Can OpenSource beat ChatGPT? — A Comparative Study of Large
Language Models for Text-to-Code Generation

Luis Mayer!, Christian Heumann', Matthias ABenmacher'*

'Department of Statistics, LMU Munich, Germany,
Munich Center for Machine Learning (MCML)

Correspondence: luis.mayer @campus.lmu.de, matthias @stat.uni-muenchen.de

Abstract

In recent years, large language models (LLMs)
have emerged as powerful tools with potential
applications in various fields, including soft-
ware engineering. Within the scope of this re-
search, we evaluate five different state-of-the-
art LLMs - Bard, BingChat, ChatGPT, Llama2,
and Code Llama - concerning their capabili-
ties for text-to-code generation. In an empir-
ical study, we feed prompts with textual de-
scriptions of coding problems sourced from the
programming website LeetCode to the models
with the task of creating solutions in Python.
Subsequently, the quality of the generated out-
puts is assessed using the testing functionalities
of LeetCode. The results indicate large differ-
ences in performance between the investigated
models. ChatGPT can handle these typical
programming challenges by far the most effec-
tively, surpassing even code-specialized models
like Code Llama. To gain further insights, we
measure the runtime as well as the memory
usage of the generated outputs and compared
them to the other code submissions on Leet-
code. A detailed error analysis, encompass-
ing a comparison of the differences concerning
correct indentation and form of the generated
code as well as an assignment of the incorrectly
solved tasks to certain error categories allows
us to obtain a more nuanced picture of the re-
sults and potential for improvement. The re-
sults also show a clear pattern of increasingly
incorrect produced code when the models are
facing a lot of context in the form of longer
prompts.

1 Introduction

Natural Language Processing (NLP) is an inter-
disciplinary field at the intersection of artificial
intelligence, computer science, and linguistics. Its
primary goal is to enable computers to understand,
interpret, and generate human language in a
valuable manner. In the early days of NLP,
the focus was primarily on rule-based systems

1. Website

2. Tasks

3. Prompts

4, LLM - Input

5. LLM - Output

6. Leetcode - Testing

7. Data collection

mpial |
0N

Analysis 8. Data analysis

9. Visualization

Figure 1: Schematic overview of the evaluation pipeline
for the LLMs’ performance on text-to-code generation.

and basic statistical models (Zhou et al., 2020).
These systems, while innovative for their time,
often struggled with constant adjustments and
maintenance, linguistic variability, and scalability
(Manning and Schiitze, 1999; Jurafsky and Martin,
2023). With the advent of Machine Learning,
particularly Deep Learning, a paradigm shift
occurred. Deep Learning models, especially
since the end of the last decade, so-called large-
language models (LLMs), based on enormous
amounts of data and immense computational
power, have demonstrated an unprecedented
ability to understand and generate language
(Zhang et al., 2023a). The emergence of LLMs is
closely linked to the development of fundamental
architectures such as the Transformer, introduced
by Vaswani et al. (2017), which fostered a new
era of language models including well-known
LLM-based Chatbots such as ChatGPT (OpenAl,

mailto:luis.mayer@campus.lmu.de
mailto:matthias@stat.uni-muenchen.de

2022). LLMs have proven themselves very useful
for a variety of tasks ranging from answering
questions, over various classification tasks to
summarizing texts or writing essays. In addition to
handling human language, some LLMs are also
able to deal with code (Feng et al., 2020). Based
on textual descriptions of a programming problem
as an input, these models can generate code in
different programming languages as an output.
The application of translating natural language into
syntactically and semantically correct code has
far-reaching implications, particularly in software
development, where it can bridge the gap between
domain experts and developers.

Contribution With this paper, we contribute to a
better understanding of recently developed LLMs
in terms of their capabilities for code generation by
examining them in an empirical study as depicted
in Figure 1. Within this study, we investigate the
performance of five different LLMs — ChatGPT,
BingChat, Bard, Llama2, and Code Llama — in
terms of text-to-code generation for the program-
ming language Python and compare their perfor-
mance with respect to (i) correctness, (ii) runtime,
and (iii) memory usage. We draw further conclu-
sions by making use of the different difficulty levels
provided in conjunction with the task formulations.

2 Related Work

Studying the abilities of LLMs in coding-related
tasks is a dynamically developing field of research
at the moment since ongoing developments of
LLMs enable their usage for a wide range of coding
and programming tasks. Thus, it is crucial to distin-
guish between the different kinds of tasks, as their
applications often differ considerably from each
other. The paper of Zhang et al. (2023c) provides
an overview of several types of code-processing
tasks. In the realm of code correction, Sobania
et al. (2023) investigate ChatGPT’s bug-fixing per-
formance by confronting the LLM with 40 faulty
Python code snippets. In a similar study Zhang
et al. (2023b) examine the proficiency of ChatGPT
in repairing flawed Java programs and compare
its results to task-specific models like CodeT5 and
PLBART. Concerning code summarization, Sun
et al. (2023) present an insightful study on the eval-
uation of ChatGPT’s abilities to create comments
for Python code snippets. Likewise to the works
mentioned above, also in the area of text-to-code

generation, most studies conducted so far have fo-
cused on testing ChatGPT. Geng et al. (2023) eval-
uate the performance of ChatGPT within the frame
of an introductory-level functional language pro-
gramming course, while Piccolo et al. (2023) ex-
plore its capabilities in solving programming tasks
from an introductory bioinformatics course. The
code generation abilities of ChatGPT were evalu-
ated in another study by Buscemi (2023), where
the authors benchmark the model on various tasks
in ten different programming languages. In the
study by Muennighoff et al. (2023), the focus is on
open-source LLLMs that are examined in the three
task areas of code correction, code explanation,
and code synthesis in six different programming
languages. The work of Austin et al. (2021) also
deals with code synthesis in Python using a wider
range of LLMs. In their study, the models are em-
ployed both with and without fine-tuning and a
comparative analysis of the results was conducted.
A study that is somewhat similar in structure to
ours, but with a greater emphasis on only whether
the code is correct or not, is presented by Deste-
fanis et al. (2023). In this work, ChatGPT and
Bard are prompted to generate Java code based on
a provided code description.

