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Abstract
Polysemes are words that can have different
senses depending on the context of utterance:
for instance, ‘newspaper’ can refer to an organi-
zation (as in ‘manage the newspaper’) or to an
object (as in ‘open the newspaper’). Contrary
to a large body of evidence coming from psy-
cholinguistics, polysemy has been traditionally
modelled in NLP by assuming that each sense
should be given a separate representation in a
lexicon (e.g. WordNet). This led to the current
situation, where datasets used to evaluate the
ability of computational models of semantics
miss crucial details about the representation
of polysemes, thus limiting the amount of evi-
dence that can be gained from their use.

In this paper we propose a framework to ap-
proach polysemy as a continuous variation in
psycholinguistic properties of a word in con-
text. This approach accommodates different
sense interpretations, without postulating clear-
cut jumps between senses. First we describe a
publicly available English dataset that we col-
lected, where polysemes in context (verb-noun
phrases) are annotated for their concreteness
and body sensory strength. Then, we evaluate
static and contextualized language models in
their ability to predict the ratings of each pol-
yseme in context, as well as in their ability to
capture the distinction among senses, revealing
and characterizing in an interpretable way the
models’ flaws.

1 Introduction

The meaning of individual words taken in isolation
can look unambiguous. Take for instance the word
book. If encountered on its own, it evokes the im-
age of an object made of sheets of paper bound
together. However, when put in context, such as in
the phrase ‘explain the book’, it clearly does not re-
fer to that same concrete object - rather, it denotes
its immaterial, abstract content. A word like book
is called a polyseme (Falkum and Benito, 2015; Vi-
cente and Falkum, 2017; Haber and Poesio, 2023).

Polysemes are easily understood when contrasted
with monosemes (words with only one possible
interpretation, like leaf ) and homonyms (words
that can that can take two completely unrelated
interpretations, like bat): polysemes can take dif-
ferent interpretations - also called senses - which
are related among them and that follow patterns
that also apply to other words (so-called regular
polysemy; Apresjan, 1974). In the case of book,
for instance, the pattern is an alternation between
a concrete object and an abstract meaning, which
also characterizes other words like newspaper or
painting.

In computational linguistics and Natural Lan-
guage Processing (NLP), a large body of work has
looked at polysemy. Mainly, the aim is that of
finding out to what extent the distinctions between
different senses can be captured by current mod-
els - either with a theoretical focus (Erk and Padó,
2010; Boleda et al., 2012; Del Tredici and Bel,
2015; Lopukhina and Lopukhin, 2016; Garí Soler
and Apidianaki, 2021; Haber and Poesio, 2021; Li
and Armstrong, 2023) or in applied tasks (word
sense disambiguation Navigli, 2009; Bevilacqua
et al., 2021; Loureiro et al., 2021 and induction
Agirre and Soroa, 2007; Manandhar et al., 2010;
Lau et al., 2012; Eyal et al., 2022). However, as
pointed out in McCarthy et al. (2016); Haber and
Poesio (2023), a fundamental conceptual limitation
has characterized approaches to polysemy in NLP
so far. Namely, they have (almost) exclusively as-
sumed a traditional view of polysemy, the so-called
sense enumeration view (Katz and Fodor, 1963),
which has been shown to afford only limited ex-
planatory power. According to this theory, each
sense of a polysemous word like book should be
given a separate, dedicated representation – like the
meanings of distinct words like leaf and curtain.
This is the way in which knowledge graphs like
WordNet (Miller, 1995) or BabelNet (Navigli and
Ponzetto, 2012), the resources that are most typ-
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ically used as the golden standard for polysemy
in NLP, are structured: for book, we find mul-
tiple entries - e.g. <noun.communication> and
<noun.artifact>. However, this view is challenged
from a large body of work in cognitive psychology
and psycholinguistics. Experimental approaches
have rather proposed the so-called one represen-
tation view of polysemous nouns: different senses
are not assumed not to be represented differently,
but just to be different aspects or facets of the same
semantic representation (among others, Klepous-
niotou, 2002; Rodd et al., 2004; Schumacher, 2013;
see Falkum and Benito, 2015; Haber and Poesio,
2023 for comprehensive reviews).

As a reflection of this theoretical gap, the
datasets typically used for the evaluation of com-
putational models of language at capturing poly-
semy are built according the sense enumeration
view. Lack of diverse evaluation approaches not
only leaves a large amount of potential evidence
untapped, but also obscures important insights that
could emerge by taking a different perspective.

