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Abstract
Large language models (LLM) are now a very
common and successful path to approach lan-
guage and retrieval tasks. While these LLM
achieve surprisingly good results it is a chal-
lenge to use them on more constrained re-
sources. Techniques to compress these LLM
into smaller and faster models have emerged
for English or Multilingual settings, but it is
still a challenge for other languages. In fact,
Spanish is the second language with most na-
tive speakers but lacks of these kind of re-
sources. In this work, we evaluate all the
models publicly available for Spanish on a set
of 6 tasks and then, by leveraging on Knowl-
edge Distillation, we present Speedy Gonza-
les, a collection of inference-efficient task-
specific language models based on the AL-
BERT architecture. All of our models (fine-
tuned and distilled) are publicly available on:
https://huggingface.co/dccuchile.

1 Introduction

The utilization of learned dense representations
of text is nowadays a common and successful ap-
proach for different kind of information retrieval
(IR) tasks (Yates et al., 2021). These learned rep-
resentations are usually obtained by training a lan-
guage model using large collections of texts from
the web. Two key aspects to watch to make the
most of these models are size and speed of them.

The size of these models has grown overtime
and now very large language models (LLM) are
common, with models that range from hundred
of millions to billions of parameters. These pre-
trained models are not only heavy on memory re-
quirements but also on the operations they do on
every inference, which is a bottleneck when trying
to deploy these models for tasks that are expected
to be fast such as question answering or semantic
search.

These LLMs are usually trained on English
by big technology companies using web-scale

datasets and substantial computational resources.
Prominent examples include the well-known GPT-
3 model (Brown et al., 2020). For languages other
than English the available models are typically vari-
ants of BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) or ALBERT (Lan et al., 2020). In
the case of Spanish, which is one of the five most
spoken languages in the world and the second with
most native speakers, the available models range
from 5M to 335M of parameters. In Figure 1 we
showed how different Spanish pre-trained models
compare in terms of model size (number of param-
eters) and inference speed (MACs).

Despite the remarkable performance of these
LLMs across a range of tasks, it remains a chal-
lenge to utilize them effectively in computing envi-
ronments that are constrained by limited resources,
such as web or mobile applications.

New techniques to address this problem have
emerged for English (Tang et al., 2019; Turc et al.,
2019; Sanh et al., 2019; Wang et al., 2020; Jiao
et al., 2020) or Multilingual (Jiao et al., 2021) mod-
els. These typically leverage on different kinds
of Knowledge Distillation (Hinton et al., 2015)
to compress the results of a large and performant
model into another one which is typically lighter
and more inference efficient. For other languages
this is still an open challenge, where we lack from
this kind of resources.

In this work we try to close this gap with new
resources (inference-efficient models) for the Span-
ish language. Our contributions are the following:

• We perform a comprehensive evaluation of all
publicly available Spanish pre-trained models,
which are trained on general-domain corpora,
by fine-tuning them across six different tasks
and eight datasets.

• By selecting the best model on each evaluated
dataset, we distilled its knowledge into lighter
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Figure 1: The size (number of parameters) and speed (MACs) of every Spanish model evaluated on this work.
MACs are measured using a single sequence of length 512, which is the maximum sequence length of all the
evaluated models.

ALBERT models, achieving more lighter and
inference efficient models, while retaining
most of the task performance of the bigger
counterparts.

• We make our newly created resource, Speedy
Gonzales, consisting of over 140 fine-tuned
and distilled models, publicly accessible
on the HuggingFace Hub at: https://
huggingface.co/dccuchile.

2 Related Work

Transformers, introduced by Vaswani et al. (2017)
have become the default architecture for text-
related tasks. Transformer encoders like BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) are some of the most
popular, by its ability to encode complex relations
on texts by training on large collections of texts,
with the training task consisting of corrupt some
parts of a text sequence and train a model to recon-
struct the correct sequence.

While models with billions of parameters have
become common for English language (Brown
et al., 2020), it is not the case for most other lan-
guages, which are typically restricted to hundreds
of millions of parameters. For Spanish language,
which is one of the most spoken languages in the
world, the models available follow the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) or
ALBERT (Lan et al., 2020) architecture and are
described in further detail in Section 4.2.

