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Abstract

Recently, large pre-trained language models
(LLMs) have demonstrated superior language
understanding abilities, including zero-shot
causal reasoning. However, it is unclear to
what extent their capabilities are similar to hu-
man ones. We here study the processing of an
event B in a script-based story, which causally
depends on a previous event A. In our manipu-
lation, event A is stated, negated, or omitted in
an earlier section of the text. We first conducted
a self-paced reading experiment, which showed
that humans exhibit significantly longer reading
times when causal conflicts exist (-4 — B)
than under logical conditions (A — B). How-
ever, reading times remain similar when cause
A is not explicitly mentioned, indicating that
humans can easily infer event B from their
script knowledge. We then tested a variety of
LLMs on the same data to check to what ex-
tent the models replicate human behavior. Our
experiments show that 1) only recent LLMs,
like GPT-3 or Vicuna, correlate with human
behavior in the ~A — B condition. 2) De-
spite this correlation, all models still fail to
predict that nil — B is less surprising than
- A — B, indicating that LLMs still have dif-
ficulties integrating script knowledge. Code
and data are available at https://github.
com/tony—-hong/causal-script.

1 Introduction

Causal reasoning is fundamental for both human
and machine intelligence (Pearl, 2009) and plays an
important role in language comprehension (Keenan
and Kintsch, 1974; Graesser et al., 1994, 1997,
Van den Broek, 1990). Large pre-trained language
models (LLMs) such as GPT-3.5 (Neelakantan
et al., 2022) have demonstrated excellent zero-shot
capabilities in causal reasoning tasks and human-
like behaviors (Wang et al., 2019). The capabil-
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ity of causal reasoning is essential to new prompt-
ing techniques like the chain-of-thought prompting
(Wei et al., 2022; Kojima et al., 2022). On the
other hand, some early pieces of evidence show
that LLMs lack global planning of different events
in stories (Bubeck et al., 2023). So it is unclear to
what extent LL.Ms can conduct causal reasoning
about events.

In turn, humans have been shown to be ex-
tremely good at building causal connections in
long discourse comprehension (Radvansky et al.,
2014; Graesser et al., 1994). In doing so, they
rely not only on explicit causal links (signaled in
the text — see Trabasso and Sperry, 1985; Keenan
and Kintsch, 1974) but also on implicit ones that
are inferable based on commonsense knowledge
(Keenan and Kintsch, 1974; Singer and Halldorson,
1996). In particular, subjects were found to be sen-
sitive to causal conflicts arising from contradictions
to earlier text segments or conflicts with subjects’
commonsense knowledge (Radvansky et al., 2014;
Singer and Halldorson, 1996). An example of a
causal conflict is presented in Figure 1, Part II, con-
dition ~A — B, where decorating a cake with
star-shaped sprinkles is inconsistent with the previ-
ously mentioned information that cake decorations
are not available.

In this paper, we investigate language process-
ing in humans and compare it to a large variety
of LLMs, following the “psycholinguistic assess-
ment of language models paradigm” (Futrell et al.,
2019). In our analyses, we compare human read-
ing times to LLLM surprisal estimates. Surprisal is
the negative log probability of a word in context
and has been previously related to human read-
ing times (Hale, 2001; Levy, 2008; Demberg and
Keller, 2008; Smith and Levy, 2013) as well as neu-
ropsychological effects such as the N40O (Frank
et al., 2015; Kutas and Hillyard, 1989), which rep-
resent human processing difficulty. We collect a
new dataset, Causality in Script Knowledge (CSK),
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I. Event sequence:

Il. Resulting narrative that was presented to
humans (by story condition):

A—B condition

“A—B condition

nil —»B condition

lll. Questions about
target events:

Question about event A:

0. Script initiation

1. Choose a recipe

2. Turn on the oven

3. Get ingredients

4. Get utensils

5. [Event A] Prepare cake

Yesterday Anne had a party at her house, so she decided to bake a cake. First, she
chose a recipe from a cookbook and set out all the ingredients.

Next, she gathered her
utensils and got out the
cake decorations.

Next, she gathered her
utensils and realised she
didn't have any cake

Next, she gathered her
utensils and turned on the
oven.

How sure are you that
Anne grabbed some cake
decorations?

Not sure at all vs. Very
sure (0-7)

decorations.

decorations
6. Add ingredients

7. Prepare ingredients ingredients.

E{>Then she turned on the oven and started measuring the|Then she started

measuring the ingredients.

8. Put the cake in the oven
9. Wait
10. Take the cake out of the oven

She added them one by one into a bowl and mixed them carefully with her new
mixer until she got a homogenous batter. Afterwards, she poured the mixture into a
pan, placed it in the oven, and set a timer.

Question about event B:

How sure are you that
Anne added star sprinkles

11. [Event B] Decorate the cake
12. Clean the kitchen
13. Closing sentence

frosted it thoroughly.

When the timer went off, she removed the cake from the oven and let it cool. In the
meantime, she prepared some vanilla frosting. When the cake had cooled, she

to the cake?

Not sure at all vs. Very

Then, she added star-shaped sprinkles and cleaned up the kitchen.

sure (0-7)

After that, she looked at the cake. It was a real piece of art!

Figure 1: Example of a script structure (I), the resulting narrative in three conditions (II) and questions that subjects

were asked (III), for "baking a cake" story.

consisting of short stories about daily activities
which are typically part of the script knowledge of
humans, see Figure 1 for an example. The term
“script knowledge” refers to commonsense knowl-
edge about everyday activities, where “scripts” are
defined as prototypical sequences of events in these
activities. The stories are constructed such that
they contain a pair of events, A and B which are
causally contingent on one another. We manipu-
late event A to be stated, negated or omitted, and
subsequently measure reading times on event 5.

Our first research question (RQ1) relates to the
effect of the incoherence in the - A — B condition,
compared to the coherent A — B condition. For
humans, a large body of previous literature (Bloom
et al., 1990; Radvansky et al., 2014; Singer and
Ritchot, 1996) leads us to expect that human read-
ers will notice the inconsistency and that this can be
measured in terms of slower reading times on event
B. For language models, we want to test whether
and which models also exhibit a similar effect, by
comparing the surprisal values for the words of
event B following the A vs. = A mentioned in the
previous context. In order for a language model
to handle this case, it needs to (a) understand the
contingency between events A and B (even though
they often don’t use overlapping lexical items) and
(b) be able to represent event A or - A effectively
across the intervening sentences so it is still rep-
resented when encountering B. We find that the
large models (GPT-3 and Vicuna) do well on this
task, but smaller models mostly fail.

Our second research question (RQ2) aims to tap
into how script knowledge facilitates language com-
prehension. To this end, we compare the processing
of event B in a setting where neither event A nor
event ~A are mentioned in the previous context.
If comprehenders integrate their script knowledge
with the text, they should have an easy time pro-
cessing event B even without the prior mention of
event A (Bower et al., 1979). The previous litera-
ture on human sentence processing has no direct
evidence about the processing difficulty of event B
in this case, so here our experiment makes a new
contribution: we find that humans are significantly
faster in reading segment B in the nil — B condi-
tion compared to =A — B, and that reading times
between conditions nil — B and A — B do not
differ significantly from one another. Our subse-
quent evaluation of LLLMs on the same contrast
however shows that all LLMs fail to show human-
like processing: they do not have lower surprisal on
the nil — B condition than on —A — B — some
models even assign higher surprisal estimates to the
nil — B condition, indicating that even the most
recent large LLLMs in our evaluation cannot effec-
tively integrate script knowledge for estimating the
probability of upcoming words.

2 Background

2.1 Causal inference and script knowledge

When humans read text, they connect events men-
tioned in the text into a locally and globally coher-
ent causal network, thereby not only integrating
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information from the text but also based on con-
text and commonsense knowledge (Van den Broek,
1990; Graesser et al., 1997). It has been shown
that when the causal network does not support new
events or the new event contradicts the previous
text, readers experience processing difficulties, re-
sulting in longer reading times (Bloom et al., 1990;
Radvansky et al., 2014). The comprehension of a
new event also relies on commonsense knowledge
(Hare et al., 2009). In fact, Singer and Ritchot
(1996) showed that when commonsense knowl-
edge does not support an event described in the
text, comprehenders take more time processing it.