3 Materials and Methods
3.1 Data Set

The tasks for this study are sourced from Leet-
Code!, a training website providing a diverse range
of programming problems, including (but not lim-
ited to) algorithms, dynamic programming, or
graphs. LeetCode categorizes the tasks into dif-
ferent topics (e.g. array, math, or sorting) and three
difficult levels (easy, medium, and hard), the latter
of which we exploit to measure the LLMs’ per-
formance more granularly. Users can pick tasks
and try to solve them in different programming lan-
guages. LeetCode also provides test cases to check
possible solutions and several evaluation metrics
for accepted solutions. The focus of this study is to
test the performance of LLMs in math and statistics-
related tasks. The three task topics in the LeetCode
repository best suited for these constraints and most
frequently represented are math, matrix, and count-
ing. For the first two subject areas, 30 tasks are
selected consisting of 10 tasks from each of the
three different difficulty levels. Only 29 tasks were
selected for counting, as there were only 9 tasks

"https://leetcode.com/

https://leetcode.com/

with a difficulty level of "hard" at the time of data
collection. Across all three topics, this results in 89
tasks that are used in this study. After filtering for
the appropriate types and difficulty levels, the tasks
are randomly drawn using the pick one button in
LeetCode.

3.2 Models

ChatGPT is an instruction-tuned LLM based on
models from the GPT series (Radford et al., 2018,
2019; Brown et al., 2020; OpenAl, 2023) devel-
oped by OpenAl and initially published in Novem-
ber 2022. The initial and freely accessible variant
of ChatGPT was based on the GPT-3.5 turbo (since
March 2023), while starting from February 2023
ChatGPT paid access to a newer version based
on GPT-4 has been available. For the study con-
ducted in this work, the ChatGPT model based on
the GPT-3.5 turbo version was employed, making
our performance estimates for ChatGPT somewhat
conservative. Further, this ChatGPT was trained
on a corpus with a cut-off date in September 2021
and thus does not have access to information newer
than October 2021.

BingChat is a conversational LLM-based feature
for Microsoft’s search engine Bing that can also be
used for programming tasks. So instead of typing
a search query into Bing, the user can interact with
BingChat (Xuan-Quy et al., 2023). It was launched
in February 2023 and is powered by the GPT-4
model from OpenAl. Due to an internet connection,
BingChat has access to all the latest information
and is not limited in a way like ChatGPT.

Bard® is the instruction-tuned variant of an LLM
developed by Google. It was first released in March
2023 on a limited basis, followed by a full release
in May 2023. The chatbot was at first powered by
LaMDA (Language Model for Dialogue Applica-
tion; Thoppilan et al., 2022), but since May 2023
Bard has been based on Google’s PaLM 2 (Path-
ways Language Model 2; Anil et al., 2023). PaLM
2 uses compute-optimal scaling to adjust the model
size to the number of tokens in the pre-training
corpus. This updated approach makes PalLM 2
more compact than its predecessor PaLM, while
still providing higher efficiency, faster inference,
and a reduced parameter count (Anil et al., 2023).
Similar to BingChat, Bard can access newly appear-
ing information via the internet and is thus able to

*In February 2024, Bard was renamed to Gemini.

also provide links to websites and other online re-
sources.

Llama2 is an open-source LLM released by Meta
in July 2023. It has been trained with 40% more
data than its predecessor Llama and is capable of
handling twice its context length (4096 vs. 2048
tokens; Touvron et al., 2023). Llama?2 is offered
in three versions with either 7 billion (7B), 13 bil-
lion (13B), or 70 billion (70B) parameters. For
this study, we choose the largest available version
(70B). The chatbot llama-2-70b-chat, provided by
the website Replicate, was employed for this pur-
pose.

Code Llama is a family of LLMs developed by
Meta and published in August 2023. It’s a variant
of Llama?2 specifically aligned for coding-related
tasks, which was fine-tuned on large data sets of
programming code. In fact, Code Llama is trained
on the same code-specific datasets as Llama2 but
using more samples from the same data set for a
longer training time (Meta, 2023). In addition to
the standard Code Llama model, there are two other
versions: a Python-specialized version called Code
Llama-Python and Code Llama-Instruct, which is
fine-tuned for understanding prompts in natural
language. All three types of Code Llama exist in a
7B, a 13B, and a 34B version (Roziere et al., 2023).
Since we provide the LLMs with instructions in
natural language, the variant Code Llama-Instruct
with the largest parameter count (34B) was selected.
The chatbot Code Liama Instruct (34B) from the
website together.ai, which offers several LLMs, is
used for this purpose.

4 Experimental Setup

As depicted in Figure 1, the prompts are created
based on the pre-selected tasks (cf. Sec. 3). To
understand the process, it is important to closely
inspect their structure (cf. Appendix A, Fig. 7).
Initially, each task consists of three parts. To cre-
ate a coherent prompt, a fourth part is added and
all paragraphs are separated by inserting a blank
line. The first part describes the problem to be
solved by a function to be created with code. In
the subsequent part, one to three examples are pre-
sented to show exemplary inputs and outputs of
the function. Partially these are supplemented by
additional explanations. All this is complemented
by a final part listing constraints and conditions
that the function is required to fulfill. The fourth