Several ways to compress these models have
been proposed through the years. The most com-

mon ones are quantization (Gholami et al., 2021),
pruning (Blalock et al., 2020) and knowledge dis-
tillation (Hinton et al., 2015).

Network quantization compresses the original
network by reducing the number of bits required to
represent each weight, resulting in a lighter model.
In the case of BERT, examples of these kinds of
methods are TernaryBERT (Zhang et al., 2020) and
BinaryBERT (Bai et al., 2021) where they were
able to reduce the weight size to 2 and 1 bit re-
spectively, while maintaining most of the original
BERT performance.

The technique of pruning aims to reduce the
number of connections (weights) in a neural net-
work, which results in a reduction of the model
size and also a very sparse pattern of the weights.
Frankle and Carbin (2019) showed that in most
feed-forward neural networks it is possible to find
a subnetwork that achieves similar or better accu-
racy.

In Knowledge Distillation (KD) (Hinton et al.,
2015) the knowledge learned by a big and strong
model, the teacher model, is transferred to a lighter
model, the student model, by forcing this student
to mimic the teacher. Multiples ways of knowledge
distillation have been proposed (Gou et al., 2021).

Tang et al. (2019) uses KD to transfer the knowl-
edge from BERT to lighter RNNs. Turc et al.
(2019) proposes pre-training compact BERT mod-
els and then using task-specific KD to achieve bet-
ter results. Sanh et al. (2019) introduces a task-
agnostic scheme where KD is used on the pre-
training task. Wang et al. (2020) and Jiao et al.
(2020) proposed different methods exclusive for
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Figure 2: The figure provides a visual representation of the Knowledge Distillation framework applied in this work.
In line with common practices, the framework includes both a distillation loss between the teacher and student
models and a cross-entropy loss between the gold labels and the student’s predictions, as indicated by the dashed
line.

Transformers, to directly distill the knowledge from
the self-attention layers of the teacher model to the
student model.

Our work is similar to Turc et al. (2019) by
proposing the use of compact Transformers but we
use the ALBERT architecture instead of the BERT
one. We also use the idea from Sanh et al. (2019)
of reusing the layers of a pre-trained model, instead
of random initializing a new one. Differently from
that work, that has to choose which layers to reuse,
we only adjust the number of layers (and thus, the
inference speed) since all the ALBERT layers are
shared. Another difference with those two works
is that in our work we skip pre-training (or KD on
the pre-training task) and directly apply KD on the
task-specific phase.

3 Methodology

In pursuit of our goal to have efficient models for
Spanish in various tasks, we employ the method
of Knowledge Distillation. This method will be
further elaborated in the subsequent section.

3.1 Knowledge Distillation

The technique of Knowledge Distillation aims to
transfer the knowledge learned from a big and ca-
pable model, usually called the teacher model, say
MT , to a more restricted model, called the student
model, say MS . To achieve this objective, we train
MS to imitate MT . There are multiple ways to imi-
tate MT (Gou et al., 2021), in this work we use the
simple, yet powerful approach, of directly mimic
the output of MT given a input text.

Formally, we define the distillation objective as

LKD:

LKD = LO(MT (x),MS(x))

Where LO is a loss function that works on the
logits of MT and MS . The most common choices
for this loss are the cross entropy loss, the KL-
divergence loss and the mean-squared error loss.
In the case of KL-divergence or cross-entropy loss
is it a common practice to use soft-targets (Hinton
et al., 2015) instead of direct logits, which means to
apply a softmax with temperature T (with T >= 1)
to MT (x) and MS(x) in order to produce a soft
probability distribution over the classes.

Also, typically we use not only the output of MT

but also the gold labels from the training dataset.
The complete loss, accounting these labels can be
seen as:

L = αLCE + (1− α)LKD

Where LCE is the traditional cross-entropy loss
against gold labels and α defines the weight of each
loss.

An overview of the entire framework is shown
in Figure 2.