A special type of commonsense knowledge that
was shown to also modulate reading comprehen-
sion is script knowledge (Abbott et al., 1985;
Bower et al., 1979; Schank, 1975). Scripts rep-
resent knowledge structures consistent with sets of
beliefs built on past experiences about everyday,
routine, and conventional activities like baking a
cake. Importantly, the events constituting a script
can be highly causally inter-connected and are crys-
tallized in memory — one can expect script-related
events to be activated once the script is invoked.
In a series of experiments, Bower et al. (1979)
showed that after subjects read an everyday story
that constituted a script, they also recalled script-
related events that were not explicitly mentioned in
the story (see Gibbs and Tenney, 1980, for similar
findings showing that script knowledge is an in-
distinguishable part of the memory representation).
In turn, it is expected that when reading a story,
script-related events can be primed by the script
itself rather than by some single events mentioned
in the text, without processing time loss (Keenan
and Kintsch, 1974).

2.2 Experiments with language models

Causal Reasoning. Recent LLMs such as GPT-3.5
(Neelakantan et al., 2022) have achieved strong per-
formance in many reasoning tasks under zero-shot
settings, such as symbolic reasoning, logical rea-
soning, mathematical reasoning and commonsense
inference (Kojima et al., 2022). The common prac-
tice to conduct zero-shot reasoning is prompting,
i.e. to append a task-specific text to the input to
LLMs and then sample the output (Radford et al.,
2019). Although the cause is usually provided in
the prompt (like condition A — B), LLMs can
reason without relying only on surface cues like
word overlap (Lampinen et al., 2022). Moreover,

LLMs can be prompted to produce explicit reason-
ing steps with chain-of-thought prompting (Wei
et al., 2022).

Script knowledge. Early works regarding script
knowledge also apply language models (LMs). We-
ber et al. (2020) apply LMs for script induction
from causal effects. Ciosici et al. (2021) build a
human-LM collaborative system for script author-
ing.

Recent studies have suggested that LLMs may
learn script knowledge as part of their training (Sak-
aguchi et al., 2021; Sancheti and Rudinger, 2022).
Ravi et al. (2023) fine-tune GPT-3 to automatically
generate plausible events that happen before and
after a given event, and Yuan et al. (2023) report
promising results on prompting an InstructGPT
model (Ouyang et al., 2022) to automatically gen-
erate scripts and then filtering results in the second
step. Similarly, Brahman et al. (2023) use a dis-
tilled small LM as script planner and fine-tuned
RoBERTa as verifiers.

There are however also reports that indicate that
script knowledge in LLMs may not yet be suffi-
cient: zero-shot probing on GPT-2 has been found
to generate poor event sequences (Sancheti and
Rudinger, 2022), and GPT-3 was found to be only
marginally better than chance on predicting event
likelihoods (Zhang et al., 2023) and exhibit poor
performance on event temporal ordering (Suzgun
et al., 2023).

Several ways of specifically integrating common-
sense knowledge into LLMs have been proposed:
some LLMs are trained from scratch on structural
data with commonsense knowledge like knowledge
graphs (ERNIE; Zhang et al., 2019) and semantic
frames (SpanBERT; Joshi et al., 2020). Bosselut
et al. (2019); Hwang et al. (2021) further equips
LLMs with structural input and output to model
commonsense knowledge. In the present contribu-
tion, we explore previous models that have been
reported to be successful in inference tasks. More
details of the choice of LLMs are in Section 4.1.

2.3 The TRIP dataset

A dataset that is particularly relevant to the present
study is the TRIP dataset, which contains 1472
pairs of two similar stories, which differ by one
sentence at a “breakpoint” position (Storks et al.,
2021). One of the stories is plausible, and the
other one is implausible, due to a causal conflict
between the sentence at the breakpoint position
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and an earlier part of the text. The plausible sto-
ries correspond to the A — B condition in our
dataset, while the implausible stories correspond to
our =A — B condition. The breakpoint sentence
corresponds to our critical sequence B.

Richardson et al. (2022) fine-tune a TS5 model
augmented with logical states of each event to de-
tect the causal conflicts and outperform a RoOBERTa
baseline by a large margin. Ma et al. (2022) fine-
tune a framework to integrate global and local in-
formation. Our aim is not to finetune the LLMSs on
TRIP but to test them in a zero-shot fashion.

3 Experiments with Humans

3.1 Dataset

The Causality in Script Knowledge (CSK) dataset
consists of 21 English stories describing everyday
activities like baking a cake or taking a bath.!

To construct the stories, we initially composed
sequences of script-related events that were built
on top of Wanzare et al. (2016) — see Figure 1, part
I. Subsequently, we transformed these sequences
into narrative form (Figure 1, part II; for example,
an event “prepare cake decorations” is realised in
the narrative as “she got out the cake decorations”).
Further, each story was divided into chunks of text
(as rows of the table in Figure 1, part II) such that
participants do not see the whole text at once, but
chunk after chunk.

Each story starts with script initiation — a sen-
tence in the first chunk that introduces the topic to
the reader, e.g., “Yesterday Anne had a party at her
house, so she decided to bake a cake.” from Figure
1, part II. Thus, readers can already activate script
knowledge about the event at that point.

A pair of events A and B represent our main in-
terest. They were chosen in such a way that event
A (“get the cake decorations”) enabled the happen-
ing of event B (“add star-shaped sprinkles”). More
specifically, since scripts are typically character-
ized by event sequences in which specific script
participants appear repeatedly (like cake decora-
tions), we are interested in a pair of events that
define an action done to this specific participant.

In some stories, participants related to the tar-
get manipulation have different lexical realization
between events A and B. For example in the cake
story presented in Figure 1, a participant in event A
is referred to as “cake decorations” and in event B

!Available at https://github.com/tony-hong/
causal-script

parameter mean  sd

# of words in story:

A— B 1582 12

-A— B 159.1 14

nil - B 150.1 11.7
# of text chunks in story 6.8 0.77
# of words in chunk with A 27.6 11.3
# of words in chunk with =4 29.3 13.1

# of words in chunk with B 129 1.7
# of words in chunk after B 129 1.8
# of words b/w A and B:

A— B 73.6 10.3
-A— B 71.8 129
# of words in A 73 3.8
# of words in —A 112 53
# of words in B 54 1.6

Table 1: Decriptive statistics for stories.

it is specified as “star-shaped sprinkles” (as a type
of cake decorations). Some stories also necessitate
an inference e.g. from referring to “bubble bath”
in event A and “foam” in event B. In other stories,
identical referring expressions were used in events
A and B (e.g., in a grocery story, event A: “he took
a shopping cart” vs. event B: “he put everything in
his shopping cart”).

Importantly, no other events in the story draw a
direct causal link to event B, except event A and
the script itself. Events A and B are always sepa-
rated by descriptions of other script events (73.6
words on average; sd = 10.3; min: 59; max: 91).
The chunk with event B always consists of one
sentence with the following structure: “ADVERB
PERSON X did action B and then did a subsequent
action from the script sequence.” (except the laun-
dry story, where the sentence started with “She”).
When constructing the experimental materials, we
controlled for the following parameters: the num-
ber of words and text chunks in a story, the number
of text chunks and words between events A and B,
the number of words in the text chunks that con-
tained event B, and number of words in the chunk
after the chunk with event B. The full list of de-
scriptive statistics for our materials is presented in
Table 1.

3.2 Experimental conditions

Our target manipulation relates to the appearance
of events A and B in the story thus producing three
different story conditions:

Condition A — B. Event B logically follows
event A within the story context. In this way, event

424


https://github.com/tony-hong/causal-script
https://github.com/tony-hong/causal-script

A draws a direct causal link to event B, and thus
event B is anticipated to happen on the basis of
event A.