section we added consists of the request for the
task to be solved in the programming language
Python. We consistently use the expression "Write
the code for this task in Python" followed by the
name of the Python function with the arguments
to be included since the automated tests can only
be performed if the generated code uses the func-
tion names and arguments specified by LeetCode.
Since this information is accessible on LeetCode
for each task, we consistently use the prefix "Start
with: <function_name and arguments>". Some of
the tasks in LeetCode have integrated illustrations
in the example part, which allows the user a better
understanding of the problem. Since the five exam-
ined models are not capable of processing visual
information, those are not included in the prompt.
After conducting all the mentioned alterations,
we also kept track of the number of tokens that
constituted the prompts. Then, the prompts are
passed to all five models as input. For each task
a new chat is started, so that a conversation with
the LLM always contains exactly one prompt and
one generated output per task. Since the answers
often consisted of code blocks interleaved with
text descriptions and exemplary applications (cf.
Appendix B, Fig. 8), it is crucial to locate the
part that contains the function to be implemented.
This part is inserted into the code field in LeetCode
for the corresponding task before LeetCode’s test
procedure is executed. Depending on the test result,
the feedback from LeetCode differs: If a task is not
solved correctly, LeetCode indicates the type of
error (e.g. "wrong answer" or "invalid syntax") and
the number of correctly passed tests. The different
error categories are described in more detail in
Section 5. For correctly answered tasks, LeetCode
displays a new window featuring runtime, memory
usage, and corresponding ranks for the code.
LeetCode measures the runtime in millisec-
onds and memory usage in megabytes for each
successful code submission. Furthermore, these
measured values are retained by Leetcode to
compare them to all other runtime and memory
usage values from submissions by other users,
provided that the task and programming language
are the same. LeetCode then calculates a quantile
ranking indicating the percentage of correct
submissions that a given solution surpasses in
terms of performance. As an illustration, consider
a correct submitted code with runtime and memory
usage rankings of 52% and 99%, respectively. In
the context of runtime, this implies that the code

is only slightly faster than half of all properly
submitted codes. On the other hand, in terms
of memory usage, the code outperforms nearly
all other submissions, with only one percent
exhibiting lower memory usage. The described
metrics are stored for each task and model. The
findings are presented together with visualizations
in the next section.

5 Results

Post-Processing of the generated outputs As
already hinted at in the last section, the generated
responses of the LLMs often consist of interleaved
text and code blocks. However, our experiments
show that the code does not necessarily have to be
in a code block. Overall, three categories of the
code location are found:

* All code in a single code block. Before/after
this there may be optional text blocks. This is
the standard response type for ChatGPT, Bard,
and Llama2.

* The generated code is located in a text block.
This text block might also contain descrip-
tions and comments about the code. This case
occurs sometimes with BingChat and Code
Llama.

e The code is distributed across text and code
blocks. This case occurs sometimes with
BingChat and Code Llama.

If code situated within a text block (second and
third category) is tested within LeetCode, it is im-
mediately assessed as incorrect. This arises from
the structure of text blocks, where each line in-
variably begins with a word. Hence, the code is
e.g. not indented, as it should be for instance in
if-statements or for-loops as illustrated in Figures 9
and 10 (Appendix B). Since only due to the fact of
missing indentations, otherwise correct code may
not be recognized as such, we decided to inter-
vene in such cases and to perform the necessary
indentations subsequently for all affected models.
This was especially crucial for Code Llama, as its
code was consistently generated within text blocks.
For this reason, post-processing was necessary for
all 89 tasks for Code Llama. In four instances,
BingChat was also affected. The adjustments were
always applied after the code generation and be-
fore testing on LeetCode. The approach described

here was consistently employed for all analyses
and results presented in the following.

Correctness Table 1 and Figure 2 clearly show
that the LLMs’ performance differs notably. The
best-performing model is ChatGPT, which is the
only model to solve more than 50% of the tasks
correctly. The runner-up is the second GPT-based
model, BingChat, ahead of Bard. The two Llama
models solve by far the fewest tasks correctly, with
a share of not even 10%. Code Llama still performs
slightly better than Llama2. Although Code Llama
is based on Llama?2, their output only matches in
two (correctly solved) cases.

Distribution of correct solutions

0% Level

easy

50% -
B o
40%- hard
30% -
20% -
10% -
_Em]

Bard BingChat ChatGPT
LM

Percentage of correct solutions

Code Liama Llama2

Figure 2: Percentage of correctly solved tasks per LMM.

Across all evaluated LLMs we further observe
(cf. Fig. 2) that the share of correctly solved tasks
decreases with a higher difficulty level. While all
five models are able to complete at least some of
the tasks on the easy level, only four of the models
achieve the right solutions on the medium level.
Further, only the two GPT-based models can suc-
cessfully solve any task on the highest level. While
ChatGPT and BingChat consistently solve more
than 20% of tasks correctly, only Bard and Code
Llama are above this mark on the easy difficulty
level. At the medium difficulty level, these two
LLMs drop below 10%, corresponding to two and
one correct solution, respectively.

Performance metrics In the next step, we
closely inspect the correctly solved tasks. Our fo-
cus specifically lies on the runtime and memory
usage metrics as explained in Section 4, which
LeetCode only returns for each correct submission.
As already mentioned, Bard and Code Llama only
have one and two right solutions at the medium
level which is why it is hardly possible to draw
any conclusions and so we omit the combination
of these models and difficulty levels in the follow-
ing figures. It is further important to note that the

following two bar plots consistently depict average
values, which are composed of the rank values of
the individual correctly solved tasks.

Runtime

Level
easy

[
hard

Bard BingChat ChatGPT
LLM

Average runtime compared to other solutions

Code Llama Llama2

Figure 3: Average runtime ranking (quantiles) of the
generated code per LLM and difficulty level.