3.2 Approach
Our approach has two stages, in the first one, we
fine-tune a set of candidate teacher models in a
set of tasks of interest. Then, for each task we
select the best teacher model (which we define as
the model with minimum validation loss among all
candidate models) as the teacher model for that task.
In stage two, we apply KD using these teachers
models and a set of students models.
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The complete set of evaluated tasks and possible
teacher models is described in Section 4.

3.3 Student Models

For the student models, we rely on the ALBERT
(Lan et al., 2020) architecture. This architecture
is lighter in terms of parameters because all layers
are weight-tied. Specifically, we adopt ALBETO
models (Cañete et al., 2022) models, adhering to
the ALBERT architecture and exclusively trained
for the Spanish language. We considered ALBETO
tiny, which is the lightest models of all ALBETO
models and also, inspired by Sanh et al. (2019) we
propose models with less layers (and thus faster)
that match the configuration of ALBETO base, ex-
cept on the number of layers. These lighter AL-
BERTs are then initialized with the weights of AL-
BETO base. These models are noted in the tables
as ALBETO base-n, where n is the number of lay-
ers of the model.

3.4 Implementation Details

All our code uses Python and PyTorch (Paszke
et al., 2019) as machine learning framework and is
publicly available on GitHub1.

The evaluation of the inference speed of the pro-
posed models is performed through the utilization
of the Multiply-Accumulate (MACs) metric, which
provides a hardware-agnostic evaluation and is thus
considered to be a more robust evaluation criterion.
This measurement is conducted using the THOP2

library, which operates on PyTorch models, to ac-
curately measure MACs. In addition, to provide
a more intuitive understanding of the models’ per-
formance, actual inference speeds on commonly
used hardware configurations are also reported in
Section 3.5.

For KD, we first experimented using the three
different losses, with different parameters α and
T using Optuna (Akiba et al., 2019). These exper-
iments showed that the best results where using
α = 0 and T = 1. With that parameters, while the
three different losses works well, KL-divergence
was slightly better, so we conducted the rest of the
experiments using that configuration.

For both stages of our approach, the only pre-
processing applied was tokenization of the input
texts according to the subword vocabulary of every
model.

1https://github.com/dccuchile/speedy-gonzales
2https://github.com/Lyken17/pytorch-OpCounter

For the first stage, which is fine-tuning of the
possible teacher models we rely heavily on the
HuggingFace Transformers (Wolf et al., 2020) li-
brary. For all models and tasks, we run a grid
search over the hyperparameters batch size = {16,
32, 64} and epochs = {2, 3, 4}. We experimented
with learning rate = {1e-5, 2e-5, 3e-5, 5e-5} for all
models except ALBETO large, xlarge, and xxlarge,
where we used learning rate = {1e-6, 2e-6, 3e-6,
5e-6}, which are the same hyperparameters used
on (Cañete et al., 2022).

For the second stage, which is applying KD, the
implementation depended on the task. For text clas-
sification tasks we do the KD between the pooled
output of both models. For sequence tagging and
question answering tasks, we aligned the first to-
ken of every word (because the vocabulary of both
models is not always the same, which implies that
the subword tokenization can result in a different
number of tokens) and then we do the KD using
the sequence of representations of first tokens for
every word in the text between the two models. We
note that this approach is not new and is almost the
same applied on the original BERT (Devlin et al.,
2019) for sequence tagging tasks, that was adapted
to work on KD.

For the experiments on this second stage we did
a grid search using the hyperparameters: learning
rate = {5e-5, 1e-4}, batch sizes = {16, 32, 64} and
epochs = 50, we also use early stopping with a
tolerance of 10 epochs of no improving.

To accelerate experimentation, we employ a
teacher output cache, with its impact on training
times discussed in Appendix C.

In Tables 2 and 3 we report results of the models
on the test set of each dataset. These models were
selected based on the best results on the valida-
tion set among the grid search experiments. These
models are also the ones publicly available on the
HuggingFace Hub.

3.5 Inference Speed on Common Hardware
In our work we measure inference speed in terms
of Multiply-Accumulate (MAC) operations. This
metric is advantageous as it is agnostic to hardware
variations. However, it can be useful to also report
the actual inference speed of models on common
hardware, as this can provide a more intuitive un-
derstanding of their performance.