Condition -A — B. Event A is negated, mak-
ing the occurrence of event B implausible or even
impossible. The mention of event B thus is unex-
pected and stands in a causal conflict with the ear-
lier information. While creating negation of events
A, we had the following strategy. Since events A
and B in our materials typically share at least one
common event participant, in the = A condition,
this participant was made unavailable for event B.
In this way, the causal link between A and B (pre-
pare cake decorations — add star-shaped sprinkles;
put a pillow in the backpack — take it from the
backpack) is broken because event — A changes the
state of the participant so that it is not available in
B (when one doesn’t have a travelling pillow, this
script participant is not going to be available in B
to take it from the backpack).

The — A condition did not always consist of lit-
eral negation with the word “not” but as in the ex-
ample shown in Figure 1 (A: “she got out the cake
decorations” vs. —A: “she realised she didn’t
have any cake decorations”), but while in other
stories, participant in event A was disabled in a
more subtle way, via verbs of implicit negation or
particles like “only”, e.g., (events A vs. —A):

* (sunscreen): she grabbed her sunscreen VS.
she forgot her sunscreen

* (pocorn buckets): she bought three buckets of
popcorn for everyone VS. since nobody was
hungry, she just bought drinks for everyone

Condition nil — B. Event A is omitted. Even
though event A is not explicitly stated, it is ex-
pected that humans will easily infer its occurrence
from the context, making the mention of event B
plausible and easy to integrate (Bower et al., 1979).

3.3 Experimental procedure

For data collection, each story was divided into
paragraphs or text chunks (as shown, for exam-
ple, in Figure 1, part II). During the experiment,
subjects saw only one paragraph at a time (chunk-
by-chunk presentation). After reading each story,
subjects had to rate how sure they were about the
events A and B to have occurred, on a Likert scale
ranging from O (Not sure at all) to 7 (Very sure)
— see Figure 1, part III. To measure the process-
ing difficulties of humans, we compare the reading

80 p<.01 |
p<.01

not significant

£ @
o S

Reading time, ms

n
(=]

nil— B “A—-B

A—B
Story condition

Figure 2: Human results. Mean by-character reading
times at event B, by story condition; p-values are taken
from the corresponding LMER models, see Section 3.5.

times for event B across the experimental condi-
tions. More details about subjects’ belief ratings
are presented in Appendix A.

251 native English speakers were hired via the
crowdsourcing platform Prolific? to participate in
the study. Each participant read three stories. Each
story had a different topic and was presented in a
different condition.

3.4 Analysis

To investigate the effects of processing difficulty
that event B causes in subjects depending on story
condition, we analyse mean per character reading
times associated with the chunks that contain event
B. The log-transformed reading times were anal-
ysed using linear mixed-effects regression models
(LMER; Bates et al., 2015). The maximal random
effects structure included by-subject and by-item
random intercepts and by-item random slopes for
story condition and was simplified for convergence
when needed.

Prior to the analysis, we removed all trials related
to the bowling story item, due to a typo. Further, we
removed trials where the reading times in the chunk
containing event B were shorter than 100ms or
larger than 50s. 704 trials from 251 subjects (73%
female; mean age = 40, sd = 14.6, [18;80] range)
were available for analysis (1.81% data loss).

3.5 Results

To answer to what extent causal inconsistencies
are reflected in human language processing (RQ1),
we compared reading times on segment B in the
A — B vs. 7A — B conditions. The random ef-
fects structure included by-subject and by-item ran-
dom intercepts and by-item random slopes for story

https://www.prolific.co/
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conditions. We found that subjects read chunks
with event B significantly more slowly when event
A was explicitly negated in the story (b = 0.21,
se =0.04,t = 4.77, p < .01), see also Figure 2.

To analyse subjects’ ability to infer causal links
from script knowledge (RQ2), we compared the
reading times in nil — B vs. A — B condi-
tions. The random effects structure included by-
item random intercepts. We observed no significant
difference between these conditions (b = —0.04,
se = 0.05,t = —0.7, p = .48). Thus, the absence
of event A, which serves as a direct causal link
to event B, does not slow event’s B processing in
terms of reading times. Note that the reading time
of condition A — B is significantly slower than
the reading time in condition nil — B (b = 0.17,
se =0.05,t = 3.23, p < .01).

4 Can LLMs Detect Causal Conflicts
(RQ1)?

In this section, we measure the ability of differ-
ent LLMs to track event contingency. We feed the
script stories into the language models and record
the LM’s surprisal scores on a word-by-word basis.
We then test whether the mean surprisal scores for
the critical region (event B) differ between con-
ditions. As the script stories corpus is relatively
small, we additionally test the models on the TRIP
dataset (Storks et al., 2021) to assess their recog-
nition of causal incongruencies on a wider set of
materials (see Section 4.5).

4.1 Choices of LLMs

We select a set of 20 causal language models
(CLMs).> We chose the GPT-1/2/3 and Instruct
GPT models (Radford et al., 2018, 2019; Brown
et al., 2020; Ouyang et al., 2022) because of their
good performance on many NLP tasks (Chang and
Bergen, 2023). We also selected GPT-3.5 (Nee-
lakantan et al., 2022) because it was trained with
both programming code and text and as a result
demonstrated strong performance on entity track-
ing (Kim and Schuster, 2023), a prerequisite for
causal reasoning. Notably, ChatGPT (OpenAl,
2022) and GPT-4 (OpenAl, 2023) can not be used
in our study, because the API does not allow ac-
cess to the probabilities. Additionally, we used Vi-
cuna models (Chiang et al., 2023), a LLaMa-based
model (Touvron et al., 2023) fine-tuned on 70K

3We also experiment with masked language models. Please
refer to Appendix C.1.

user-shared ChatGPT conversations. Open models
like Vicuna have the advantage of results being re-
producible. Similarly, we chose OPT (Zhang et al.,
2022) and GPT-Neo (Black et al., 2021) as open
models similar to GPT-3.

We also selected task-specific models that could
potentially capture script knowledge via exposure
to more diverse datasets like summarization mod-
els, Pegasus (Zhang et al., 2020), Bigbird-pegasus,
and a multilingual model XGLM (Lin et al., 2022).
Lastly, we chose XLNet because it has been previ-
ously shown to be effective for zero-shot script pars-
ing (Zhai et al., 2021, 2022) wrt. handling causal
inferences in commonsense stories in a zero-shot
setting.

All models used here were available through ei-
ther HuggingFace or the OpenAl API. More details
are in Appendix B, where we briefly describe all
the models.

4.2 Method

We perform word-by-word next-word prediction
for event B, recording the next token probabilities
for each token in segment B. Based on the prob-
ability of the target words w given the story con-
text, we then calculate the target tokens’ surprisal
as their negative log probability: surprisal(w) =
— log P(w|story_context). We then calculate the
average per-word surprisal by averaging the sur-
prisal of each word into an estimate of the surprisal
of the critical region for each item.

4.3 Data Analysis

To identify the PLM(s) that show comparable ef-
fects to humans, we run an equivalent analysis to
how the reading time data were analysed: we esti-
mate linear mixed effects models with surprisal
as a response variable and condition (A — B
vs. =A — B) as a predictor. The model also in-
cludes by-item random intercepts. The formula is:
log(surprisal) ~ story_condition 4 (1|story)?.