In Figure 3 the average of the runtime ranks per
LLM and difficulty level is depicted. For a better
understanding of the plot, consider the bar on the
left side: Bard solved 14 tasks correctly for the
difficulty level "easy", so Leetcode also calculated
14 ranking values for the runtime, the average of
which is displayed here. A value of 70% means that
the average runtime of the generated code beats
70% of all other code submissions for this task.
Conversely, only 30% of the submitted solutions
are quicker. It is noticeable that the (correct) LLM-
generated solutions exhibit a comparatively low
average runtime, as they are ranked above 50%
on average. While concerning the number of cor-
rect solutions there are clear differences between
the models and the difficulty levels, this is not the
case for the runtime: A decrease in runtime perfor-
mance with higher difficulty levels is not evident. It
can be argued that ChatGPT outperforms the other
models concerning the number of correctly solved
tasks, but not (consistently) in terms of runtime.
The ranking values for all models lie between 61%
(BingChat, "easy") and 84% (ChatGPT, "medium").
These values suggest that the runtime of the code
produced by the models is often lower than that of
other code submissions. As faster code is favorable
in the context of software development, this is an
aspect in which LLMs might be able to contribute
effectively.

Concerning memory usage, the average values
per model and difficulty level are calculated and
displayed in Figure 4 according to the same prin-
ciples as for the runtime. A higher value signifies
that the code generated by the models utilizes less
memory than solutions provided by other users.

\ Bard \ BingChat \ ChatGPT \ Code Llama \ Llama2 ‘
correct | 18% (16) | 39% (35) | 58% (52) 9% (8) 7% (6)
incorrect | 82% (73) | 61% (54) | 42% (37) 91% (81) 93% (83)

Table 1: Relative (Absolute) frequencies of correct and incorrect solutions for all evaluated models.

Memory Usage

0%

50% Level

essy
Bl rmecum
hard

BingChat ChatGPT
LLM

Average memory usage compared to other solutions
g
&

Bard Code Liama Llama2

Figure 4: Average memory usage ranking (quantiles) of
the generated code per LLM and difficulty level.

Reduced memory usage is advantageous as it al-
lows for easier scalability to handle larger data
volumes without additional memory requirements.
Besides, code with lower memory usage is often
more efficient, especially when required to operate
on systems with limited RAM. The main takeaway
from taking this angle is that the differences be-
tween the models are (again) not as pronounced
as observed for correctness. While ChatGPT only
achieves similarly high values as the other mod-
els, BingChat performs notably better across diffi-
culty levels. Except for Code Llama, all values are
again above 50%, although the values are mostly a
bit lower than those for the runtime. Exceptional
performance can be reported for BingChat at the
"hard" level with 81%.

BingChat ChatGPT

500 Status

700
a00- 400- B incorrct
300- 300-
200- 200~

easy medium hard easy medium hard

difficulty level difficulty level

Length of the prompts in tokens
o @ o

Figure 5: Distribution of prompt lengths of correct and
incorrect solutions for BingChat and ChatGPT

Further insights and error analysis Figure 5
presents the distribution of prompt lengths of cor-
rect and incorrect solutions, measured by the num-
ber of tokens the prompts consist of. For our main
analysis, we focus solely on BingChat and Chat-
GPT since they are the best-performing LLMs re-
garding the number of correct solutions and at the
same time the only ones with correct solutions at
all difficulty levels. The boxplots for the remain-
ing three LLMs can be found in Figure 11 in Ap-
pendix C. We observe that the lengths of prompts
are smaller for correct solutions than for incorrect
solutions at all three difficulty levels. This con-
versely seems to imply that shorter prompts are pos-
itively associated with the likelihood of the models
producing a correct solution.

Concluding the analysis, Table 2 summarizes the
ten most frequent errors across all five models. A
complete enumeration of all errors can be found in
Table 3 in Appendix D. We learn from this table
that the error category "wrong answer" is by far the
most frequent one with a share of > 50%. If this er-
ror is encountered, this indicates that the code sub-
mission has passed only a specific number of tests
in LeetCode, which is less than the total number of
tests required for a correct solution. Therefore, the
generated outputs affected by "wrong answer"” do
not cover the required functionality expected from
the code. The second most common reason why
solutions from LeetCode were rejected is "syntax
error” with approximately 15%. All other error
categories depicted in Table 2 are clearly below
10%. The category "type error" (5.5%) occurs
when a function or operation is applied to an ob-
ject of an inappropriate type, such as attempting
to concatenate an object of type integer with an
object of type string. If undefined variables are
used in the code, the error message falls into the
category "name error"” (5.2%). The error message
"time limit exceeded" (4.6%) means that LeetCode
cannot perform all tests, potentially due to an infi-
nite loop in the generated code or simply because
the code execution time exceeds LeetCode’s time
limit. An "index error” (3%) appears when trying
to access an index that is outside the bounds of a

] \ Error type | Count | Share in % of all errors
1 wrong answer 178 54.3%
2 syntax error 48 14.6%
3 type error 18 5.5%
4 name error 17 5.2%
5 | time limit exceeded 15 4.6%
6 indentation error 10 3.0%
7 index error 10 3.0%
8 attribute error 9 2.7%
9 | no code generated 7 2.1%
10 | zero division error 4 1.2%

Table 2: Ten most frequent error categories among all LLMs

sequence type, such as arrays or lists. "Attribute
errors” (2.7%) happen when accessing attributes of
an object that it is not ascribed. The error category
"no code generated", which means that the model

did not return any code as output to the prompt,

was only the ninth most frequent error with seven

cases in total (2.1%). These seven cases are di-

vided among Llama?2 (four times), BingChat (two
times), and Bard (only once). As the name already
implies, a "zero division error"” (1.2%) happens
when attempting to execute a division operation

where the divisor is zero. Figure 6 displays all er-

ror categories that occurred per model. The height
indicates the share of the error category (in %) of

all incorrectly solved tasks per model. For compar-

ison purposes, we also report the results of Code

Llama when the missing indentations are not cor-

rected. These cases are denoted as Code Llama*
and shown next to the other models.

