Practical Strategies for Enhancing Reliability of GenAl Systems in
Customer Operations: An Overview

Flurin Gishamer and Alexander Khalil Arwadi
Open Systems, Zurich
{fgishamer,aarwadi}@open-systems.com

Abstract

In operational environments, the reliability of
large language models (LLMs) outputs is cru-
cial due to their important role in decision-
making. This paper addresses a common is-
sue known as hallucinations, where LLMs gen-
erate incorrect or irrelevant outputs. We will
detail our approach to mitigate these errors,
focusing on applications in support ticket rout-
ing and information extraction tasks. Our ap-
proach improves the reliability of the gener-
ated suggestions by integrating error detection
and remediation mechanisms directly into the
GenAl systems workflow. We employ classical
encoder-based transformers, such as RoOBERTa,
to constrain predictions to a fixed set of outputs,
ensuring more accurate and relevant responses.
We will present empirical results demonstrating
significant reductions in error rates, underscor-
ing the effectiveness of our methods in enhanc-
ing system reliability. We also discuss the prac-
tical challenges of deploying these strategies,
including output verification and domain adap-
tation. Our presentation offers an overview of
our strategies and encourages their adoption to
improve the reliability of GenAl systems.

1 Overview

Open Systems’ customer support operations focus
on assisting customers with technical issues related
to network connectivity and the company’s man-
aged security services. There is a strong motivation
to automate as many of these processes as possible
due to the following reasons:

* Timely ticket processing and resolution of
technical issues enhance efficiency and thus
directly impact our ability to meet SLAs.

* Since solving such problems requires a high
degree of specialist knowledge, only trained
experts can handle such tickets.

» Consequently, resolving tickets is associated

with high costs and limits developers’ capacity
to work on new features.

Quality of support is a key differentiator for Open
Systems. In light of this, it becomes clear that
the most effective way to optimize efficiency is
through a human-in-the-loop approach. This ap-
proach leverages the expertise of our support en-
gineers, allowing them to verify the correctness
of proposed solutions before any action is taken
or feedback is sent back to the customer. In sec-
tion 3, we will describe three practical use cases in
more detail, using them as examples to illustrate
the challenges and our solution approaches.

2 Related Work

The problem of hallucination in LLMs, where mod-
els generate incorrect or irrelevant outputs, has
been extensively studied. Comprehensive surveys
(Huang et al., 2023) and (Tonmoy et al., 2024) dis-
cuss principles, taxonomy, and various mitigation
techniques, emphasizing the need for robust er-
ror detection mechanisms and integration of these
strategies to enhance output reliability.
Retrieval-Augmented Generation (RAG) has
emerged as a promising approach to improve the
accuracy and relevance of LLM outputs by inte-
grating external knowledge. The advent of BERT
(Devlin et al., 2018) marked a significant break-
through in contextual embeddings. Sentence-BERT
(Reimers and Gurevych, 2019) uses Siamese BERT
networks to generate semantically meaningful sen-
tence embeddings, enabling the creation of effec-
tive vector indices for text. These indices, com-
bined with algorithms such as approximate nearest
neighbor (ANN) search techniques (Andoni et al.,
2018), efficiently retrieve semantically similar doc-
uments. Lewis et al. (Lewis et al., 2020) proposed
a RAG framework combining retrieval and genera-
tion with a bi-encoder and cross-encoder architec-
ture, significantly enhancing precision and recall in



knowledge-intensive NLP tasks.

Adapting LLMs to specific domains is essen-
tial for improving performance in specialized tasks.
Sun et al. (Sun et al., 2023) highlighted the bene-
fits of using in-context demonstrations to augment
prompts in text classification. Evoking reasoning
via abstraction (Zheng et al., 2023) is an approach
to elicit reasoning in LLMs, prompting models to
consider problems from a higher-level perspective
to generate more accurate and contextually appro-
priate responses.

Fine-tuning LLMs is another effective approach
for domain adaptation. This involves training a
pre-trained model on a smaller, domain-specific
dataset to refine performance. Direct Preference
Optimization (DPO) simplifies alignment to hu-
man preferences (Rafailov et al., 2024). Parameter-
Efficient Fine-Tuning (PEFT) techniques such as
LoRa (Hu et al., 2021) reduce computational re-
sources, making fine-tuning more accessible. Addi-
tionally, leveraging synthetic data, as demonstrated
by the Self-Instruct framework (Wang et al., 2022),
allows companies with limited training data to gen-
erate high-quality, domain-specific datasets, en-
hancing the feasibility of fine-tuning for organi-
zations with scarce data resources.