4.4 Results

Table 2 (column CSK) presents the results for
all language models on whether model surprisals
were significantly higher for the ~A — B con-
dition than in the A — B condition, indicating
that the model’s surprisal scores reflect the inco-
herence (RQ1). High positive b values indicate
that surprisal values are higher on segment B in

*Log surprisals were chosen because of the skewed distri-
bution of surprisal values.
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Model Name # para. CSK TRIP

™) b t sign b t sign
GPT-3.5: text-davinci-003 175K | 0.59 5.87 **%* 10.30 10.82 #%*%*
GPT-3.5: text-davinci-002 175K | 0.51  2.75 *1026 741 wE
InstructGPT: text-davinci-001 175K | 0.26 2.03 - 1029 581 HFkx
InstructGPT: davinci-instruct-beta 175K | 0.21  2.76 #1020 8.68 wEE
GPT-3: davinci-002 175K | 0.28 436 *** | 035 811 #**
GPT-3: davinci 175K | 0.21 2.76 020 825 #**
Vicuna-13B 13016 | 0.22 2.25 026 756 FF*
Vicuna-7B 6738 | 0.28 2.56 *1022 635 wEE
InstructGPT: text-curie-001 6700 | 0.03 031 ns.|0.19 578 Fk*
GPT-3: curie 6700 | 023 343 ¥ 10.12 592  wk*
GPT-2: XL 1638 | 0.05 096 ns.| 006 3.15 wE
GPT-2: L 838 | 0.04 0.77 ns. | 005 277 wE
XGLM 827 | -0.03 -0.79 ns.|0.02 138 ns.
Bigbird-pegasus-large-arxiv 470 | 0.06 120 ns.|0.00 -0.02 ns.
Pegasus-large 467 | 0.02 0.85 ns. | 000 -048 ns.
XLNet-large-cased 393 | -0.03 -1.99 0.00 0.66 ns.
OPT 3571 001 0.12 ns.| 003 178 .
GPT-Neo 164 | 0.03 067 ns.|0.01 090 ns.
GPT-2 163 | 0.00 -0.10 ns.|0.01 053 ns.
GPT: openai-gpt 148 | 0.00 -0.01 ns.|0.05 3.18 Hk

Table 2: Results for RQ1 (A — B versus -A — B) on CSK (original and intervention removal) and TRIP
dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that the results are not
statistically significant. The -, *, ** and *** in the sign column represent p-values < .1, .05, .01, and .001.

the =A — B condition compared to the A — B
condition. Significance stars indicate whether the
differences were statistically reliable. Our results
show that only some of the largest models showed
a reliable increase in surprisal estimates for the in-
coherent (A — B) condition.

GPT-3.5: text-davinci-003 shows the largest ef-
fect with high statistical reliability. Further models
that show the expected behaviour include other
versions of GPT-3/GPT-3.5 and the Vicuna model.
GPT-3: davinci-002 has the largest effect amoug
the GPT-3 models. Surprisingly, InstructGPT mod-
els that are trained with human-selected samples
don’t show significant effects. This result implies
additional training on high-quality samples harms
the models’ ability to identify causal conflicts.

4.5 Experiments on TRIP dataset

As the CSK dataset, for which we collected read-
ing times, is relatively small, we also compared the
surprisals of the same set of models on the substan-
tially larger TRIP dataset (cf. Section 2.3), which
also contains causal inconsistencies. Their dataset
has multiple splits. We only use the “ClozeDev”
split. (We do not use the "Order" splits, in which
the order of the sentences is switched, because that
setting is too different to our dataset.)

nil vs. = A nil vs. A
Model Name (CLM:s only) b t sign b t sign
GPT-3.5: text-davinci-003 0.08 0.77 n.s.|-0.52 -5.10 =
GPT-3.5: text-davinci-002 -0.06 -0.38 n.s.|-0.57 -3.65
InstructGPT: davinci-instr-beta |-0.17 -1.96 .1-0.39 -4.36 ***
GPT-3: davinci-002 -0.15 -1.94 .1-0.43 -5.60
GPT-3: davinci -0.15 -1.79 .1-0.36 -4.34
Vicuna-13B -0.15 -1.52 n.s.|-0.37 -3.73 s
Vicuna-7B -0.07 -0.58 n.s.|-0.36 -2.91 **
GPT-3: curie -0.23 -2.74  #%|-0.46 -5.54 cxx
Human 0.17 323 **#[-0.04 -0.7 n.s.

Table 3: Results for RQ2 (nil — B versus =-A — B
and A — B) on CSK dataset. Note that coefficient
estimates for human data refer to log reading times, and
are hence not directly comparable to the numbers in the
CLMs, which estimate the surprisal effect.

We again estimated surprisal values for each lan-
guage model, in the same way as described in sec-
tion 4.2. The critical segment B for this dataset
corresponds to the breakpoint sentence. The anal-
ysis was analogous to the analysis for the CSK
dataset.

Column “TRIP” in Table 2 presents the results
of our method on the TRIP dataset. Significant
positive effects indicate a significant difference be-
tween the model surprisals in the implausible condi-
tion compared to the plausible one, indicating that
the model recognized the inconsistency correctly.
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Figure 3: Performance of GPT-3: curie in both research
questions. Mean surprisal presented by story condition;
p-values are taken from Tables 2 and 3.

GPT-3.5 performs notably well, again displaying
the largest effect size and p-value < .001.

4.6 Discussion

Given the analysis of the CSK and TRIP datasets,
we conclude that only some of the GPT models
were able to consistently assign higher surprisal to
event B (or the breakpoint sentence in TRIP) in
the case that causally related event A was negated
earlier in the story’. Among the GPT models, we
find that GPT-3.5: text-davinci-003 shows the most
consistent performance. It differs from the others
in that it was trained using reinforcement learn-
ing from human feedback, which has been found
to be correlated with better performance on many
reasoning tasks (Chang and Bergen, 2023).°

5 Do LLMs incorporate script knowledge
(RQ2)?

In this section, we are interested in whether the
models that can capture the causal link between
A and B are also able to integrate script knowl-
edge to a similar extent as humans, i.e. whether
they show a relatively low surprisal even if event A
was not explicitly mentioned in the story context.
We continue with those models showing a signifi-
cant effect of the =A — B condition compared to
A — B consistently across the CSK and the TRIP
datasets, as these are the only models that seem to
reliably deal with negation and capture the causal
link.

3One possible reason for this can be models’ inability
to handle long dependencies between events A and B. We
investigate it in Appendix C.2

We did not apply a correction for multiple testing in the
analysis. If we were to more conservatively account for multi-
ple testing, then the results of most models except for GPT-3.5:
text-davinci-003 would not be judged as statistically reliable.

5.1 Analysis and Results

Analysis was performed using linear mixed-effects
models (LMER), similar to Section 4.3. This
time, we compare surprisal estimates of condi-
tions nil — B to A — B to show firstly
whether the model correctly captures the incon-
gruency of —A — B. Next, we compare con-
dition nil — B to condition A — B in order
to determine whether the models are consistent
with human readers in terms of NOT showing a
large effect. The formula of each LMER model is:
log(surprisal) ~ story_condition + (1|story).

Table 3 shows the results for research question 2.
While humans read sequence B significantly faster
in the nil — B condition than in the condition
with the causal conflict (wA — B), none of the
language models show this effect: most models
do not show a significant difference between these
conditions, and one model (GPT-3: curie) in fact
shows significant effects in the wrong direction (B
has higher surprisal in the nil condition than in the
—A condition), see also Figure 3. This might indi-
cate that the lexically related material in condition
—A (e.g., “cake decorations”) leads to a relatively
low surprisal at region B even if it stands in causal
conflict with it.

The significantly lower surprisal in condition
A — B compared to condition nil — B, which
is observed in all of the models, furthermore indi-
cates that models fail to include script knowledge
effectively in their next word predictions — current
models hence differ from humans in their ability
to use script knowledge for predicting (or easily
integrating) script-inferable event participants.