Error issues per LLM

LLM

Issues

B stribute error
B incentation error
B roexeror
B icration error
. Key error

uuuuuuuuuuuuuuu depth exceeded
memory limit exceeded

name error

no code generated

syntax error

time limit exceeded

type error
B urbound ocal error
[-

Il vong answs

Proportion of the respective error issue per model in %

E
5
@

BingChat -
ChatGPT -
Code LLama*
Code Liama-
Llama 2 -

Figure 6: All error categories per LLM.

It is striking that the category "wrong answer" is
the only one in the top three for all LLMs. Except
for Code Llama*, it is the most common reason

for errors as is to be expected from the results pre-

sented in Table 2. For Bard and both GPT-based
models, there is the highest margin between this
category and the runner-ups. We also observe that
BingChat and ChatGPT do not differ concerning
the three most frequent error categories and the
order in which they appear.

If we now compare the two Code Llama ap-
proaches to each other, i.e. the one with added
indentations (that was also used in the rest of our
analysis) to the unaltered approach (in which we
test the generated code without adaptation), clear
differences are noticeable in the most frequent error
categories. While the "indentation error" is in first
place in the unaltered approach, it is only in third
place after adaptation. As this error category has
decreased, the number of incorrectly solved tasks
due to "wrong answer" rises. The error category
"syntax error", however, remains almost constant
for both approaches.

6 Conclusion

We conducted an empirical study on five different
LLMs, namely BingChat, ChatGPT, Bard, Llama2,
and Code Llama, aiming at evaluating their poten-
tial for text-to-code generation. The mentioned
LLMs were examined on 89 Python programming
tasks from the coding website LeetCode. The re-
sults show clear differences between models and
the number of code outputs they could generate
correctly. In conclusion, ChatGPT outperformed
all other models by a notable margin, followed
by the second GPT-based model BingChat. Code
Llama and Llama2 exhibited the lowest proficiency
in solving tasks correctly, with Code Llama only
surpassing Llama?2 by correctly solving two addi-
tional tasks. Consequently, it cannot be affirmed
that Code Llama, despite being a model specialized
in coding-related tasks, significantly outperforms

its foundational model Llama?2 in text-to-code gen-
eration. Moreover, although all the models were
able to produce code in Python, a notable draw-
back of Code Llama is that the generated code is
not indented, requiring the user to adjust the format
of the code before it can be effectively deployed.
Upon examining the correct solutions for all tasks,
it can be stated that the code outputs generated by
the LLMs are in many cases more efficient in terms
of runtime and memory usage than human-written
code solutions, assuming that almost all submis-
sions on LeetCode are from humans. Regardless of
the model, the length of the prompts seems to have
an apparent influence on the likelihood of gener-
ating correct code. Since the prompts for correct
solutions were shorter, it can be tentatively con-
cluded that the prompts should be designed in a
brief and targeted manner to achieve better results.

Moreover, it is worth noting that the models’
failures stem to a large extent from code errors,
categorized as "wrong answer”, rather than due
to supposedly simpler syntax errors. This is espe-
cially the case for Bard, BingChat, and ChatGPT.
Considering the definition of the error category
"wrong answer" as outlined in Section 5, it can
be concluded that the three models might even
demonstrate partial correctness in solving many
tasks. Even these partially correct code outputs can
be helpful for the user in subsequent applications,
as incorporating LLMs has already advanced them
closer to a solution. Users can then continue to
work on the correct solution based on the generated
code outputs. The outcomes indicate that ChatGPT,
in particular, emerges as a useful assistant in terms
of text-to-code generation. The impression gained
from our study conducted is largely consistent with
the findings of Geng et al. (2023). Additionally, the
observed strong performance of ChatGPT is also
evident in a study by Buscemi (2023), in which
ChatGPT had to generate code in ten different pro-
gramming languages on the same tasks. In the
same study, the authors concluded that the model
performed well in Python. Buscemi (2023) specu-
lates on a possible reason that ChatGPT performs
best in the programming languages in which it has
received the most training signals. According to
ChatGPT itself, Python is one of the top ten lan-
guages on which it has been trained. Nevertheless,
considering the large number of wrong solutions,
one should always look critically at the generated
code, which still requires substantial knowledge of
the programming language by the user.

While in the study the conversation between user
and model consists only of one input and output,
more extensive dialogues should be explored in fu-
ture experiments. These dialogues could involve
instructing the model to identify and fix errors in
the previously generated code. Alternatively, they
might encompass the execution of several related
programming tasks in a single conversation, which
requires the model to access previously generated
code. Future studies can be extended to other pro-
gramming languages or task types.

Ethical Considerations and Limitations

It is important to interpret the results with cau-
tion, as several limitations need to be considered.
First, it is crucial to point out that the study con-
ducted is only a snapshot of the performance of
LLMs within the field of code generation at a cer-
tain point in time. The field of LLMs continues to
move extremely rapidly, and new models and ar-
chitectures may already outperform previous ones
(Zhang et al., 2023a). Second, the study encom-
passes only 89 tasks and is thus limited in its scope.
This has a direct influence on the interpretation and
the generalizability of the results. The task volume
affects the explanatory power and statistical robust-
ness of the findings, with outcomes derived from
a more comprehensive task set naturally having
greater evidential weight. Third, we do not claim
that our study is exhaustive, so as presented in Sec-
tion 2 there are several other code-related tasks that
LLMs can implement besides text-to-code gener-
ation. In addition, the scope of the work was also
restricted to Python, which limits the applicability
of the results to other programming languages. In
terms of content, difficulty, and length, the selected
tasks only cover a small subset of the huge spec-
trum of code-related tasks that can be passed to
LLMs. Therefore, the tasks used do not embody
the full bandwidth of challenges associated with
text-to-code generation tasks, constraining the ex-
pressiveness of the study results to a narrow and
focused set of tasks.

