers and Gurevych
(2019). This has also been the approach pursued
by Yang et al. (2020) to compare the performance
of transformer models for text similarity task in a
clinical domain.

Furthermore, the results reveal substantial het-
erogeneity in the performance across research ar-
eas. For all considered models the matching task
is the most challenging within the SSH domain.
This might be due in part to the diverse type of
outputs in these disciplines that are covered less
completely in bibliometric databases, for which
text similarity might not be the optimal approach.
In addition, the large variety of disciplines within
the SSH domain might pose another complication
for the models considered here, as opposed to do-
mains of MINT and LS, where the proposal and
publication texts share more similar characteristics
overall. SSH texts sometimes use more generic ter-
minology with less specific keywords than what is
found in MINT and LS, and we had hypothesized
that methods based on text embeddings would ben-
efit from the incorporation of large contexts, but
this did not turn out to be the case. One of the
possibilities to overcome this challenge might be
an explicit fine-tuning of Siamese networks as sug-
gested by Reimers and Gurevych (2019) on pairs
of SSH texts.

Overall, the results presented in this study con-
tribute to a better understanding of the usage of



pre-trained transformer models vs. classical bag-
of-words models for a matching task based on text
similarity in a scientific domain. The findings of
our analyses provide empirical evidence on the suit-
ability and sensitivity of the particular models, data
inputs and modelling choices, for matching grant
proposals to reviewers - a core task of any research
funding agency.

Limitations

The analyses presented in this study have a limited
scope. Firstly, the limitations concern the external
validity of the results. As our validation dataset
focuses on a specific call from a specific funding
scheme at the SNSF with a relatively small sample
size, it is not assured that the findings are represen-
tative for other funding schemes within the SNSF,
or broader, for other funding agencies.

Secondly, restricting the data to English texts
prevents the assessment of all submitted grant pro-
posals and all potential reviewers. Such restriction
further aggravates the imbalances in the availability
of text data across research areas, resulting in lower
representation of the SSH domain.

Thirdly, our analyses are limited to compari-
son of BERT models and the TF-IDF model for
text vectorization. Therefore, our findings are not
representative for newer open-source transformer
models such as Llama (Touvron et al., 2023) or
Mistral (Jiang et al., 2023), or for other alterna-
tive text vectorization methods such as Word2Vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014), which might potentially out-perform the
approaches analyzed here. Additionally, due to
the token length limited to 512 tokens for the pre-
trained BERT models, the texts are truncated at this
threshold, which leads to occasional information
loss. We have experimented with truncation from
the left and right of the text sequences, which did
not change the qualitative conclusions.

Lastly, extracting raw embeddings from the pre-
trained BERT models without explicitly fine-tuning
the models for the text similarity task might re-
sult in sub-optimal performance. Nervetheless, it
should provide a reasonable baseline in cases where
labelled data is not feasible to collect.
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A Appendix

A.1 Descriptive Statistics

Publications SSH MINT LS

5 years 22.6 52.1 44.4
10 years 40.6 96.0 81.2

Table 3: Distribution of the average number of publica-
tions per research area

A.2 Model Details
In our analyses, we deploy specifically the follow-
ing models from the Hugging Face platform (Wolf
et al., 2020):

• BERT: google-bert/bert-base-uncased

• SciBERT: allenai/scibert_scivocab_uncased

• SPECTER2: allenai/specter2_base

and use the quanteda (Benoit et al., 2018) imple-
mentation for the TF-IDF vectorization.

A.3 Supplementary Results

Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.2383 0.2398 0.2945 0.1883
(0.0882) (0.0961) (0.1032) (0.0763)

mean pooling / 3-gram 5 abstract 0.2734 0.2938 0.3562 0.3117
(0.1100) (0.0988) (0.1188) (0.1073)

mean pooling / 3-gram 5 title + abstract 0.2719 0.2867 0.3602 0.3102
(0.1104) (0.0956) (0.1181) (0.1071)

mean pooling / 3-gram 10 title 0.2383 0.2531 0.2914 0.2055
(0.0968) (0.1038) (0.1070) (0.0805)

mean pooling / 3-gram 10 abstract 0.2734 0.3117 0.3703 0.3023
(0.1021) (0.1026) (0.1203) (0.1076)

mean pooling / 3-gram 10 title + abstract 0.2758 0.3125 0.3680 0.3094
(0.1053) (0.0995) (0.1238) (0.1109)