Table 1 presents the average number of infer-
ences per second that can be achieved on two
different hardware platforms, a CPU with an In-
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Model Inferences per second
CPU GPU

Fine-tuning
BETO uncased 3.96 107.19
BETO cased 4.26 109.02
DistilBETO 9.12 217.40
ALBETO tiny 32.53 539.61
ALBETO base 4.50 108.62
ALBETO large 1.29 33.62
ALBETO xlarge 0.35 11.72
ALBETO xxlarge 0.14 6.60
BERTIN 3.99 109.39
RoBERTa BNE base 3.82 107.77
RoBERTa BNE large 1.18 33.65

Task-specific Knowledge Distillation
ALBETO tiny 32.53 539.61
ALBETO base-2 31.08 625.30
ALBETO base-4 15.16 319.32
ALBETO base-6 10.45 213.53
ALBETO base-8 6.82 160.66
ALBETO base-10 6.01 128.38

Table 1: The number of inferences per second of each
model on two different hardware settings, CPU and
GPU.

tel Core i7-11700K and a GPU with a NVIDIA
GeForce RTX 3090. To account for variance in
the measurements, we first conducted 10 warm-
up inferences followed by 100 real measures for
each model. We then applied an aggressive out-
lier filtering method based on the modified Z-Score
(Iglewicz and Hoaglin, 1993) with a threshold of
0.75, which resulted in the removal of approxi-
mately 40-45% of the measures. The remaining
55-60% of the measures were used to calculate,
with very low variance, the average inference speed
(in milliseconds) and the number of inferences that
could be performed in one second, which serves
as a clearer illustration of the model’s inference
speed.

It is worth noting that the difference in speed
between the larger models and the proposed mod-
els trained using task-specific KD is substantial.
Specifically, on the CPU setting, which is repre-
sentative of popular serverless platforms used in
industry, the best model found in this study in terms
of task performance, ALBETO xxlarge, would take
several seconds for a single inference, making it un-
suitable for real-time user-facing applications. On
the other hand, if we consider our proposed faster

models, we can observe that ALBETO base-6 is
capable of executing more than 10 inferences per
second, which is a much more acceptable latency
for a real-time application.

4 Evaluating Spanish Pre-trained
Language Models

In order to achieve our goal of have efficient mod-
els for Spanish in a variety of tasks we first define
a set of tasks to evaluate those models. These tasks
are the same evaluated by Cañete et al. (2022) and
are described in Section 4.1. We then define a set of
possible teacher models, in particular, we wanted
to try every model that was pre-trained on general
domain Spanish text and is publicly available, there-
fore we exclude RigoBERTa (Serrano et al., 2022),
which is a DeBERTa (He et al., 2021) model for
Spanish that is not public and RoBERTuito (Pérez
et al., 2022) which is a RoBERTa-like model for
Spanish that was trained on Twitter datasets and
should be better suited for social media related
tasks. All considered models are described in Sec-
tion 4.2. After evaluating all models on each task,
we selected the model with lowest validation loss as
the teacher model for the task. The list of selected
models can be found in Appendix A.

4.1 Tasks and Data

4.1.1 Document Classification
The task of document classification consists on
the assignment of an entire document to a cate-
gory according to its semantic meaning. For our
evaluation we are using the Spanish portion of ML-
Doc (Schwenk and Li, 2018) which is a multilin-
gual dataset for document classification in eight
languages. MLDoc is based on the Reuters Cor-
pus (Lewis et al., 2004) and has four different
categories for its documents, which are: Corpo-
rate/Industrial, Economics, Government/Social and
Markets.