Concerning the reproducibility of the results, it
is essential to acknowledge that the comparison
values used in the runtime and memory usage anal-
yses will change over time since users always sub-
mit new solutions to LeetCode. Therefore, these
findings should rather be considered as a snapshot.
When submitting the LLM-generated results to
LeetCode, it was not possible to flag them as such

or to prevent them from being incorporated into
the rankings. However, given the small number of
solutions we uploaded, we do not think this will
notably influence the LeetCode statistics. Further-
more, the reproducibility of results in the study is
influenced by the fact that LLMs produce different
answers even to identical prompts as inputs. This
occurs because the models are partially updated
and incorporate a certain degree of randomness in
their responses. The generated outputs may differ
from those obtained in the study conducted.

Acknowledgements

This work has been partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of BERD@NFDI -
grant number 460037581.

References

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Diaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav

Petrov, and Yonghui Wu. 2023. Palm 2 technical
report.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Alessio Buscemi. 2023. A Comparative Study of Code
Generation using ChatGPT 3.5 across 10 Program-
ming Languages.

Giuseppe Destefanis, Silvia Bartolucci, and Marco Ortu.
2023. A preliminary analysis on the code generation
capabilities of gpt-3.5 and bard ai models for java
functions.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547, Online. Association for Computational
Linguistics.

Chugin Geng, Yihan Zhang, Brigitte Pientka, and Xujie
Si. 2023. Can ChatGPT Pass An Introductory Level
Functional Language Programming Course?

Daniel Jurafsky and James H Martin. 2023. Speech
and language processing: An introduction to natural
language processing, computational linguistics, and
speech recognition. https://web.stanford.edu/
~jurafsky/slp3/ed3book.pdf. Accessed: 2023-
12-03.

Chris Manning and Hinrich Schiitze. 1999. Foundations
of Statistical Natural Language Processing. MIT
Press.

Meta. 2023. Introducing CodelLlama, a
state-of-the-art large language model for
coding. https://ai.meta.com/blog/

code-1lama-large-language-model-coding/.
Accessed: 2023-12-05.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tuning
code large language models.

OpenAl 2022. Chatgpt: Optimizing language models
for dialogue.

R OpenAl. 2023. Gpt-4 technical report. arXiv, pages
2303-08774.

http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2308.04477
http://arxiv.org/abs/2308.04477
http://arxiv.org/abs/2308.04477
http://arxiv.org/abs/2305.09402
http://arxiv.org/abs/2305.09402
http://arxiv.org/abs/2305.09402
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/2305.02230
http://arxiv.org/abs/2305.02230
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
http://arxiv.org/abs/2308.07124
http://arxiv.org/abs/2308.07124
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

Stephen R. Piccolo, Paul Denny, Andrew Luxton-Reilly,
Samuel Payne, and Perry G. Ridge. 2023. Many
bioinformatics programming tasks can be automated
with chatgpt.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. 2023. An analysis of the automatic
bug fixing performance of chatgpt.

Weisong Sun, Chunrong Fang, Yudu You, Yun Miao,
Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang,
Yuchen Chen, Quanjun Zhang, Hanwei Qian, Yang
Liu, and Zhenyu Chen. 2023. Automatic code sum-
marization via chatgpt: How far are we?

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR, abs/1706.03762.

Dao Xuan-Quy, Le Ngoc-Bich, Phan Xuan-Dung, Ngo
Bac-Bien, and Vo The-Duy. 2023. Evaluation of
chatgpt and microsoft bing ai chat performances on
physics exams of vietnamese national high school
graduation examination.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexan-
der J. Smola. 2023a. Dive into Deep Learning.
CoRR, abs/2106.11342.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong
Fang, Bowen Yu, Weisong Sun, and Zhenyu Chen.
2023b. A critical review of large language model on
software engineering: An example from chatgpt and
automated program repair.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023c.
A survey on language models for code.

Ming Zhou, Nan Duan, Shujie Liu, and Heung-Yeung
Shum. 2020. Progress in Neural NLP: Modeling,
Learning, and Reasoning. Engineering, 6(3):275-
290.

http://arxiv.org/abs/2303.13528
http://arxiv.org/abs/2303.13528
http://arxiv.org/abs/2303.13528
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2301.08653
http://arxiv.org/abs/2301.08653
http://arxiv.org/abs/2305.12865
http://arxiv.org/abs/2305.12865
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2306.04538
http://arxiv.org/abs/2306.04538
http://arxiv.org/abs/2306.04538
http://arxiv.org/abs/2306.04538
https://arxiv.org/abs/2106.11342
http://arxiv.org/abs/2310.08879
http://arxiv.org/abs/2310.08879
http://arxiv.org/abs/2310.08879
http://arxiv.org/abs/2311.07989
https://www.sciencedirect.com/science/article/pii/S2095809919304928
https://www.sciencedirect.com/science/article/pii/S2095809919304928

A Leetcode tasks

O~ O U1 W N =

You are given an m x n matrix M initialized with all 0's and an array of operations ops, where opsli] =
[ai, bi] means M[x][y] should be incremented by one forall 0 <=x <aiand 0 <=y < hi.
Count and return the number of maximum integers in the matrix after performing all the operations.

Example 1:

Input: m=3, n= 3, ops =[[2,2],[3,3]]

QOutput: 4

Explanation: The maximum integer in M is 2, and there are four of it in M. So return 4.