We concur with McCarthy et al. (2016); Haber
and Poesio (2023) that, to investigate in depth the
ability of current computational models of semantic
to capture polysemy, it is necessary to go beyond
the sense enumeration view. To this aim, we pro-
pose to take a hybrid approach. We break down reg-
ularized patterns of polysemy – from the sense enu-
meration view – in terms of psycholinguistic vari-
ables like concreteness – inspired by the one rep-
resentation view. In this framework, the variation
happening when varying the interpretation of book
from <noun.artifact> to <noun.communication>
can be captured by observing that the second is
interpreted as a less concrete entity – which can
be further characterized as a reduction in manip-
ulability (touch) and readability (sight), possibly
accompanied by an increase in its audibility (hear-
ing). We build on previous work showing how hard
distinctions between senses emerge from (and are
contained by) complex representations of words
(Pustejovsky, 1991; Cruse, 1995; Ortega-Andrés
and Vicente, 2019). What we add is an explicit
specification (i.e. in terms of psycholinguistic vari-
ables) of how sense alternations in polysemy take
place. From previous approaches in NLP that rely
on similarities in latent vector spaces (Boleda et al.,
2012; McCarthy et al., 2016; Haber and Poesio,
2021), we retain the notion of using continuous
measures of similarity/distance – i.e. a ‘soft’ ap-
proach to senses: however, while dimensions of

language are not interpretable from a cognitive
point of view, ours are. Importantly, this frame-
work has been previously successfully applied to
model how the brain processes fine-grained lexical
meaning variations (Bruera et al., 2023). Since our
framework revolves around cognitively motivated
semantic features, it aims at fostering research con-
necting computational and cognitive models of lan-
guage – with the broader goal of allowing to gain
insights on how similar the two are, which is a
fundamental open question in the field (Antonello
and Huth, 2023; Beinborn and Hollenstein, 2023;
Golan et al., 2023; Kanwisher et al., 2023).

Starting from this theoretical approach, in the
current work we present two main contributions.
First, we describe how we created an original
dataset of examples of lexical polysemy. For each
polyseme, the dataset provides ratings provided by
human subjects in terms of concreteness and of
sensory strength (with separate ratings for sight,
hearing, touch, smell, taste) for phrases where the
different senses are evoked. Our dataset is care-
fully crafted by controlling for psycholinguistic
variables, with the aim of allowing its use both for
in silico and cognitive experiments.

Secondly, we evaluate static and contextualized
language models on their ability to predict the rat-
ings provided by humans and to distinguish among
different senses of polysemous words. We hypoth-
esized that contextualized language models would
consistently outperform static language models.
Our results confirm our prediction, but they also
show that there is large room for improvement in
overall accuracy for contextualized language mod-
els too - indicating that polysemy is still a challeng-
ing semantic phenomenon for language models to
capture.

We publish the dataset together with the code1.

2 Data

2.1 Overview of the dataset

We select a set of 25 polysemic nouns admitting
both an abstract and a concrete interpretation. Then,
for each noun we select two verbs that, when com-
bined with the noun in a verb-noun phrase, give rise
to an abstract (e.g. ‘explain the book’, ‘describe
the picture’, ‘know the medicine’) interpretation
and two that evoke a concrete (e.g. ‘open the book’,
‘carry the picture’, ‘swallow the medicine’) read-

1they can be found at this link: https://osf.io/nfcuq/
?view_only=9c7137bc88d543dbaaa17225cbfdef34
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Figure 1: Distribution of concreteness and sensory
strength ratings for the 100 verb-noun polysemic
phrases. Ratings (y axis) are normalized in the range 0-
1. As shown by the averages (horizontal coloured lines),
concrete phrases show higher concreteness and stronger
involvement of all types of sensory information.

ing of the noun. This is the process of so-called
‘sense coercion’ (Pustejovsky, 1991; Lauwers and
Willems, 2011) or ‘sense selection’, where verbs
make the interpretation of the noun go towards one
sense or the other (Klepousniotou, 2002). In this
way, phrases are equally divided into two mirrored
sets of abstract and concrete senses.

Finally, we collect a set of psycholinguistic rat-
ings for all of the nouns within each phrase. We
collect ratings for concreteness – the most relevant
cognitive dimension –and for the five body senses,
since sensory strength can better characterize vari-
ation in meaning than simple concreteness (Lynott
et al., 2020).