CLS token / uni-gram 5 title 0.1391 0.2266 0.2938 0.1797
(0.0676) (0.0849) (0.0992) (0.0715)

CLS token / uni-gram 5 abstract 0.1727 0.1461 0.3578 0.3078
(0.0698) (0.0622) (0.1161) (0.1048)

CLS token / uni-gram 5 title + abstract 0.1938 0.1414 0.3586 0.2914
(0.0787) (0.0585) (0.1192) (0.0953)

CLS token / uni-gram 10 title 0.1469 0.2508 0.3078 0.1906
(0.0665) (0.0997) (0.1064) (0.0740)

CLS token / uni-gram 10 abstract 0.1969 0.1500 0.3648 0.3008
(0.0810) (0.0578) (0.1280) (0.1069)

CLS token / uni-gram 10 title + abstract 0.2070 0.1328 0.3656 0.2906
(0.0932) (0.0532) (0.1265) (0.0994)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 4: Results on the Mean Average Precision (MAP) at R=2 across models

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/specter2_base
http://quanteda.io/


Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.2402 0.2273 0.2513 0.1512
(0.1119) (0.0936) (0.1147) (0.0526)

mean pooling / 3-gram 5 abstract 0.3080 0.3020 0.3327 0.3533
(0.1282) (0.1060) (0.1193) (0.1278)

mean pooling / 3-gram 5 title + abstract 0.2973 0.2983 0.3492 0.3603
(0.1277) (0.1075) (0.1319) (0.1222)

mean pooling / 3-gram 10 title 0.2440 0.2128 0.2647 0.1840
(0.0951) (0.0809) (0.0838) (0.0622)

mean pooling / 3-gram 10 abstract 0.2915 0.3150 0.4070 0.3312
(0.1095) (0.0960) (0.1270) (0.0844)

mean pooling / 3-gram 10 title + abstract 0.2913 0.3388 0.3908 0.3562
(0.1057) (0.1033) (0.1320) (0.0910)

CLS token / uni-gram 5 title 0.1873 0.2213 0.2502 0.1245
(0.0943) (0.0983) (0.0968) (0.0402)

CLS token / uni-gram 5 abstract 0.1617 0.2017 0.3325 0.3048
(0.0621) (0.0797) (0.1135) (0.1166)

CLS token / uni-gram 5 title + abstract 0.1690 0.1735 0.3038 0.2925
(0.0566) (0.0562) (0.1164) (0.1112)

CLS token / uni-gram 10 title 0.2098 0.2237 0.2643 0.1643
(0.0957) (0.1040) (0.0666) (0.0481)

CLS token / uni-gram 10 abstract 0.2240 0.2060 0.3775 0.3328
(0.0895) (0.0739) (0.1345) (0.0948)

CLS token / uni-gram 10 title + abstract 0.2318 0.1657 0.3493 0.3140
(0.0744) (0.0694) (0.1212) (0.0883)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 5: Research Area SSH - Mean Average Precision (MAP) at R=5 across models

Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.1900 0.1800 0.2000 0.1100
(0.1060) (0.0945) (0.1097) (0.0489)

mean pooling / 3-gram 5 abstract 0.2300 0.1850 0.2500 0.2800
(0.1271) (0.1067) (0.1250) (0.1266)

mean pooling / 3-gram 5 title + abstract 0.2250 0.1950 0.2950 0.2850
(0.1256) (0.1053) (0.1472) (0.1148)

mean pooling / 3-gram 10 title 0.1700 0.1500 0.1850 0.1400
(0.0700) (0.0791) (0.0811) (0.0565)

mean pooling / 3-gram 10 abstract 0.2050 0.1850 0.3050 0.2150
(0.1089) (0.0939) (0.1385) (0.0817)

mean pooling / 3-gram 10 title + abstract 0.2150 0.2350 0.3050 0.2350
(0.1097) (0.0980) (0.1385) (0.0980)

CLS token / uni-gram 5 title 0.1400 0.1750 0.1900 0.0850
(0.0820) (0.0950) (0.0882) (0.0398)

CLS token / uni-gram 5 abstract 0.1150 0.1650 0.2550 0.2300
(0.0618) (0.0832) (0.1186) (0.0965)