3 System and Domain Description

As mentioned in section 1, we focus on integrating
Al capabilities into customer operations to assist
support engineers effectively. The primary inter-
face for support engineers is the ticketing system.
We employ an automation framework that com-
municates via a clearly specified API to facilitate
seamless interaction between the ticketing system
and the Al system.

In the following we describe three use cases that
illustrate the challenges of our domain, and will
serve as examples throughout the rest of this paper:

3.1 Maintenance Window Extraction

An important task is extracting and interpreting
details from maintenance notification emails sent
by internet service providers (ISPs). These emails
contain critical information such as start and end
times of planned maintenance, impact (duration of
the actual maintenance works), and specific iden-
tifiers for affected hosts (where hosts refers to the
actual hardware units Open System deploys at cus-
tomers sites). The extraction process involves the
following steps:

1. Identifying whether the email is an ISP main-
tenance notification.

2. Extracting the start and end times of the
planned maintenance.

3. Extracting the impact of the maintenance
works.

4. Extracting identifiers for the affected hosts.

Previously, this process required a support en-
gineer to manually read through emails and input
dates and times into a predefined template.

3.2 Finding Relevant Documents

Support engineers often require additional infor-
mation from an internal knowledge base to resolve
tickets. Experienced engineers manually attach
relevant articles to tickets, but this process is time-
consuming and often neglected due to its ineffi-
ciency. The manual process involves:

1. Reading the ticket description and any at-
tached information.

2. Sifting through the knowledge base to identify
relevant documents.

3. Attaching document links to the ticket for easy
access.

For instance, a ticket mentioning a domain con-
nectivity issue should prompt the engineer to attach
a document detailing troubleshooting steps for such
incidents, to provide valuable references to the sup-
port engineer tasked with resolving the ticket.

3.3 Ticket Queue Assignment

Before an engineer can resolve a ticket, an expe-
rienced engineer reads through it and assigns it to
one of three possible queues. The three queues are
defined as follows:

1. Process: Tickets with low technical complex-
ity but involving many steps. These tasks are
often tedious and time-consuming.

2. Dispatch: Tickets requiring technical knowl-
edge related to networking and security but
expected to take less than 15 minutes to re-
solve.

3. Routine: Very complex technical issues that
are anticipated to take over 15 minutes to re-
solve.



Heuristics
(Sanity Checks)

External Knowledge
(Validation)

Functions
Explicitly
formulated
business logic

o Databases
o External APls

Figure 1: Approaches used in handling semantic errors
in generative Al systems.

After the experienced engineer assigns a ticket to
a queue, it automatically appears in the inbox of
engineers assigned to a given queue.

Previously, this process required manual reading
and categorization which was time-consuming and
introduced a bottleneck.

4 Error Remediation

Error remediation in generative Al systems in-
volves addressing both semantic and syntactic er-
rors to improve the reliability of system outputs.

4.1 Semantic Issues

As shown in figure 1 we found that counteracting
semantic errors, such as non-factual or nonsensical
outputs, can be done most effectively using cross-
checks in the form of heuristics and external knowl-
edge validation. Heuristics integrate business logic
by explicitly stating constraints in program code,
helping enforce rules and correct errors. External
knowledge validation involves using databases and
APISs to cross-check and verify outputs. Addressing
semantic errors aims to ensure accurate and, more
importantly, contextually appropriate outputs.

4.1.1 Date extraction

Extracting the planned maintenance window’s start
and end dates and times is challenging due to the
diverse formats in maintenance window emails
from globally distributed ISPs (e.g., dd.mm.yyyy,
mm.dd.yyyy, or "6 June 2020"). While a well-
designed prompt enables the LLM to extract dates,
discerning the exact date format consistently re-
quires additional steps. We implemented a function
that uses heuristics to determine the correct date
format by comparing the extracted date string with
the email’s date (event date) and choosing the date
format, yielding the closest date while ensuring this
date lies in the future. In addition, this function en-
sures that the resulting time range remains within

Input Guard
(Validation)

Output Guard
(Constraint Enforcing)

o Token Limit o Types
Struct:

o Character Encoding - (HEEE

o Output Range

Figure 2: Approaches used in handling syntax errors in
generative Al systems.

predefined boundaries.

4.1.2 Time Zone Extraction

Extracting time and timezone information from
maintenance window emails presents another chal-
lenge. We developed a function that separately
extracts time and timezone from the email and uses
timezone libraries to convert the time to UTC ac-
curately, so all resulting dates are in UTC such
that the system can convert them to a consumer’s
timezone.