The main aim of this dataset is to fill a gap in
existing resources that can be used to evaluate NLP
models with respect to polysemy. Our hope is also
to foster further research along these lines, with
a strong focus on cognitive evaluation of compu-
tational models of semantics (Beinborn and Hol-
lenstein, 2023). Therefore, we wanted our stimuli
selection to be valid for further testing involving the
collection of behavioural and brain data. In such
studies, it is fundamental to control for experimen-
tal confounds which are not relevant for NLP mod-
els, but play an important role in human cognition.
Such confounds can be related to non-semantic,
low-level sensory properties of the stimuli (Hauk
and Pulvermüller, 2004; Laszlo and Federmeier,
2014; Dufau et al., 2015) or, within semantics, to
emotional processing (Kuperman et al., 2014; Hi-
nojosa et al., 2020).

In the following we will describe the stimuli
selection procedure in detail. A visualization of
the distributions of the ratings, directly comparing
abstract and concrete senses, is displayed in Figure
1.

2.2 Stimuli selection

2.2.1 Nouns

We selected the set of 25 polysemous nouns to be
used among the polysemes annotated in CoreLex
(Buitelaar, 1998). CoreLex is an annotation made
on top of WordNet (Miller, 1995) specifically cre-
ated for polysemy. In CoreLex, a number of pol-
ysemous nouns from WordNet are annotated ac-
cording to their polysemy pattern - e.g. annotating
with the same label all words that behave similarly
to ‘book’. For our purpose, the advantage of the
annotation provided by CoreLex is that it allows to
automatically isolate cases of polysemy where an
alternation of a concrete and an abstract sense is
present (cf. Boleda et al., 2012).

To extract the nouns, we therefore first looked
at the types of nouns present in CoreLex (e.g.
‘art’=‘artifact’ or ‘com’=‘informational content’;
so-called ‘Corelex basic types’). We anno-
tated them according to whether they referred
to ‘concrete’, ‘abstract’ or ‘other’ entities (where
‘art’=‘concrete’, ‘com’=‘abstract’). From this list,
we moved to the list of the polysemy classes
(‘CoreLex classes’), retaining only the classes
where an alternation of an abstract and a concrete
sense was present (e.g. a CoreLex class like ‘cae’,
where both a ‘art’ and a ‘com’ sense are found).
Finally, we chose our candidate nouns by taking
the nouns which were annotated in CoreLex as in-
stances of the selected polysemous classes - like
‘book’, which is a case of the CoreLex class ‘cae’.

In parallel, we computed word (lemma) fre-
quencies for the selected polysemous nouns from
UKWaC (Baroni et al., 2009), a corpus reflecting
general internet language use which has been val-
idated as a corpus for psycholinguistic studies in
previous work (Mandera et al., 2017). Since most
words occurred with very low frequencies in the
corpus, we selected as our candidate polysemes
only the top 10% most frequent nouns . Among
those, we tried to minimize variance in word length,
so as to minimize this possible confounding fac-
tor which has a strong impact on cognitive pro-
cessing (Hauk and Pulvermüller, 2004) . Given
that word concreteness correlates negatively with
word length (Reilly et al., 2017), we had to strike
a balance, avoiding short (whose majority would
be concrete) and long (overwhelmingly abstract)
words. Therefore, we chose as a criterion to con-
sider nouns between six and nine letters in length.
This left us with 571 candidate polysemous nouns.
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2.2.2 Verbs
Having thus reduced the set of polysemous nouns,
we moved on to select the verbs to be used to create
the phrases. We applied a procedure inspired by
recent work on predicting concreteness from distri-
butional semantics models (Bhaskar et al., 2017).
First, we took the 40000 concreteness ratings for
English words from (Brysbaert et al., 2014). Then,
we filtered this list, considering only words whose
most common POS was that of verb. To do so we
used a corpus-based measure of POS prevalence
provided by the same authors (Brysbaert et al.,
2012). Then, to find verbs eliciting the concrete
senses of the polysemes, we took the 1000 most
concrete verbs; for the abstract senses, we took
the 1000 least concrete verbs. We decided, here
again, to reduce the variance in word length for the
verbs. However, we kept a wider variance range
(4-8 letters, extremes included), considering that
we could balance length when choosing the final
phrases. After this selection step, the number of
concrete verbs was 811, and of abstract verbs 571
(incidentally, the same number of nouns retained
from CoreLex).