CLS token / uni-gram 5 title + abstract 0.1100 0.1300 0.2350 0.2250
(0.0514) (0.0593) (0.1107) (0.0950)

CLS token / uni-gram 10 title 0.1400 0.1750 0.1900 0.1000
(0.0667) (0.0925) (0.0678) (0.0383)

CLS token / uni-gram 10 abstract 0.1850 0.1550 0.3100 0.2200
(0.0862) (0.0788) (0.1341) (0.0960)

CLS token / uni-gram 10 title + abstract 0.1850 0.1250 0.2900 0.2100
(0.0709) (0.0721) (0.1157) (0.0851)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 6: Research Area SSH - Mean Average Precision (MAP) at R=2 across models



Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.2556 0.2711 0.3758 0.2487
(0.0766) (0.0846) (0.0896) (0.0869)

mean pooling / 3-gram 5 abstract 0.3530 0.3874 0.4634 0.3770
(0.1016) (0.0931) (0.1034) (0.1003)

mean pooling / 3-gram 5 title + abstract 0.3493 0.3780 0.4584 0.3794
(0.0955) (0.0917) (0.1024) (0.1050)

mean pooling / 3-gram 10 title 0.2502 0.2870 0.3884 0.2675
(0.0759) (0.0805) (0.1026) (0.0892)

mean pooling / 3-gram 10 abstract 0.3411 0.4239 0.4583 0.3686
(0.0960) (0.0972) (0.0998) (0.0963)

mean pooling / 3-gram 10 title + abstract 0.3500 0.4054 0.4460 0.3752
(0.0964) (0.0948) (0.0945) (0.1023)

CLS token / uni-gram 5 title 0.1315 0.2673 0.3840 0.2496
(0.0480) (0.0740) (0.0910) (0.0782)

CLS token / uni-gram 5 abstract 0.2370 0.1884 0.4353 0.3752
(0.0768) (0.0613) (0.1000) (0.1024)

CLS token / uni-gram 5 title + abstract 0.2744 0.1694 0.4364 0.3713
(0.0912) (0.0517) (0.1010) (0.0998)

CLS token / uni-gram 10 title 0.1446 0.2920 0.4091 0.2558
(0.0551) (0.0901) (0.1071) (0.0821)

CLS token / uni-gram 10 abstract 0.2514 0.1970 0.4430 0.3619
(0.0875) (0.0630) (0.1050) (0.1012)

CLS token / uni-gram 10 title + abstract 0.2761 0.1775 0.4363 0.3622
(0.1097) (0.0510) (0.1049) (0.0997)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 7: Research Area LS - Mean Average Precision (MAP) at R=5 across models

Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.1951 0.2134 0.2927 0.2114
(0.0671) (0.0816) (0.0960) (0.0851)

mean pooling / 3-gram 5 abstract 0.2663 0.2967 0.3638 0.3008
(0.1063) (0.0987) (0.1109) (0.1004)

mean pooling / 3-gram 5 title + abstract 0.2561 0.2846 0.3598 0.3008
(0.0999) (0.0905) (0.1057) (0.1045)

mean pooling / 3-gram 10 title 0.1768 0.2195 0.2927 0.2175
(0.0725) (0.0785) (0.1022) (0.0840)

mean pooling / 3-gram 10 abstract 0.2622 0.3313 0.3638 0.2622
(0.0941) (0.1050) (0.1109) (0.0869)

mean pooling / 3-gram 10 title + abstract 0.2642 0.3191 0.3516 0.2785
(0.0987) (0.0976) (0.1074) (0.0975)

CLS token / uni-gram 5 title 0.0915 0.1850 0.2785 0.2012
(0.0443) (0.0675) (0.0812) (0.0724)

CLS token / uni-gram 5 abstract 0.1585 0.1341 0.3435 0.3069
(0.0710) (0.0546) (0.1070) (0.1002)

CLS token / uni-gram 5 title + abstract 0.1911 0.1179 0.3455 0.2907
(0.0780) (0.0423) (0.1071) (0.0895)

CLS token / uni-gram 10 title 0.1179 0.2195 0.3150 0.2053
(0.0526) (0.0805) (0.1043) (0.0738)

CLS token / uni-gram 10 abstract 0.1829 0.1484 0.3415 0.2663
(0.0769) (0.0572) (0.1140) (0.1001)