4.2 Syntax Issues

Syntax errors in generative Al systems involve chal-
lenges related to token limits, character encodings,
and structural constraints, such as type mismatches
or empty results. As can be seen in figure 2, we im-
plement input and output guards that validate and
enforce constraints to address these types of errors,
ensuring outputs adhere to acceptable ranges and
formats. This approach aligns with the Guardrails
framework (Jarvis, 2023), where input guards en-
sure that only valid and intended text is passed
to the LLM. In contrast, the output guard ensures
that the generated outputs conform to the specified
output format, handling correct type enforcement
and empty response handling. We are aware that
guardrails are often used to mitigate harmful or
inappropriate outputs; however, in our case, we use
them exclusively to handle syntactic issues.

4.2.1 Token Limit

The LLM’s input text can be lengthy, often con-
sisting of the prompt, email content, and format
instructions. Composite prompts might exceed the
LLM’s token limit, causing errors. We apply text
truncation to prevent this. If the text exceeds the
token limit, the truncator only shortens the email’s
text, ensuring that preceding and following prompt
instructions or in-context demonstrations are not
affected.



Prompting

Explicitly Stated

Context

Explicitly Stated

Implicit Assumptions

Figure 3: Framework for integrating external knowledge
in generative Al systems.

4.2.2 Structural Validation

To enforce a specific structure in the LLM’s out-
put, we utilize Langchain’s JSON output parser
(Chase, 2022), which guides the LLM to produce
a JSON string. Despite generally following for-
mat instructions, LLMs can still produce errors.
The two primary issues are non-JSON formatted
responses and correctly formatted JSON outputs
with incorrect or missing keys/values. To address
these, we implemented output guards. The first
guard retries calling the LLM until it produces a
correctly formatted JSON response, with a max-
imum retries parameter to prevent infinite loops.
The second guard verifies that the generated re-
sponse contains the expected keys/values, handling
retries in the same manner as the first guard. This
approach yields valid responses in a majority of
cases, for the remaining cases, we return an empty
response, which is handled by the calling automa-
tion framework.

5 Knowledge Integration

Integrating external knowledge is crucial for im-
proving the accuracy and relevance of Al-generated
outputs. We employ several methods to achieve
this, including prompt enrichment with in-context
demonstrations, RAG, and fine-tuning.

Figure 3 illustrates our framework for integrat-
ing external knowledge in generative Al systems.
It distinguishes between use cases based on the
level of domain knowledge required. For tasks that
can be addressed with common sense, prompting
often yields satisfactory results due to the model’s
pre-existing knowledge. However, for tasks requir-
ing a high degree of domain-specific knowledge,
fine-tuning becomes essential to make this implicit
knowledge accessible to the model. RAG is partic-
ularly effective for intermediate scenarios where

additional context is necessary but does not require
extensive domain-specific knowledge.

5.1 Prompting

Prompting involves providing the AI model with
specific instructions or examples to guide its out-
put generation. This method leverages the model’s
pre-existing knowledge and directs it towards gen-
erating more accurate and relevant responses. One
effective approach is prompt enrichment with in-
context demonstrations, where a few examples rel-
evant to the task are included in the prompt. Those
examples help the model to understand the task bet-
ter and generate more precise outputs, as pointed
out in (Brown et al., 2020)

5.2 Retrieval-Augmented Generation (RAG)

Retrieval-augmented generation (RAG) enhances
the accuracy and relevance of LLM outputs by inte-
grating external knowledge through bi-encoder and
cross-encoder components. In a one-pass system,
bi-encoders create vector embeddings for queries
and documents. These embeddings enable effi-
cient retrieval based on semantic similarity, quickly
identifying relevant documents from a vector index
using optimized algorithms such as approximate
nearest neighbor search. In a two-pass system, the
initial retrieval by the bi-encoder is followed by
a cross-encoder that refines the ranking of the re-
trieved documents. The cross-encoder computes
similarity scores for each query-document pair, en-
suring the most relevant documents are selected
and ranked optimally. From this, it should become
apparent that applying a re-ranker to a large result-
set is prohibitive, as this pairwise comparison has
to be performed for each document; it should also
be noted that re-ranking will not improve a sys-
tem’s recall, as it only aims to optimize the final
ranking of the documents retrieved during the first
pass.

5.3 Fine-Tuning

Fine-tuning adjusts a pre-trained model on a spe-
cific dataset related to the target domain. This
process refines the model’s understanding and im-
proves its performance on domain-specific data.

6 Empirical Results

Here, we show the results of our experiments for
the use cases "Ticket Queue Assignment" and "Rel-
evant Document Retrieval" outlined in section 3.



Approach Precision Recall F1

Prompting 0.58 0.50 0.52
CARP 0.67 045 0.52
roBERTa 0.83 0.84 0.83

Table 1: Performance metrics of different approaches
for ticket queue classification. Prompting achieves mod-
erate precision, while CARP improves precision at the
cost of recall, maintaining the same F1 score. roBERTa
demonstrates the best overall performance with high
precision, recall, and F1 score.