2.2.3 Verb-noun phrases
Then we looked for the selected verbs’ frequen-
cies of co-occurrence with the polysemous nouns
within the UKWaC corpus. The aim was that of
obtaining a measure of the frequency of occurrence
of each of the potential verb-noun phrases, so as
to balance them for frequency across abstract and
concrete senses. To do so, we exploited the POS
annotation provided by UKWaC. We adapted the
procedure already validated by Bruera et al. (2023)
to extract verb-noun phrase mentions from corpora
to be used with language models. We thus con-
sidered as relevant verb-noun co-occurrences (i.e.
mentions of phrases) only cases where the (lem-
matized) verb preceded the (lemmatized) polyse-
mous noun, within a window of three words to the
right (to be able to consider cases such as “open
an old book”, where the linear distance in words
between the verb and the noun is three). Then, for
each polyseme, we retained the 100 abstract and
100 concrete verbs that co-occurred the most with
it. Finally, we proceeded to manually select the
twenty-five nouns for which we could find clear
cases of sense selection for two verbs and two
nouns, thus obtaining the final set of 100 stimuli.
We adjusted iteratively our choices so the resulting
phrases did not differ statistically across abstract

and concrete senses along relevant psycholinguis-
tic variables. As statistical tests we used t-tests;
reported p-values are not corrected for multiple
comparisons - corrected p-values would be even
more conservative. All differences among concrete
and abstract phrases are not statistically significant.
Since the nouns were the same in both conditions
(abstract and concrete), for most variables it was
enough to look at the verbs - the main exceptions
being phrase frequency (p = 0.952) and phrase
length (p = 0.79). Regarding verbs, we checked
that no difference in valence (p = 0.298), arousal
(p = 0.103), dominance (p = 0.769) was statis-
tically significant, using the norms provided by
(Warriner et al., 2013). Additionally, difference in
frequency for concrete and abstract verbs is also not
significant (p = 0.0687). By contrast, statistically
significant differences between verbs emerge, as
required by design, in concreteness (p < 0.0001).

2.3 Concreteness and sensory strength ratings
Given the 100 phrases selected following the pro-
cedure reported above, we then collected from 25
human volunteers ratings for concreteness and sen-
sory strength in all of the five body senses. Sen-
sory strength norms capture more precisely what
drives the sense alternation in terms of semantic
variables (e.g. the case of book can be explained in
terms of variation in sight and touch, but no taste
is involved). Participants were recruited among
the communities of the authors’ university depart-
ments, which are located in the same anglophone
country. We did not require participants to be na-
tive speakers of English. Twenty-five (25) subjects,
between 18 and 40 years of age, took part as volun-
teers to the rating experiment after giving their writ-
ten consent. In the rating experiment, subjects were
presented one by one with all of the 100 phrases,
and asked to rate on a Likert scale from 1 to 5 how
concrete the polysemous noun in that context was,
as well as its so called sensory strength (Lynott
et al., 2020). Before starting the experiment, partic-
ipants were provided with an explanation for each
variable, taken from previous rating experiments
(Scott et al., 2019; Lynott et al., 2020) and with an
example.

The distributions of the resulting ratings are re-
ported in Figure 1. As it can be seen, the largest dif-
ference between distributions for concrete/abstract
senses is found for concreteness, sight and touch
(in all cases p < 0.0001), followed by hearing
(p = 0.0163). The difference is also statistically
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significant for smell (p = 0.00012) and close to
significance for taste (p = 0.083), however the rat-
ings for the nouns are in both cases always low
(averages after normalization: abstractsmell =
0.12, concretesmell = 0.198, abstracttaste =
0.088, concretetaste = 0.128).