CLS token / uni-gram 10 title + abstract 0.1931 0.1220 0.3455 0.2703
(0.0971) (0.0362) (0.1163) (0.0949)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 8: Research Area LS - Mean Average Precision (MAP) at R=2 across models



Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.3830 0.3852 0.4154 0.2448
(0.1118) (0.1189) (0.1184) (0.0828)

mean pooling / 3-gram 5 abstract 0.4018 0.4327 0.4827 0.4204
(0.1120) (0.1046) (0.1141) (0.1155)

mean pooling / 3-gram 5 title + abstract 0.4018 0.4324 0.4852 0.4145
(0.1147) (0.1035) (0.1153) (0.1109)

mean pooling / 3-gram 10 title 0.3988 0.4093 0.4213 0.2762
(0.1227) (0.1318) (0.1292) (0.0975)

mean pooling / 3-gram 10 abstract 0.4154 0.4536 0.4985 0.4497
(0.1112) (0.1118) (0.1199) (0.1279)

mean pooling / 3-gram 10 title + abstract 0.4126 0.4563 0.4994 0.4428
(0.1138) (0.1122) (0.1270) (0.1215)

CLS token / uni-gram 5 title 0.2478 0.3768 0.4444 0.2505
(0.0844) (0.1080) (0.1243) (0.0841)

CLS token / uni-gram 5 abstract 0.2813 0.2094 0.5140 0.4078
(0.0782) (0.0765) (0.1156) (0.1102)

CLS token / uni-gram 5 title + abstract 0.3048 0.2217 0.5153 0.3935
(0.1014) (0.0824) (0.1205) (0.0996)

CLS token / uni-gram 10 title 0.2430 0.3976 0.4459 0.2752
(0.0937) (0.1245) (0.1292) (0.0960)

CLS token / uni-gram 10 abstract 0.3051 0.2273 0.5033 0.4329
(0.0958) (0.0785) (0.1309) (0.1154)

CLS token / uni-gram 10 title + abstract 0.3251 0.2106 0.5123 0.4197
(0.1096) (0.0757) (0.1306) (0.1100)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 9: Research Area MINT - Mean Average Precision (MAP) at R=5 across models

Embedding Years Text BERT SciBERT SPECTER2 TF-IDF

mean pooling / 3-gram 5 title 0.2908 0.2823 0.3282 0.1956
(0.0959) (0.1064) (0.1043) (0.0766)

mean pooling / 3-gram 5 abstract 0.2942 0.3282 0.3861 0.3316
(0.1076) (0.0923) (0.1201) (0.1072)

mean pooling / 3-gram 5 title + abstract 0.3010 0.3197 0.3827 0.3265
(0.1138) (0.0940) (0.1184) (0.1075)

mean pooling / 3-gram 10 title 0.3129 0.3163 0.3265 0.2177
(0.1172) (0.1261) (0.1161) (0.0850)

mean pooling / 3-gram 10 abstract 0.3061 0.3384 0.3980 0.3656
(0.1051) (0.0983) (0.1214) (0.1269)

mean pooling / 3-gram 10 title + abstract 0.3061 0.3333 0.4031 0.3605
(0.1086) (0.1005) (0.1314) (0.1225)

CLS token / uni-gram 5 title 0.1786 0.2789 0.3418 0.1939
(0.0796) (0.0921) (0.1131) (0.0786)

CLS token / uni-gram 5 abstract 0.2041 0.1497 0.4048 0.3350
(0.0702) (0.0622) (0.1184) (0.1100)

CLS token / uni-gram 5 title + abstract 0.2245 0.1650 0.4116 0.3146
(0.0862) (0.0715) (0.1257) (0.0994)

CLS token / uni-gram 10 title 0.1735 0.3027 0.3418 0.2092
(0.0776) (0.1141) (0.1165) (0.0839)

CLS token / uni-gram 10 abstract 0.2126 0.1497 0.4031 0.3571
(0.0834) (0.0519) (0.1365) (0.1113)

CLS token / uni-gram 10 title + abstract 0.2262 0.1446 0.4082 0.3350
(0.0979) (0.0616) (0.1362) (0.1049)

Note: Higher MAP values indicate better performance. Variance displayed below in parentheses.

Table 10: Research Area MINT - Mean Average Precision (MAP) at R=2 across models