4.1.2 Paraphrase Identification
On Paraphrase Identification we aim to assess
whether two sentences share the same semantic
meaning. To evaluate our models in this task we are
using the Spanish subset of PAWS-X (Yang et al.,
2019). This dataset can be seen as a translation to
six different languages of the PAWS (Zhang et al.,
2019) dataset, where the train set is machine trans-
lated and the validation and test sets were translated
professionally by humans.
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Model
Text Classification

(Accuracy)
Sequence Tagging

(F1 Score)
Question Answering

(F1 Score / Exact Match)
MLDoc PAWS-X XNLI POS NER MLQA SQAC TAR / XQuAD

Fine-tuning
BETO uncased 96.38 84.25 77.76 97.81 80.85 64.12 / 40.83 72.22 / 53.45 74.81 / 54.62
BETO cased 96.65 89.80 81.98 98.95 87.14 67.65 / 43.38 78.65 / 60.94 77.81 / 56.97
DistilBETO 96.35 75.80 76.59 97.67 78.13 57.97 / 35.50 64.41 / 45.34 66.97 / 46.55
ALBETO tiny 95.82 80.20 73.43 97.34 75.42 51.84 / 28.28 59.28 / 39.16 66.43 / 45.71
ALBETO base 96.07 87.95 79.88 98.21 82.89 66.12 / 41.10 77.71 / 59.84 77.18 / 57.05
ALBETO large 92.22 86.05 78.94 97.98 82.36 65.56 / 40.98 76.36 / 56.54 76.72 / 56.21
ALBETO xlarge 95.70 89.05 81.68 98.20 81.42 68.26 / 43.76 78.64 / 59.26 80.15 / 59.66
ALBETO xxlarge 96.85 89.85 82.42 98.43 83.06 70.17 / 45.99 81.49 / 62.67 79.13 / 58.40
BERTIN 96.47 88.65 80.50 99.02 85.66 66.06 / 42.16 78.42 / 60.05 77.05 / 57.14
RoBERTa BNE base 96.82 89.90 81.12 99.00 86.80 67.31 / 44.50 80.53 / 62.72 77.16 / 55.46
RoBERTa BNE large 97.00 90.00 51.62 61.83 21.47 67.69 / 44.88 80.41 / 62.14 77.34 / 56.97

Task-specific Knowledge Distillation
ALBETO tiny 96.40 85.05 75.99 97.36 72.51 54.17 / 32.22 63.03 / 43.35 67.47 / 46.13
ALBETO base-2 96.20 76.75 73.65 97.17 69.69 48.62 / 26.17 58.40 / 39.00 63.41 / 42.35
ALBETO base-4 96.35 86.40 78.68 97.60 74.58 62.19 / 38.28 71.41 / 52.87 73.31 / 52.43
ALBETO base-6 96.40 88.45 81.66 97.82 78.41 66.35 / 42.01 76.99 / 59.00 75.59 / 56.72
ALBETO base-8 96.70 89.75 82.55 97.96 80.23 67.39 / 42.94 77.79 / 59.63 77.89 / 56.72
ALBETO base-10 96.88 89.95 82.26 98.00 81.10 68.29 / 44.29 79.89 / 62.04 78.21 / 56.21

Table 2: Results of every evaluated model on the test set of each task. On Text Classification datasets (MLDoc,
PAWS-X, XNLI) we use Accuracy as metric. For POS and NER, which are Sequence Tagging tasks, we report the
F1 Score. On Question Answering, we report two metrics, noted as F1 Score / Exact Match.

Model Parameters Speedup Score
Fine-tuning

BETO uncased 110M 1.00x 81.02
BETO cased 110M 1.00x 84.82
DistilBETO 67M 2.00x 76.73
ALBETO tiny 5M 18.05x 74.97
ALBETO base 12M 0.99x 83.25
ALBETO large 18M 0.28x 82.02
ALBETO xlarge 59M 0.07x 84.13
ALBETO xxlarge 223M 0.03x 85.17
BERTIN 125M 1.00x 83.97
RoBERTa BNE base 125M 1.00x 84.83
RoBERTa BNE large 355M 0.28x 68.42

Task-specific Knowledge Distillation
ALBETO tiny 5M 18.05x 76.49
ALBETO base-2 12M 5.96x 72.98
ALBETO base-4 12M 2.99x 80.06
ALBETO base-6 12M 1.99x 82.70
ALBETO base-8 12M 1.49x 83.78
ALBETO base-10 12M 1.19x 84.32

Table 3: The summary of results of every evaluated
model in terms of parameters, inference speedup and
overall score across tasks. The speedup is relative to
BETO models. The score column shows the average of
the metrics on all tasks.