5.2 Can models capture negation?

As pointed out by an anonymous reviewer, mod-
els’ inability to show human-like behavior in RQ2
might be due to models failing to process negation
properly, even though these models show signifi-
cantly lower surprisal in A — B condition com-
pared to ~A — B condition. Previous literature
indeed shows that transformers have trouble with
(explicit) negation (Nguyen et al., 2023). Consider-
ing that our materials contain various formulations
of event A (including in some cases explicit and
in other cases implicit negation), which could pose
difficulty to LLMs, we conduct a follow-up study
to see whether the best models from the RQ2 exper-
iment could properly identify a participant’s state
in —A, i.e., its unavailability. There are actually
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two other possibilities as to why models might fail
in negation processing. First, considering that not
all of our stories contain exact lexical realizations
of target participants between events A and B, the
models can fail to match the negated participant in
—A (“she realized she didn’t have any cake deco-
rations”) to its realization in event B (‘“she added
star-shaped sprinkles”). Secondly, since there is
still some context between events A and B (see Ta-
ble 1), the models can ‘forget’ the state of the target
participant by the time they reach event B. Previ-
ous literature shows that participant state tracking
can be a difficult task for LLMs (Kim and Schuster,
2023).

We construct questions about the availability of
the target participant from event B, e.g., “Are cake
decorations available to Anne?” (the correct an-
swer is ‘yes’ in A — B condition and 'no’ in
—A — B). For each story and model, we assess
this question twice: directly after event A and just
before event B, to capture a potential problem of
‘forgetting’ about a participant’s state. If the par-
ticipant’s lexical realization was different between
events A and B, we also assess the same question
but about the target participant as it was instantiated
in event B: “Are star-shaped sprinkles available
to Anne?”).

We then test the best available models from RQ?2,
namely GPT-3.5: gpt-3.5-turbo-instruct and GPT-
3: davinci-002’. Since GPT-3 models were not
specifically trained to follow user instructions, we
utilized the approach of Brown et al. (2020) for
the GPT-3: davinci-002 model: we compared the
probabilities of “Yes” and “No” as input tokens
following the question and chose the answer with
the higher output probability to compare with a
correct answer. In the case of the GPT-3.5: gpt-
3.5-turbo-instruct model, we prompt the model to
generate “Yes” or “No” answers with an instruction
Please answer with “Yes” or “No” and compare
the output with a correct answer (as this model only
allows text output).

The results show that the gpt-3.5-turbo-instruct
model reaches an accuracy of more than 90%
in this task on each question formulation, which
shows that it is well capable of processing nega-

"Because this additional experiment is conducted as a re-
action to reviews, some OpenAl models in RQ1 and RQ2
have become deprecated in the meantime. Here we re-
port the performance of the official replacement gpt-3.5-
turbo-instruct for all GPT-3.5 and InstructGPT models; see
the OpenAl documents: https://platform.openai.
com/docs/deprecations/instructgpt-models.

tion and tracking participant state. On the other
hand, the GPT-3: davinci-002 model succeeds in
tracking participant state but exhibits very low ac-
curacy in capturing negations, which indicates that
older GPT-3 models can not capture negation. We
conclude that these experiments confirm the inter-
pretation that older models fail to represent nega-
tion properly and hence fail on RQ1. In the mean-
time, larger models have no problem understand-
ing negations. They fail on RQ2 due to a failure
in activating script knowledge to a similar extent
as humans wrt. anticipating or easily integrating a
script-predictable participant.

6 Conclusions

In this paper, we inspect the behaviors of both large
language models and humans in zero-shot causal
inference. We conducted a self-paced reading ex-
periment on common sense stories to inspect hu-
man processing difficulty when reading the stories.
Reading time results indicate that humans stumble
across causally incoherent text segments, exhibit-
ing longer reading times in these cases. On the
other hand, they easily integrate script-predictable
information, even if the explicit causal component
(event A) is missing from the story.

When we apply the same study to LLMs, only
the newest LLMs show similar behavior to humans
on encountering casual conflicts. All models fail to
replicate human behaviors when the cause is omit-
ted. Even models trained with programming code
and instructions fail to make use of script knowl-
edge, which indicates that script knowledge may
not be represented sufficiently well in the LLMs
tested in this study.

7 Limitations

One limitation from the NLP perspective of our
study is that the size of the CSK dataset is small
and only in English (only 21 stories). This is a very
common limitation of psycholinguistic studies due
to the costs of human experiments. We here ad-
dressed this shortcoming by also evaluating on the
larger dataset TRIP, but a dataset with more stories
or more readers would further improve the reliabil-
ity of the results. Another limitation is that we don’t
experiment with few-shot examples in prompts,
which could have been used to remind the LLMs to
make use of script knowledge. We chose the zero-
shot setting because humans use script knowledge
for casual inference without any “examples” and
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we believe that the LLMs should have the same
behaviors as humans. However, this means that
our results do not necessarily generalize to other
ways of prompting models. Additionally, we didn’t
experiment with the most recent OpenAl models
like GPT-4 because their official API doesn’t sup-
port generating the probability output for given text
input. Lastly, we didn’t test models with more than
20B parameters on our own server due to limited
hardware resources.

Another limitation of our experiment is that we
cannot comment on the generalizability of our
script materials to more general script-based stories
for scripts that may be less well-known to human
readers. For our materials, we asked participants
after each experimental trial whether they were fa-
miliar with the script (“Please tick this box if you
have never baked a cake or you have very little ex-
perience with it)”. Participants answered in 11.2%
of trials that they were not familiar with the script.
We observed an effect of familiarity on reading
times, showing that subjects read the story faster
when they were not familiar with the topic. We
note that findings also remained stable when we
removed such trials from our analysis.

8 Ethics Statement

We release our CSK dataset under the CC BY-
NC-SA license. We anonymize the dataset to
protect participants’ identities. The human study
was approved by the ethics committee of Deutsche
Gesellschaft fiir Sprachwissenschaft (DGTfS). All
participants were paid fairly according to the local
standard.

The TRIP dataset was released under an un-
known license but the paper described this dataset
was published in an ACL proceeding. We use it for
academic purposes only.

The potential risk of this work is that the find-
ings can be used to design attacks on LLMs to
harm their capability of conducting casual infer-
ence given script knowledge (Alzantot et al., 2018).

Acknowledgements

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG), Funder Id:
http://dx.doi.org/10.13039/501100001659, Project-
ID 232722074 — SFB1102: Information Density
and Linguistic Encoding. We sincerely thank
the anonymous reviewers for their insightful
comments that helped us to improve this paper.

We thank Sebastian Schuster, Alexandra Mayn
and Josef van Genabith for their informative
advice and Nina Shvetsova for her help with the
Vicuna models. We also thank students Teresa
Martin Soeder, Alice Virginia Chase, and Brianna
Michelle Lehman for helping with materials
construction.

References

Valerie Abbott, John B Black, and Edward E Smith.
1985. The representation of scripts in memory. Jour-
nal of memory and language, 24(2):179-199.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890-2896, Brussels, Belgium. Association
for Computational Linguistics.

Douglas Bates, Martin Michler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67:1-48.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. Zenodo.

Charles P Bloom, Charles R Fletcher, Paul Van
Den Broek, Laura Reitz, and Brian P Shapiro. 1990.
An on-line assessment of causal reasoning during
comprehension. Memory & cognition, 18:65-71.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762—-4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Gordon H Bower, John B Black, and Terrence J Turner.
1979. Scripts in memory for text. Cognitive psychol-
ogy, 11(2):177-220.

Faeze Brahman, Chandra Bhagavatula, Valentina Py-
atkin, Jena D Hwang, Xiang Lorraine Li, Hirona J
Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang
Ren, and Yejin Choi. 2023. Plasma: Making small
language models better procedural knowledge mod-
els for (counterfactual) planning. arXiv preprint
arXiv:2305.19472.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

430


https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Tyler A Chang and Benjamin K Bergen. 2023. Lan-
guage model behavior: A comprehensive survey.
arXiv preprint arXiv:2303.11504.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Rune Haubo B Christensen. 2018. Cumulative link mod-
els for ordinal regression with the r package ordinal.
Submitted in J. Stat. Software, 35.