Example 2:
Input: m = 3, n= 3, ops = [[2,2],[3,3],[3,31,[3,3],[2,21,[3,31,[3,3],13,31,[2,2],[3,31,[3,31,[3,3I]
Output: 4

Example 3:
Input: m=3,n=3, ops =]
Qutput: 9

Constraints:
1<=m,n<=4*10°
0 <= ops.length <= 1074

ops[i].length ==
1<=a_i<=m
1<=b_i<=n

Write the code for this task in Python.
Start with:
class Solution (object):

def maxCount(self, m, n, ops):

Figure 7: Examplary prompt based on LeetCode task number 598: Range Addition 2

B Exemplary Output

1 Sure, I can help you with that. Here's the code implementation for the given task:
2

3 python

4 class Solution(object):

5 def maxCount (self, m, n, cps):

6 if not ops:

7 return m * n

8

9 min_a = min{op[0] for op in ops)
10 min b = min{op[l] for op in ops)
11

12 return min a * min b

13

14 # Example usage

15 solution = Solution ()

16 print (solution.maxCount (3, 3, [[2, 21, [3, 311)) # oOutput: 4

17 print (solution.maxCount (3, 3, [[2, 21, [3, 31, [3, 31, [3, 31, [2, 2], [3,
18 31, [3, 31, [3, 31, [2, 21, [3, 31, [3, 31, [3, 311)) # Cutput: 4

19 print(sclution.maxCount (3, 3, []))} # Output: 9

21 This code defines a solution class with the maxcount method. It first checks if the ops list is
22 empty; if it is, then the entire matrix is incremented, and the maximum number of integers is
23 the total size of the matrix (m * n).

25 Otherwise, it calculates the minimum values of ai and bi among the given ops. Since these

26 are the dimensions within which the increments occur, the maximum number of integers will
27 be the product of these minimum values (min_a * min b).

Figure 8: Output generated by ChatGPT to the prompt based on LeetCode task number 598: Range Addition 2

1 python

2 class Solution(object):

3 def divisorSubstrings(self, num, k):

4 def is divisor(sub num, divisor):

5 return int(sub num) % divisor ==

6

7 num str = str(num)

8 num length = len(num str)

9 count = 0

10

11 for i in range (num length - k + 1):

12 sub_num = num_gtr[i:i + k]

13 if sub num([0] !'= '0': # Avoid leading zeros
14 divisor = int(sub num)

15 if divisor != 0 and num % divisor ==
16 count += 1

17

18 return count

Figure 9: Indented code in a code field generated by ChatGPT (based on LeetCode task number 2269: Find the
K-Beauty of a Number)

1 [PYTHON]

2 class Solution:

3 def countBalls({self, lowLimit, highLimit):
4 max count = 0

5 box count = {}

b for i in range{(lowLimit, highLimit+1):

7 box num = sum(map(int, str(i)))

8 if Box_num in box count:

9 box count [box num] += 1

10 else:

11 box count[box num] = 1

12 max:count = mgx{max_count, box count[box num])
13 return max count

14 [/PYTHON]

Figure 10: Non-indented code in a text field generated by Code Llama (based on LeetCode task number 2269: Find
the K-Beauty of a Number)

C Prompt Lengths

Bard Code Llama Llama 2
900 - 900 - 900 -
[] - -

800 - 800 - 800-
i []
S700- 700- 700-
&
2
CB00- 600 - 600 -
= * Stat
£500- 500 - 500 - as
g — correct

400 - 400 - 400- = i
_'_1:"3 — incorrect
S 300- 300- 300-
=
EJ —
EEDD- 200 - 200- .

100 - 100 - 100 -

0- 0- 0-
easy medium hard easy medium hard easy medium hard
difficulty level difficulty level difficulty level

Figure 11: Distribution of prompt lengths of correct and incorrect solutions in Python for Bard, Code Llama, and
Llama2

D Error Analysis

Error type Count | Share in % of all errors
1 wrong answer 178 54.3%
2 syntax error 48 14.6%
3 type error 18 5.5%
4 name error 17 5.2%
5 time limit exceeded 15 4.6%
6 indentation error 10 3.0%
7 index error 10 3.0%
8 attribute error 9 2.7%
9 no code generated 7 2.1%
10 zero division error 4 1.2%
11 value error 3 0.9%
12 key error 2 0.6%
13 | maximum recursion depth exceeded 2 0.6%
14 memory limit exceeded 2 0.6%
15 unbound local error 2 0.6%
16 iteration error 1 0.3%

Table 3: All occurred error categories and their frequencies

E Correctly Solved Tasks

LLM Level Math | Matrix | Counting | Total | Total in percent
Bard easy 3 5 6 14 46.67%
Bard medium 1 1 0 2 6.67%
Bard hard 0 0 0 0 0.00%
BingChat easy 5 5 6 16 53.33%
BingChat medium 4 5 3 12 40.00%
BingChat hard 1 5 1 7 24.14%
ChatGPT easy 7 6 7 20 66.67%
ChatGPT medium 6 7 6 19 63.33%
ChatGPT hard 6 5 2 13 44.83%
Code Llama easy 2 2 3 7 23.33%
Code Llama | medium 1 0 0 1 3.33%
Code Llama hard 0 0 0 0 0.00%
Llama2 easy 1 2 3 6 20.00%
Llama2 medium 0 0 0 0 0.00%
Llama2 hard 0 0 0 0 0.00%

Table 4: Distribution of correctly solved tasks in the study with Python (the levels easy and difficult consist of 30
tasks each and difficult of 29 tasks)

LLM Level Average runtime ranking | Average memory usage
Bard easy 80.39% 58.87%
Bard medium 80.46% 66.64%
Bard hard 0.00% 0.00%
BingChat easy 61.40% 63.38%
BingChat medium 72.45% 54.70%
BingChat hard 75.85% 80.98%
ChatGPT easy 78.64% 54.86%
ChatGPT medium 84.25% 56.19%
ChatGPT hard 67.35% 59.31%
Code Llama easy 65.28% 40.30%
Code Llama | medium 96.32% 98.42%
Code Llama hard 0.00% 0.00%
Llama2 easy 75.59% 51.34%
Llama2 medium 0.00% 0.00%
Llama2 hard 0.00% 0.00%

Table 5: Average runtime and memory usage ranking per LLM and Level (corresponds to the plots 3 and 4)