We further compute the reliability of the scores
provided by the raters. As a measure of inter-
rater reliability we use the mean intra-class cor-
relation (ICC, Shrout and Fleiss, 1979), which
can take a value between 0 (random agreement)
and 1 (perfect agreement). This is the recom-
mended choice for cases like ours where multi-
ple raters provide a single non-nominal score for
the same set of items (Hallgren, 2012). We treat
subjects as random effects, thus we report what
is referred to as type 2 ICC, with 25 subjects –
in the terminology of Shrout and Fleiss (1979),
ICC(2, k = 25). When aggregating all types
of scores together (i.e. concreteness and all sen-
sory modalities), ICC = 0.945, indicating ex-
cellent agreement (the lower threshold for excel-
lence, according to the guidelines of Cicchetti,
1994; Hallgren, 2012, is ICC > 0.75). This
confirms that the measurements contained in our
dataset are reliable. To understand whether reli-
ability is affected by each of the sensory modali-
ties, we further compute the corresponding sepa-
rate ICC scores. We find that reliability is highest
for concreteness (ICCconcreteness = 0.924), touch
(ICCtouch = 0.913) and sight (ICCsight = 0.895.
ICCs are slightly lower, but still indicate excel-
lent agreement, for taste ICCtaste = 0.87, hear-
ing (ICChearing = 0.82) and smell (ICCsmell =
0.789).

3 Models

A fine-grained semantic phenomenon like poly-
semy has proven particularly challenging to capture
for language models. Older approaches (so-called
static language models; Bommasani et al., 2020),
were particularly unsuited to face its subtleties
(Camacho-Collados and Pilehvar, 2018). Static
language models learn fixed semantic representa-
tions for words, abstracted from specific contexts
of usage. This made it hard to successfully model
meaning of words in context - and consequently
context-dependent phenomena such as polysemy
(Schütze, 1998; Yaghoobzadeh and Schütze, 2016).
The more recent language models, called contextu-
alized language models (Rogers et al., 2021; Min

et al., 2023)), should be in principle better equipped
to face the challenge of polysemy. They are trained
to create semantic representations of words which
are context-specific. When focusing broadly on
NLP tasks requiring to consider contextual seman-
tic knowledge (e.g. natural language generation,
inference, relation classification), contexualized
models are clearly able to reach impressive perfor-
mance, outperforming static models (Lenci et al.,
2022). However, when zooming in through the lens
of extremely specific semantic knowledge such as
polysemy, synonymy, hypernymy and categoriza-
tion, the picture changes: contextualized models
appear to capture such phenomena only to a mod-
est extent, leaving much room for improvement
(Ravichander et al., 2020; Haber and Poesio, 2021;
Lenci et al., 2022; Haber and Poesio, 2023).

To provide a better picture with regards to this,
we use four models, including both static and con-
textualized language models (Lenci et al., 2022). In
the following we will briefly describe each model,
and how the vectors for the polysemous nouns in
context were extracted from each one of them. In
Appendix A we report an analysis measuring how
similar the representations are across the models:
the phrases that compose our dataset make notable
differences emerge across different types of models,
converging with our prediction and sense discrimi-
nation results (see Sections 5.1, 3, 4).

3.1 Baseline: count-based model
As a baseline model, we use a so-called count
model, following previous work on using distri-
butional models predicting concreteness ratings
(Bhaskar et al., 2017). We used the same window
size used for fasttext (Bojanowski et al., 2017) -
therefore we counted word co-occurrences within
a sliding window of ten words (five on the left
and five on the right of the target word). As train-
ing corpus we used UKWaC. To reduce computa-
tional effort, we tried to keep vector dimensionality
low by reducing the vocabulary size as done in
Bhaskar et al. (2017); Charbonnier and Wartena
(2019). Therefore, we reduced the vocabulary to
the top 20% most frequent words that appeared in
the concreteness norms of (Brysbaert et al., 2014),
which makes vectors have 5220 dimensions. As
is commonplace in the literature, we transform the
raw co-occurrence counts using Pointwise-Mutual
Information - therefore the model will be referred
to as count-pmi (Levy et al., 2015).

We modelled the meaning of the polysemous
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noun in the phrase by following the procedure vali-
dated in Bruera et al. (2023). It consists of adapting
the noun’s representation to the context by averag-
ing it with the representation for the verb. Averag-
ing was chosen because, despite its simplicity, it
has been shown to be a strong baseline to compose
the meaning of words both in NLP and in cognitive
neuroscience (Dinu et al., 2013; Wu et al., 2022).
We first extracted the pre-trained vector representa-
tions for each verb and noun present in the set of
stimuli. Then, each phrase’s vector representation
was obtained by averaging the vectors for the verb
and the noun.

3.2 fasttext

As a static model, we chose fasttext, using the
pre-trained version for English, which is publicly
available (Bojanowski et al., 2017; Grave et al.,
2018). This version was trained on a combination
of Common Crawl and Wikipedia and has 300-
dimensional vectors. We extract word vectors for
all nouns and verbs and create a phrase-specific
representation for each noun as described for count-
pmi.