Manuel Ciosici, Joseph Cummings, Mitchell DeHaven,
Alex Hedges, Yash Kankanampati, Dong-Ho Lee,
Ralph Weischedel, and Marjorie Freedman. 2021.
Machine-assisted script curation. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Demonstrations, pages
8—17, Online. Association for Computational Lin-
guistics.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193-210.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Stefan L Frank, Leun J Otten, Giulia Galli, and Gabriella
Vigliocco. 2015. The erp response to the amount of
information conveyed by words in sentences. Brain
and language, 140:1-11.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 32—42, Minneapolis, Minnesota.
Association for Computational Linguistics.

Raymond W Gibbs and Yvette J Tenney. 1980. The
concept of scripts in understanding stories. Journal
of Psycholinguistic Research, 9:275-284.

431

Arthur C Graesser, Keith K Millis, and Rolf A Zwaan.
1997. Discourse comprehension. Annual review of
psychology, 48(1):163—189.

Arthur C Graesser, Murray Singer, and Tom Trabasso.
1994. Constructing inferences during narrative text
comprehension. Psychological review, 101(3):371.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1-8. Association for Computa-
tional Linguistics.

Mary Hare, Michael Jones, Caroline Thomson, Sarah
Kelly, and Ken McRae. 2009. Activating event
knowledge. Cognition, 111(2):151-167.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6384-6392.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste
Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan
Shelhamer, Olivier ] Henaff, Matthew Botvinick, An-
drew Zisserman, Oriol Vinyals, and Joao Carreira.
2022. Perceiver 10: A general architecture for struc-
tured inputs & outputs. In International Conference
on Learning Representations.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64-77.

JM Keenan and W Kintsch. 1974. The identification of
explicitly and implicitly presented information. The
representation of meaning in memory, pages 153—

176.

Najoung Kim and Sebastian Schuster. 2023. Entity
tracking in language models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3835-3855, Toronto, Canada. Association for Com-
putational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Marta Kutas and Steven A Hillyard. 1989. An electro-
physiological probe of incidental semantic associa-
tion. Journal of cognitive neuroscience, 1(1):38—49.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.


https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2021.naacl-demos.2
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2023.acl-long.213
https://doi.org/10.18653/v1/2023.acl-long.213
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf

Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537-563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2022. FNet: Mixing tokens with
Fourier transforms. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 4296—4313, Seattle,
United States. Association for Computational Lin-
guistics.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126-1177.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona Diab, Veselin Stoy-
anov, and Xian Li. 2022. Few-shot learning with
multilingual generative language models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 9019-9052,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Eric Nyberg,
and Alessandro Oltramari. 2022. Coalescing global
and local information for procedural text understand-
ing. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1534—
1545, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

George Michalopoulos, Michal Malyska, Nicola Sahar,
Alexander Wong, and Helen Chen. 2022. ICDBig-
Bird: A contextual embedding model for ICD code
classification. In Proceedings of the 21st Workshop
on Biomedical Language Processing, pages 330-336,
Dublin, Ireland. Association for Computational Lin-
guistics.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas A. Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen
Krueger, David P. Schnurr, Felipe Petroski Such,
Kenny Sai-Kin Hsu, Madeleine Thompson, Tabarak
Khan, Toki Sherbakov, Joanne Jang, Peter Welinder,
and Lilian Weng. 2022. Text and code embeddings
by contrastive pre-training. ArXiv, abs/2201.10005.

Ha Thanh Nguyen, Randy Goebel, Francesca Toni,
Kostas Stathis, and Ken Satoh. 2023. A negation de-
tection assessment of gpts: analysis with the xnot360
dataset. arXiv preprint arXiv:2306.16638.

OpenAl. 2022. Introducing chatgpt. OpenAl Blog.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report.  ArXiv,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Judea Pearl. 2009. Causality. Cambridge university
press.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAl Blog.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Gabriel A Radvansky, Andrea K Tamplin, Joseph Ar-
mendarez, and Alexis N Thompson. 2014. Different
kinds of causality in event cognition. Discourse Pro-
cesses, 51(7):601-618.

Sahithya Ravi, Chris Tanner, Raymond Ng, and Vered
Shwartz. 2023. What happens before and after:
Multi-event commonsense in event coreference res-
olution. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 1708—1724, Dubrovnik,
Croatia. Association for Computational Linguistics.

Kyle Richardson, Ronen Tamari, Oren Sultan, Dafna
Shahaf, Reut Tsarfaty, and Ashish Sabharwal. 2022.
Breakpoint transformers for modeling and tracking
intermediate beliefs. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9703-9719, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138-2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699-2712, Online. Association for Computational
Linguistics.

Abhilasha Sancheti and Rachel Rudinger. 2022. What
do large language models learn about scripts? In
Proceedings of the 11th Joint Conference on Lexical
and Computational Semantics, pages 1-11, Seattle,
Washington. Association for Computational Linguis-
tics.

432


https://aclanthology.org/2022.findings-emnlp.38
https://aclanthology.org/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.naacl-main.319
https://doi.org/10.18653/v1/2022.naacl-main.319
https://aclanthology.org/2022.emnlp-main.616
https://aclanthology.org/2022.emnlp-main.616
https://aclanthology.org/2022.coling-1.132
https://aclanthology.org/2022.coling-1.132
https://aclanthology.org/2022.coling-1.132
https://doi.org/10.18653/v1/2022.bionlp-1.32
https://doi.org/10.18653/v1/2022.bionlp-1.32
https://doi.org/10.18653/v1/2022.bionlp-1.32
https://api.semanticscholar.org/CorpusID:246275593
https://api.semanticscholar.org/CorpusID:246275593
https://openai.com/blog/chatgpt
https://api.semanticscholar.org/CorpusID:257532815
https://aclanthology.org/2023.eacl-main.125
https://aclanthology.org/2023.eacl-main.125
https://aclanthology.org/2023.eacl-main.125
https://aclanthology.org/2022.emnlp-main.658
https://aclanthology.org/2022.emnlp-main.658
https://doi.org/10.18653/v1/2021.findings-emnlp.184
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2022.starsem-1.1
https://doi.org/10.18653/v1/2022.starsem-1.1

Roger C Schank. 1975. The structure of episodes
in memory. In Representation and understanding,
pages 237-272. Elsevier.

Murray Singer and Michael Halldorson. 1996. Con-
structing and validating motive bridging inferences.
Cognitive Psychology, 30(1):1-38.

Murray Singer and Kathryn FM Ritchot. 1996. The role
of working memory capacity and knowledge access

in text inference processing. Memory & cognition,
24(6):733-743.

Nathaniel J Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3):302-319.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4902-4918, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Tom Trabasso and Linda L Sperry. 1985. Causal relat-
edness and importance of story events. Journal of
Memory and language, 24(5):595-611.

Paul Van den Broek. 1990. The causal inference maker:
Towards a process model of inference generation in

text comprehension. Comprehension processes in
reading, pages 423—445.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. A crowdsourced
database of event sequence descriptions for the acqui-
sition of high-quality script knowledge. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
3494-3501, Portoroz, Slovenia. European Language
Resources Association (ELRA).

Noah Weber, Rachel Rudinger, and Benjamin
Van Durme. 2020. Causal inference of script knowl-
edge. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7583-7596, Online. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nystromformer: A nystrom-based algorithm
for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14138—-14148.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-
ham Shah, Charles Robert Jankowski, Deqing Yang,
and Yanghua Xiao. 2023. Distilling script knowledge
from large language models for constrained language
planning. arXiv preprint arXiv:2305.05252.

Fangzhou Zhai, Vera Demberg, and Alexander Koller.
2022. Zero-shot script parsing. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4049-4060, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Fangzhou Zhai, Iza Skrjanec, and Alexander Koller.
2021. Script parsing with hierarchical sequence mod-
elling. In Proceedings of *SEM 2021: The Tenth
Joint Conference on Lexical and Computational Se-
mantics, pages 195-201, Online. Association for
Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Li Zhang, Hainiu Xu, Yue Yang, Shuyan Zhou, Weiqiu
You, Manni Arora, and Chris Callison-Burch. 2023.
Causal reasoning of entities and events in procedural
texts. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 415431,
Dubrovnik, Croatia. Association for Computational
Linguistics.