6.1 Ticket Queue Assignment

In table 1, we observe that prompting for queue
classification achieves an F1 score of only 0.52.
CARP, which uses in-context demonstrations to en-
rich the prompt with examples of different classes
(Sun et al., 2023), increases the precision from 0.58
to 0.67. However, this approach results in a drop
in recall, maintaining the F1 score at 0.52. This
indicates that while precision improves, the model
becomes less capable of correctly identifying all
relevant instances. Finally, finetuning an encoder-
based model using labeled data (obtained through
process feedback) delivers the best results, with an
F1 score of 0.83. We hypothesize that the improved
performance can be attributed to the model’s abil-
ity to leverage labeled data to learn more nuanced
distinctions between classes, thus improving both
precision and recall.

6.2 Relevant Document Retrieval

A qualitative assessment with support engineers
confirmed the viability of the RAG system for rele-
vant document retrieval, especially in comparison
to the manual approach.

As can be seen in table 2, the improvements
shown in the "Chunked" row demonstrate the ef-
fectiveness of splitting documents into smaller,
paragraph-level units. By doing so, we increased
the recall@k=10 from 0.28 to 0.32 and the NDCG
from 0.17 to 0.23. The expected outcome for re-
ranking is that it would not enhance recall @k, but
improve the NDCG. However, it also failed to im-
prove the ranking, as can be seen in the decrease
of the NDCG from 0.23 to 0.22. We attribute this
to the fact that the mapping of the tickets to the
relevant documents was not exhaustive, leading to
a high number of false negatives in the dataset.

Document Format NDCG Recall@k=10

Original 0.17 0.28
Chunked 0.23 0.32
Re Ranker 0.22 0.32

Table 2: Performance metrics of different document
retrieval approaches used. "Original" refers to the un-
modified documents, "Chunked" refers to documents
split into smaller parts for more precise retrieval, and
"Re Ranker" refers to documents re-ranked by a fine-
tuned model.

7 Conclusion

Our experiments demonstrated that the outlined
error remediation and knowledge integration strate-
gies can significantly enhance the reliability of gen-
erative Al systems in customer operations. By em-
ploying techniques such as RAG and fine-tuning
and addressing both semantic and syntactic errors,
we successfully productionized a generative Al sys-
tem that significantly improves the productivity of
our support engineers. Future work will focus on
integrating process feedback to enhance label qual-
ity and employing synthetic data where obtaining
high-quality labels is not feasible. These efforts
aim to enable a higher degree of domain adapta-
tion, thereby facilitating the automation of more
complex processes, such as multi-step workflows.

7.1 RAG

Integrating a cross-encoder into a RAG system can
improve NDCG scores i.e. the quality of the ob-
tained ranking. However, this approach requires a
high-quality dataset with accurate labels. In the
presence of noisy data, the advantages of such
a two-pass system often diminishes, as the noise
can lead to unreliable evaluation and performance
outcomes. Under such conditions, a simpler bi-
encoder-based system may be more effective, as it
is less sensitive to data quality issues and can still
provide robust retrieval performance without the
added complexity.

7.2 Fine Tuning for Domain Adaptation

Fine-tuning, as an alternative to prompting or RAG,
is particularly useful for classification problems in
natural language. This approach often lends itself
well to smaller transformer-based models, which
offer several advantages:

* Resource Efficiency: Smaller models require



fewer computational resources, especially dur-
ing inference, but also for training.

* Confidence Scores: For encoder-based mod-
els, fine-tuning provides not only the predicted
class but also a confidence score. This fea-
ture allows for the adjustment of the decision
thresholds, enabling the optimization of the
precision-recall ratio for a given use cases.

* Fixed Set of Outputs: As the number of cate-
gories is fixed, the model will always predict
one of the predefined classes. We can thereby
circumvent the issue of out-of-domain hallu-
cinations altogether.

References

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn.
2018. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018,
pages 3287-3318. World Scientific.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Harrison Chase. 2022. Github repository: Langchain.
Langchain.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Colin Jarvis. 2023. How to implement llm guardrails.
OpenAl Cookbook.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shang-
wei Guo, Tianwei Zhang, and Guoyin Wang. 2023.
Text classification via large language models. arXiv
preprint arXiv:2305.08377.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vip-
ula Rawte, Aman Chadha, and Amitava Das. 2024.
A comprehensive survey of hallucination mitigation
techniques in large language models. arXiv preprint
arXiv:2401.01313.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny
Zhou. 2023. Take a step back: Evoking reasoning via
abstraction in large language models. arXiv preprint
arXiv:2310.06117.


https://github.com/langchain-ai/langchain
https://cookbook.openai.com/examples/how_to_use_guardrails
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