3.3 ConceptNet Numberbatch

As discussed above, senses for polysemous are
annotated explicitly in graph-based resources like
WordNet. In recent years, ways to integrate graph-
and vector- based approaches to semantic repre-
sentation have been devised. To evaluate how the
explicit knowledge about senses encoded in graph-
based models can help language models, we used
ConceptNet Numberbatch (in the following, num-
berbatch; Speer et al., 2017). Numberbatch is
a widely used model that combines distributional
and graph-based information: it brings together se-
mantic knowledge from ConceptNet, a graph-based
resource that includes WordNet annotations, and
two word embeddings models (word2vec (Mikolov
et al., 2013) and Glove (Pennington et al., 2014))
using the retrofitting procedure (Faruqui and Dyer,
2015). Recently, its performance has been shown
to be superior to distributional-only models in mod-
elling cognitive data (Turton et al., 2020; Alacam
et al., 2022; Yang et al., 2024). We compose word
vectors for the phrase using the same methodol-
ogy as count-pmi and fasttext; the resulting phrase
vectors have 300 dimensions.

3.4 XGLM

As a contextualized language model, we used
XGLM, a recently proposed multilingual model
(Lin et al., 2021). Since contextualized models are
specialized for representation of language in con-
text, and given previous results (Haber and Poesio,
2021; Bruera et al., 2023), we expect that XGLM
should in principle provide the best performance at
capturing polysemy. XGLM can beat a similarly-
sized GPT-3, a monolingual model, at a number of
NLP tasks – arguably thanks to the cross-linguistic
transfer of semantic information (Lin et al., 2021).
Also, it is publicly available and it has been al-
ready used in previous experiments with cognitive
datasets (De Varda and Marelli, 2023). We ex-
periment with different model sizes (as reported
in the Section 5.3) and for the main comparisons
we report results using the best layer (7) for the
best-performing model, XGLM-1.7B.

To extract vectors for the phrases, we use Hug-
gingFace’s Transformers library (Wolf et al., 2020).
We employed ‘representation pooling’, a method-
ology for creating ‘static’ representations in con-
textualized language models that was validated in
(Bommasani et al., 2020; Vulić et al., 2020; Apid-
ianaki, 2022) for NLP tasks and in (Bruera and
Poesio, 2022, 2023; Bruera et al., 2023) for brain
data. In our implementation, first we collected
from UKWaC all the sentences containing each
one of the selected phrases. To do so, we used
the procedure described above for counting the
frequencies of verb-noun co-occurrences during
stimuli selection. Then, we used XGLM to encode
all the sentences separately. Having done so, we
extracted the hidden layers of the deep neural net-
work, considering the tokens corresponding to the
words contained in the phrase. We followed Bruera
et al. (2023), where authors found that the best re-
sults with a causal language model like XGLM are
obtained when considering all of the phrase tokens
+ 1, thus capturing both the meaning of the verb
and the noun. In Section 5.3 we report results us-
ing different sizes of XGLM and all the layers. For
the analyses reported in Sections 5.1 and 5.2 we
use the layer and the model with the best perfor-
mances (XGLM 1.7B, layer 7). For each mention
of the phrase, we averaged vectors across layers
and tokens. In this way, we could obtain a single
contextualized vector for each phrase mention. Fi-
nally, we averaged, for each phrase, ten randomly
sampled mention vectors, following (Vulić et al.,
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2020). This allowed us to obtain one single vec-
tor capturing reliably the information encoded in
XGLM for each phrase.

4 Evaluation

Having obtained the vectors for each verb-noun
phrase, we measure to what extent it is pos-
sible to learn to predict the ratings obtained
from human subjects. We use a cross-validated
procedure, with a Ridge regression model (α
is cross-validated within the train set among
0.01, 0.1, 1, 10, 100, 1000). We employ a linear
model, an efficient choice given the low number
of data points (100; Lin et al., 2023). For cross-
validation, we use Monte Carlo Cross-Validation
(Kim, 2009) - which entails randomly sampling
train and test sets many times (in our case, 20), in
order to obtain a reliable average statistics. For the
evaluation, we use two measures, explained below.