433


https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://doi.org/10.18653/v1/2020.emnlp-main.612
https://doi.org/10.18653/v1/2020.emnlp-main.612
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2022.coling-1.356
https://doi.org/10.18653/v1/2021.starsem-1.18
https://doi.org/10.18653/v1/2021.starsem-1.18
https://aclanthology.org/2023.findings-eacl.31
https://aclanthology.org/2023.findings-eacl.31

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441-1451, Florence, Italy. Association for Compu-
tational Linguistics.

A Analysis of Human Beliefs about events
A and B

In addition to measuring the reading times that
reflect online processing, we also collected the an-
swers to the questions about occurrences of events
A and B that were presented after each story (“How
sure are you that event A/B happened? — see Figure
1, part III”).

The motivation for this was to gain insights into
a) how exactly subjects accommodate a causal con-
flict (the =A — B condition) and b) whether sub-
jects indeed infer event A when it is omitted from
the story (the nil — B condition). The A — B
condition serves as a baseline. We analyse the
collected ratings using ordinal regression models
(Christensen, 2018).

A—-B nil—B -A— B
Event A 6.41 (1.45) 4.85(2.89) 3.67(3.19)
EventB 6.13(1.84) 4.91(2.80) 3.79 (3.13)

Table 4: Mean subjects’ belief ratings (and SD in paren-
theses) that the event actually happened in the story,
by event type (A or B) and story condition (A — B,
nil — B, and A — B).

In the A — B condition, both events A and B
were given on average high ratings (6.41 and 6.13,
respectively — see Table 4), meaning that subjects
were sure that the events happened when they both
were explicitly mentioned in the story. Further, for
both events, the ratings in the A — B (event A:
b = —-203, se = 0.24, z = —8.67, p < .001;
event B: b = —1.6, se = 0.2, z = =822, p <
.001) and nil — B (event A: b = —1.46, se =
0.22, z = —6.6, p < .001; event B: b = —0.99,
se = 0.2, z = —4.97, p < .001) were significantly
lower compared to the A — B condition.

The analysis of subjects’ ratings showed that
the causal conflict (the A — B condition) re-

sulted in lowered beliefs about both events A and
B (3.67 and 3.79, respectively). One potential ex-
planation for this is that subjects might have used
different strategies to resolve the conflict. For ex-
ample, some subjects could assume that event B in
fact did not happen, (however, contrary to the narra-
tive) because the premise is not met. While others
could resolve the conflict by assuming that event A
in fact happened thus making event B also possible
to happen. Both strategies would explain relatively
lower strength of beliefs about both events B and A
to happen. Any explanations, however, necessitate
a follow-up study with more elaborative questions
that potentially require subjects to provide explana-
tions of the given ratings.

Interestingly, we also observe lower ratings for
both events in the nil — B condition, compared to
the A — B condition, which is contrary to our ex-
pectations. In the nil — B condition, event B was
overtly mentioned in the story, which should lead
to comparable strength in subjects’ beliefs with the
A — B condition. Subsequently, event A, even
though not mentioned explicitly, should be inferred
on the basis of the causal link between them and
script knowledge: if she added star-shaped sprin-
kles (event B), then she should have prepared cake
decorations beforehand (event A) — see Figure 1,
part II.

A probable rationale for the discrepancy between
our expectation and the actual ratings is that, when
faced with the questions, subjects may have retro-
spectively re-evaluated the story, relying more on
their memory representations. Compared to condi-
tion A — B, event B might have been perceptually
less salient in the nil — B condition. Event B
is easy to integrate due to its relation to the corre-
sponding script (which we observe in the reading
time analysis — see Section 3.5, RQ2) and may not
receive a lot of attention from the reader, hence
reducing its memorization and subsequent retrieval
of event B. In the A — B condition, on the other
hand, attention to event B is strengthened by the
causal link coming from an explicitly mentioned
event A that might facilitate its retrieval from mem-
ory at the question answering stage (see Bower
et al., 1979, for similar results in reading every-
day stories where subjects were asked to evaluate
which events were mentioned in the text).
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Model Name # para. b t sign b t sign b t sign
™M) CSK CSK (short dist) TRIP
Bigbird-roberta-large 412 | 018 1.64 ns.| 033 1.72 ns.| 004 290  **
BERT: large-uncased 366 | 030 2.14 #1021 143 ns.| 007  1.67 .
ALBERT-xxlarge-v2 210 | 0.20 1.78 .| 047 350  *¥* | 0.09 525 k¥*
Perceiver 201 | -0.02 -0.51 ns.| 004 079 ns.| 001 129 ns.
Bigbird-roberta-base 167 | 0.05 034 ns.|-0.03 -0.13 ns.| 0.03 2.62 ok
BERT: base-uncased 133 0.14 171 ns.| 021 2.00 .1-0.00 -0.00 ns.
Nystromformer-512 132 006 150 ns.| 004 080 ns.|-0.01 -046 ns.
ConvBERT: base 130 | 001 1.66 ns.|-000 -0.72 ns.|-0.00 -033 ns.
FNet-base 108 | 001 0.14 ns.| 002 041 ns.|-0.01 -0.80 ns.
DistilBERT: base-uncased 9 | 0.12 2.08 .| 016 243 *1-0.00 -0.01 ns.
Electra-large-generator 8| 0.12 1.15 ns.| 001 0.13 ns. |-0.01 -0.16 ns.
SqueezeBERT: uncased 75| 013 163 ns. | 021 240 *1-0.04 -1.09 ns.
Electra-base-generator 571 012 2.69 *1 008 125 mns.|-004 -1.15 ns.
Electra-small-generator 17 | 0.18 2.66 *¥1009 133 ns.|-003 -0.82 ns.
ALBERT-base-v2 15| 027 290 **| 016 225 *1 001 049 ns.

Table 5: Results for MLMs on RQ1 (A — B versus ~A — B) on CSK (original and intervention removal) and
TRIP dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that the results are
not statistically significant. The ., *, **, and *** in the sign column represent p-values < 0.1, 0.05, 0.01, and 0.001.

B Details of LLMs

We use one Nvidia A100 GPU card to run all of
our experiments. Thanks to our zero-shot setting,
the experiment of each model takes less than 10
minutes.

B.1 GPT models

GPT-2. GPT-2 (Radford et al., 2019) is one of the
most influential language models by OpenAl. As a
decoder-only causal PLM, GPT-2 is often used as
a baseline.

GPT-3 models. GPT-3 (Brown et al., 2020) is
the upgraded version of GPT-2 which uses almost
the same model and architecture but with a signif-
icantly larger amount of parameters, which was
ten times more than any previous non-sparse lan-
guage model. GPT-3 and GPT-3.5 were chosen
to be evaluated as they were expected to perform
the best, based on their strong performance on
a range of NLP tasks. We experiment with dif-
ferent versions of GPT-3 and GPT-3.5.% GPT-3
models (Brown et al., 2020): curie is a GPT-3
with 6B parameters. davinci is a GPT-3 with
175B parameters. InstructGPT models (Ouyang
et al., 2022): davinci-instruct-betaisa
model trained with supervised fine-tuning on hu-
man demonstrations; text-davinci-001 and
text-curie-001 further includes top-rated

8More details are on https://platform.openai.
com/docs/model-index—for-researchers

model samples from quality assessment by human
labellers. GPT 3.5 models (Neelakantan et al.,
2022): text—-davinci-002 is an InstructGPT
model based on a model trained with a blend of
code and text; text—-davinci—003 was further
trained using reinforcement learning with human
feedback.

Newer models from OpenAl like GPT-
4: gpt-4-turbo, gpt-4 or GPT-3.5:
gpt-3.5-turbo don’t support the "Com-
pletions" API and can’t return probabilities given
input tokens so we don’t include them (OpenAl,
2023).