F Absolute values for the runtime and memory usage

easy Bard BingChat ChatGPT Code Llama Llama 2
ID ms \ mb ms \ mb ms \ mb ms \ mb ms mb
598 - - 39 1548 | 53 15.44 - - - -
1863 - - 87 13.27 - - - - - -
2409 - - - - 6 13.31 - - - -
2269 - - - - - - - - - -
441 - - 435 | 13.06 | 24 13.22 - - - -
1742 | 282 | 16.17 - - 313 | 1594 | 858 | 15.94 - -
2525 14 13.32 - - 12 13.29 - - - -
2119 - - 19 13,33 19 13.24 - - 13 13,14
231 20 13.37 22 13.16 9 13.26 18 13.17 - -
2591 - - - - - - - - - -
1380 | 93 13.63 86 13.70 | 101 | 13.47 - - - -
1260 - - - - 111 | 13.64 - - - -
733 48 1343 | 47 1349 | 52 13.56 - - - -
2500 - - - - - - - - - -
2643 - - - - - - 815 | 13.78 - -
1030 | 103 | 15.85 - - 113 | 16.66 - - 101 | 15.81
2091 - - - - - - - - - -
1351 - - 94 1436 | 86 14.37 88 14.50 | 92 14.55
1886 | 30 13.25 68 | 2458 | 23 13.25 - - - -
2319 | 198 | 14.28 | 197 | 14.24 - - - - - -
1512 16 13.14 | 26 15.48 14 13.33 - - 16 13.14
1897 | 31 13.57 | 45 13.27 32 13.74 - - - -
1370 - - - - - - - - - -
1356 - - - - 52 13.53 | 49 13.53 - -
2423 - - - - - - - - - -
2351 12 13.26 10 13.30 - - 4 13.36 10 13.36
1876 15 13.27 20 13.24 | 24 13.35 - - - -
2053 - - 47 13.33 | 42 13.67 - - - -
1941 21 13.12 - - 14 13.44 - - 24 13.40
169 116 14.9 141 | 14.89 | 122 | 14.87 | 129 | 15.02 - -

Table 6: Absolute values for runtime in milliseconds (ms) and memory usage in megabytes (mb) for each LLM and
Level easy (column ID corresponds to the task number in LeetCode)

medium Bard BingChat ChatGPT Code Llama Llama 2
ID ms mb ms mb ms mb ms mb ms | mb
2579 - - 122 16.42 - - - - - -
1017 - - - - 12 13.28 - - - -
319 - - 16 13.22 16 13.43 6 13.07 - -
523 - - 781 33.40 745 33.46 - - - -
2745 - - - - 22 13.41 - - - -
497 154 | 17.22 - - - - - - - -
963 - - - - - - - - - -
150 - - - - 29 15.25 - - - -
2063 - - - - - - - - - -
478 - - 93 24.76 104 24.90 - - - -
861 - - - - - - - - - -
427 - - - - 86 15.34 - - - -
1605 - - 709 18.52 672 17.74 - - - -
2684 - - 1034 | 24.46 1386 | 22.74 - - - -
2711 - - - - - - - - - -
1895 - - 3247 13.39 - - - - - -
2482 - - - - 1201 56.36 - - - -
1536 - - 412 14.01 398 13.75 - - - -
1926 581 | 15.39 - - 591 16.94 - - - -
934 - - 292 14.57 310 16.67 - - - -
1497 - - - - 44 25.38 - - - -
1519 - - 2482 | 180.85 | 1600 | 183.93 - - - -
1010 - - 242 16.55 205 16.51 - - - -
2182 - - - - - - - - - -
869 - - 10 13.10 17 13.20 - - - -
945 - - - - 648 24.42 - - - -
811 - - - - - - - - - -
2170 - - - - - - - - - -
1267 - - - - 385 14.55 - - - -
1775 - - - - - - - - - -

Table 7: Absolute values for runtime in milliseconds (ms) and memory usage in megabytes (mb) for each LLM and
Level medium (column ID corresponds to the task number in LeetCode)

hard Bard BingChat ChatGPT Code Llama Llama 2
ID ms | mb ms mb ms mb ms mb ms | mb
2019 - - - - 1791 | 15.30 - - - -
2584 - - - - - - - - - -
2338 - - - - - - - - - -
1835 - - - - 681 25.84 - - - -
1735 - - - - 757 19.28 - - - -
964 - - - - - - - - - -
1467 - - - - - - - - - -
2197 - - - - 4131 | 27.74 - - - -
1510 - - 699 16.70 | 696 16.74 - - - -
381 - - - - 352 | 70.51 - - - -
1074 - - - - - - - - - -
212 - - - - 7963 | 14.97 - - - -
773 - - - - 47 13.24 - - - -
782 - - 49 13.21 - - - - - -
1970 - - - - - - - - - -
2577 - - - - - - - - - -
980 - - 33 13.18 40 13.46 - - - -
37 - - 442 13.31 413 13.36 - - - -
1293 - - 49 14.74 - - - - - -
827 - - 2420 | 22.47 | 1935 | 22.67 - - - -
2499 - - - - - - - - - -
1857 - - - - 2255 | 82.90 - - - -
2014 - - - - - - - - - -
2547 - - - - - - - - - -
992 - - 342 15.17 336 16.36 - - - -
2025 - - - - - - - - - -
2416 - - - - - - - - - -
2514 - - - - - - - - - -
1819 - - - - - - - - - -

Table 8: Absolute values for runtime in milliseconds (ms) and memory usage in megabytes (mb) for each LLM and
Level hard (column ID corresponds to the task number in LeetCode)

	Introduction
	Related Work
	Materials and Methods
	Data Set
	Models

	Experimental Setup
	Results
	Conclusion
	Leetcode tasks
	Exemplary Output
	Prompt Lengths
	Error Analysis
	Correctly Solved Tasks
	Absolute values for the runtime and memory usage