Correlation The first one simply measures the
average Pearson correlation between predicted and
real values, averaged across all 20 randomized
train-test splits (proportion: 80% train - 20% test).
This is the metric typically used in similar studies
using language models to predict psycholinguistic
variables (Bhaskar et al., 2017; Charbonnier and
Wartena, 2019; Chersoni et al., 2020).

Sense discrimination The second measure, by
contrast, is directly aimed at testing the ability of
each language model to distinguish among differ-
ent senses. It was originally introduced in cogni-
tive neuroscience, to quantify how well a model
could distinguish between two brain images refer-
ring to two different concepts (Mitchell et al., 2008;
Pereira et al., 2018).

It works in the following way. First, as in
Bruera et al. (2023), we consider each word
and its two senses as a separate test set – con-
sisting of two phrases for each sense. Sup-
pose they are named a = phr1sense1, b =
phr2sense1, p = phr1sense2, q = phr2sense2. At
test time, the desired semantic variable for the
four test items is predicted (e.g. for concreteness
âconc, b̂conc, p̂conc, q̂conc). The predicted ratings are
then used to quantify, with a binary accuracy metric,
how well the model can distinguish between differ-
ent senses. All possible pairs of phrases belonging
to two different senses are taken (i.e. {a, p}, {b, p},
{a, q}, {b, q}). Intuitively, given a pair (e.g. {a, p})
we measure if the prediction âconc is closer to the

Figure 2: Pearson correlation between predicted and
true variables for each model. We plot each cross-
validation split as a separate scatter point. XGLM con-
sistently provides the best correlation scores across all
variables.

real value for its corresponding sense aconc than it
is to the other sense pconc; and vice versa. If this
is the case, then accuracy = 1 because the dis-
tinction between the two senses has been correctly
captured; else, accuracy = 0.

More formally, accuracy = 1 if abs(aconc −
ˆaconc)+abs(pconc− ˆpconc) < abs(aconc− ˆpconc)+

abs(pconc − ˆaconc); else accuracy = 0. This eval-
uation is repeated for all combinations of phrases
for the two senses of each word, then averaged;
the final evaluation is the average of the scores for
all the test sets. This procedure is repeated for all
the semantic variables; overall results refer to their
average. Since it is a binary accuracy measure,
chance performance is at 0.5.

5 Results and discussion

5.1 Correlation analysis

In Figure 2 we report the average Pearson
correlation between predicted and real ratings.
XGLM (best performing layer and version: layer
7 of XGLM-1.7B; see Section 5.3) provides
the best performance in all variables except
taste (XGLMsight = 0.839, XGLMtouch =
0.774, XGLMhearing = 0.837, XGLMsmell =
0.672; best performance in taste by Conceptnet
Numberbatch numberbatchtaste = 0.725). Over-
all low performance in taste and smell can be ex-
plained by the fact that, as shown in Figure 1, these
two sensory variables had the smallest variance
overall, and tended to cluster around low values –
thus making it difficult to differentiate among val-
ues for different phrases.

Despite the superiority of XGLM, however,
differences between different models are surpris-
ingly small (XGLMoverall = 0.771, count −
pmioverall = 0.72, fasttextoverall =
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0.743, numberbatchoverall = 0.749). This
suggests that simpler, more efficient approaches
can capture information about polysemy. Impor-
tantly, this concurs with the results of Lenci et al.
(2022) in showing that even count-based models
often can outperform much more complex ones at
fine-grained semantic tasks.

The performance of our models are largely com-
parable to those obtained when predicting single-
word semantic variables. For concreteness, Char-
bonnier and Wartena (2019) report scores for fast-
text oscillating among 0.85 and 0.9, depending on
the dataset; here fasttext is at 0.804 (the best perfor-
mance is afforded by XGLM at 0.838). For sensory
strength, Chersoni et al. (2020) report overall lower
Spearman correlation for fasttext (average across
body senses: 0.596) than us (body sensory average
for fasttext: 0.731; top performance by XGLM at
0.758). We assume that such differences are due
to the fact that our dataset is much smaller than
those used for single-words evaluations, that range
in the tens of thousands of words, and possibly to
the different correlation metrics used (Spearman vs
Pearson correlation).

Turning our approach on its head, our results
show that it is possible to automatically obtain reli-
able concreteness and sensory ratings for phrases
(an approach that has been recently advocated es-
pecially for low resource languages; Turton et al.,
2020; Grand et al., 2022; Wang et al., 2023), and
use those to induce word senses. In other words,
our methodology can be used to automatically find
in corpora contexts of use where the same polyse-
mous word is used in different senses. This would
also allow for an automated large scale expansion
of the current dataset .