B.2 Chatbots

As the two current state-of-the-art LLMs, GPT-4
and ChatGPT, are both designed to function as
chatbots, our aim is to harness the potential of the
most capable open-source chatbot available to us.
Chatbots, by design, need to comprehend and re-
spond contextually to inputs, often requiring them
to make connections between disparate pieces of
information in a conversation. Vicuna is an open-

source chatbot created by fine-tuning an LLaMA
base model with approximately 70K user-shared
conversations collected from ShareGPT.com. Pre-
liminary evaluation in their paper (Chiang et al.,
2023) suggests that Vicuna reaches 90% of the
quality of chatbots such as ChatGPT and Google’s
Bard.
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B.3 Efficient Models

There are models that need less memory or less
time. Methods that reduce space could have a better
performance here, because, for most of this experi-
ment, we had limited space. Efficient models are
interesting for long-range dependencies because
they employ innovative techniques or optimizations
to handle dependencies more effectively. Efficient
models might be better or worse at capturing the
relationships between distant parts of the text due
to their unique approaches.

Nystromformer and language perceiver are ex-
amples of models with efficient self-attention.

C Additional Experiment Results

C.1 Masked Language Models (MLMs)

MLMs are another group of language models that
obtained state-of-the-art performances across many
NLP tasks. We note that the way they work is not
similar to human language processing, and the sur-
prisal estimates obtained from them are not directly
comparable to surprisals obtained from left-to-right
models. However, we decided to include some
MLMs that have been specifically designed to han-
dle long-distance dependencies (via their efficient
self-attention mechanisms) into our evaluation, to
observe how these models perform regarding the
causal inferences given long commonsense stories.
We first picked a set of models from the BERT
family including BERT (Devlin et al., 2019) and
Bigbird-roberta (Michalopoulos et al., 2022) as rep-
resentatives for MLMs because they used to be the
state-of-the-art in many NLP benchmarks concern-
ing commonsense inference (Wang et al., 2018,
2019). We opted to incorporate models that use
efficient self-attention mechanisms like We also
test FNet (Lee-Thorp et al., 2022), Nystromformer
(Xiong et al., 2021) and Perceiver (Jaegle et al.,
2022).

We follow Salazar et al. (2020) to provide mod-
els with the context before and after the target to-
ken in segment B. The pertinent token itself is
masked, forcing the masked language models to
infer it based on the surrounding context. For in-
stance, in the example story in Figure 1, the words
“added star-shaped sprinkles” constitute the target
region describing event B. Each token in this se-
quence was masked one at a time. We then calcu-
lated the probabilities of the masked tokens given
the surrounding story context. MLM models thus
have more information than CLM models due to

the additional information from other tokens in
the event B and the context after event B. We
therefore would like to point out that this method
is not cognitively plausible, and that the surprisal
scores obtained from them hence will also reflect
this “privileged” knowledge. We also note that the
surprisal estimation from MLMs can in principle
be adapted to simulate left-to-right processing bet-
ter, but think that this is only worthwhile to explore
in more detail if MLMs prove to be successful at
modelling the long-distance dependencies relevant
to our texts.

Our results in Table 5 show that only some MLM
models showed a significant difference in surprisal
estimates between the coherent and the incoher-
ent (mA — B) condition on either CSK or TRIP
datasets. Since their behaviors are not consistent
across these two datasets, we consider all MLMs
fail to distinguish between coherent and incoherent
conditions.

C.2 Effect of dependency length (distance
between events A and B)

Next, we wanted to check whether the failure of
the models that don’t show a significant difference
between conditions is due to problems with encod-
ing the text effectively and “remembering” event A
or A when processing event B, or whether it is re-
lated to failure to detect the mismatch between the
events. We therefore modified the original exper-
iment’s design by reducing the distance between
events A and B in the story by removing all in-
tervening sentences. (Note that we did not ensure
that the removed sentences did not contain crucial
information that would compromise the coherence
of the story.)

If model failure on the previous task is due to
difficulty in handling a long intervening context,
we expect that models would show a significant
difference between surprisal estimates in this short-
distance condition.

As shown in Table 6 column named “CSK (short
dist)”, we find that most models show the same
behavior in the short-distance condition and the
long-distance condition. Interestingly, the results
of both GPT-3.5 and Vicuna are non-significant in
this condition. This could be due to the removal
of intermediary materials, thereby potentially inter-
rupting the causal chains and adversely affecting
the activation of event B. Other models that are
still not showing a significant difference between
surprisal estimates in the different conditions might
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Model Name # para. b t sign b t sign
™M) CSK CSK (short dist)

GPT-3.5: text-davinci-003 175K | 0.59 5.87 ***1 020 159 ns.
GPT-3.5: text-davinci-002 175K | 0.51 275 *10.10 0.70 n.s.
InstructGPT: text-davinci-001 175K | 0.26  2.03 .1-0.02 -0.18 n.s.
InstructGPT: davinci-instruct-beta 175K | 0.21  2.76 1012 1.78 .
GPT-3: davinci 175K | 0.21 2.76 *10.19  2.69 *
Vicuna-13B 13016 | 0.22 2.25 *1-0.01 -0.07 ns.
Vicuna-7B 6738 | 0.28 2.56 *1.0.12 1.08 ns.
InstructGPT: text-curie-001 6700 | 0.03 0.31 ns.

GPT-3: curie 6700 | 0.23 3.43 ¥+ 1021 3.5 *x
GPT-2: XL 1638 | 0.05 096 ns.| 0.08 1.54 ns.
GPT-2: L 838 | 0.04 0.77 ns.| 0.04 0.64 ns.
XGLM 827 | -0.03 -0.79 ns.| 0.02 038 ns.
Bigbird-pegasus-large-arxiv 470 | 0.06 120 ns.| 0.00 -0.04 ns.
Pegasus-large 467 | 0.02 085 ns.| 0.00 0.00 ns.
XLNet-large-cased 393 | -0.03 -1.99 -0.04 -2.42 g
OPT 357 | 0.01 0.12 ns.| 0.02 032 ns.
GPT-Neo 164 | 0.03 0.67 ns.| 005 1.11 ns.
GPT-2 163 | 0.00 -0.10 ns.| 0.03 074 ns.
GPT: openai-gpt 148 | 0.00 -0.01 ns.| 0.06 135 ns.

Table 6: Results of CLMs with shorten context on RQ1 (A — B versus =A — B) on CSK (original and intervention
removal) and TRIP dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that
the results are not statistically significant. The ., *, **, and *** in the sign column represent p-values < 0.1, 0.05,

0.01, and 0.001.

be failing due to not recognizing the semantic in-
consistency between - A and B.

Each of our narratives represents a sequence of
events that the main character is involved in step
by step in order to achieve their goal (e.g., to bake
a cake or to take a flight). For example, for taking
a flight story, the events are:

Reach the airport, get the boarding pass,
[EVENT A] check in the luggage, go through the
security, wait at the gate, board the plane, find
one’s seat, fasten the seatbelt, turn off the elec-
tronic devices, wait on the plane, land, leave the
plane, [EVENT B] pick the bags at the baggage
claim, leave the airport

In turn, removing the context between A and B
typically results in very low story coherence, see
the following example:

After several months away from home, Julia was
finally able to visit her family for a few days. How-
ever she had a long way to go, so she decided to
travel by air. First, she went to the main airport

on a public bus. Once at the airport, she got her
boarding pass and [EVENT A] checked in her lug-
gage. < ... > Afterwards, she [EVENT B] picked
up her bags at the baggage claim and left the air-
port. Finally, she arrived home and met her family.
It had been so long!

This expectedly leads to higher surprisal in all
conditions. However, we reasoned that conditions
A — B and —-A — B are affected by this change
to a similar extent, and hence a difference in sur-
prisal (which would reflect the stronger logical
clash between —A and B) would be reflected in
lower surprisal values in this condition compared
to A — B. The strong drop in plausibility might
however be a reason for the difference between
A — B and -A — B lacking significance.
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