5.2 Sense discrimination analysis
While correlation scores provide a general
evaluation of prediction performance, we sep-
arately assess the ability of the four models
at discriminating among different senses of
polysemous words using the dedicated pairwise
evaluation (see above). We also run statistical
significance t-tests against the chance base-
line of 0.5. Results are reported in Figure 3.
XGLM performs better overall (XGLMoverall =
0.672, p = 0.0001;XGLMconcreteness =
0.88, p < 0.0001;XGLMhearing =
0.62, p = 0.093;XGLMsmell = 0.61, p =
0.156;XGLMtaste = 0.35, p = 0.99),
as hypothesized. ConceptNet Number-

Figure 3: Sense discrimination scores for each model,
using all semantic variables. Error bars indicate the
standard error of the mean across test splits. Overall
indicate that the sense discrimination task is challenging
for all models.

batch affords the best results only for
sight (numberbatchsight = 0.81, p =
0.0002;XGLMsight = 0.8, p = 0.0004.
The performance of the contextualized model is
always better at capturing polysemy than both
purely distributional models (count-pmi and
fasttext), confirming previous reports (Haber
and Poesio, 2021; Bruera et al., 2023). XGLM
can also (in most cases) outperform ConceptNet
Numberbatch, which incorporates hand-coded
information about senses. This suggests that
such fine-grained semantic knowledge can be
alternatively captured by looking at linguistic
contexts – i.e. at language in use. However, the
fact that all models perform significantly above
chance for the same variables, the small magnitude
of the differences among models, and the rather
low average performance taken together suggest
that polysemy is still hard to capture.

5.3 In-depth evaluation of XGLM on sense
discrimination

In Figure 4 we report the layer-by-layer results for
the XGLM family of models (1.7B, 4.5B, 7.5B pa-
rameters). We plot overall performance – i.e. the
average across all variables. In accordance with
previous results on lexical information encoded in
contextualized models, performance is better in ear-
lier layers (Bommasani et al., 2020). A relatively
small model (1.7B) can provide the best results
overall, outperforming both static and larger-sized
variants in almost all layers. This converges with
previous results casting doubts over the need of
ever-larger language models when it comes to mod-
elling human cognition (Oh and Schuler (2023) for
reading times, De Varda and Marelli (2023) for eye-
tracking, Bruera et al. (2023) for fMRI; cf. Rogers
et al., 2021).
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Figure 4: Overall sense discrimination scores for a
number of contextualized models, across all layers.
Overall, all versions of XGLM perform better in the first
half of the layers. We indicate with a circle the layer
used for the analyses reported above.

6 Limitations and future directions

The main limitation of our study is the size of the
dataset, and the fact that we focus on only one case
of regular polysemy. Future work could expand
this dataset by considering more, and more specific
types of polysemy that can be modelled within a
similar framework – cases like chicken where an-
other variable, taste, can explain sense alternations
(animal vs taste; Boleda et al., 2012).

Another interesting direction could be investi-
gating to what extent language models and human
cognition align while processing these polysemes
(e.g. using brain data; cf. Bruera et al., 2023).
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Figure 5: Pairwise similarities as measured by Repre-
sentational Similarity Analysis among models. The
scores reported in white are Pearson correlation scores,
indicating a clear distinction between static and contex-
tualized models.

A Appendix A: Representational
Similarity Analysis of the models’
representations

In order to gain some insights into how the models
used in our work relate to each other, in Figure
5 we report a visualization of the similarity of
the semantic representations across all pairs of
models. We carry out the comparisons using
the Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008) framework. RSA
measures how similar two quantitative ways of
representing the same stimuli are by looking at
the similarity between the vectors of all pairwise
similarities between individual representations
in the space. We follow the traditional im-
plementation and we measure similarity with
Pearson correlation. As we can see, as it can be
expected, static models are rather similar among
each other (corrcount−pmi, fasttext = 0.59,
corrcount−pmi, numberbatch = 0.62,
corrfasttext, numberbatch = 0.88), while the
contextualized model has a different way of repre-
senting the phrases (corrXGLM−7.5B, count−pmi =
0.22, corrXGLM−7.5B, fasttext = 0.35,
corrXGLM−7.5B, numberbatch = 0.34).
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