4.1.3 Natural Language Inference
In the task of Natural Language Inference we
are given two sentences, an "hypothesis" and a
"premise", and our task is to determine if one en-
tails the other one, contradicts it or is neutral to it.
For this task we use the Spanish subset of XNLI
(Conneau et al., 2018), which, very similarly to
PAWS-X, offers a machine translated train set from
MultiNLI (Williams et al., 2018) and professionally
translated validation and test sets to 15 languages.

4.1.4 Part of Speech Tagging
The objective of the task of Part of Speech Tagging
is to label words within a sentence according to
its corresponding syntactic categories. There are
different categories of parts of speech, for example,
nouns, verbs, adjectives, adverbs, pronouns, etc. In
this task the dataset used was AnCora (Taulé et al.,
2008) which is included on the Spanish part of
Universal Dependencies (de Marneffe et al., 2021)
Treebank.

4.1.5 Named Entity Recognition
Named Entity Recognition is a sequence labeling
task in which the goal is to classify entities within
a text with their corresponding type. These types
are usually names of people, places, organizations
or miscellaneous. These entities can be formed by
more than one word, that is why the datasets typi-
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cally adopt the BIO annotation, which means for
a word that it can be the beggining (B) of a entity,
inside (I) a entity or out (O) of it. For this task the
dataset used as evaluation is from the shared task
of CoNLL-2002 (Tjong Kim Sang, 2002), we use
the Spanish subset of it.

4.1.6 Question Answering
There are different types of Question Answering
tasks. In this evaluation our focus is Extractive
Question Answering, that is, given a context text
and question about that context, point out the span
of words that fully answers the question. On this
task we considered four different datasets, which
are, MLQA (Lewis et al., 2020), SQAC (Gutiérrez-
Fandiño et al., 2022), TAR (Carrino et al., 2020)
and XQuAD (Artetxe et al., 2020). MLQA is a
multilingual dataset created by using English QA
instances and then professionally translated them to
six different languages, from these they provide a
validation and a test set, but they also provide a ma-
chine translated version of SQuAD v1.1 (Rajpurkar
et al., 2016) as train set to each of the languages, we
use the Spanish subsets of it. TAR offers a different
machine translated dataset from SQuAD v1.1 to
Spanish. XQuAD provides a test set obtained from
SQuAD v1.1 and professionally translated to 11 dif-
ferent languages. Following the setup by (Cañete
et al., 2020) we pair the train and validation sets
from TAR and the Spanish test set from XQuAD
as a single evaluation dataset. Finally, SQAC is the
only dataset evaluated that was built exclusively for
Spanish.

4.2 Models

4.2.1 BETO
BETO (Cañete et al., 2020) is the first Transformer
encoder pre-trained exclusively on Spanish corpora.
It is BERT-base sized model that has two versions
available, uncased and cased. They have an approx-
imate of 110M parameters and each have a vocabu-
lary of 31K BPE (Sennrich et al., 2016) subwords
which was constructed using SentencePiece (Kudo
and Richardson, 2018). Both models were trained
for 2M optimization steps on the SUC (Cañete,
2019) dataset.

4.2.2 ALBETO
ALBETO (Cañete et al., 2022) is a series of AL-
BERT (Lan et al., 2020) models for Spanish. There
are 5 different sizes, that range from 5M to 223M
parameters, which are tiny, base, large, xlarge and

xxlarge. The tiny model is similar to the one trained
on Chinese 3, the rest follow closely the configura-
tions trained on the original ALBERT work. They
share a vocabulary of 31K lowercase BPE (Sen-
nrich et al., 2016) subwords created using Sentence-
Piece (Kudo and Richardson, 2018). All ALBETO
models were trained on SUC (Cañete, 2019).

4.2.3 DistilBETO
DistilBETO (Cañete et al., 2022) is a lighter Trans-
former encoder based on the weights of BETO and
further pre-trained using the knowledge distillation
technique presented by (Sanh et al., 2019) on Dis-
tilBERT. It has 67M parameters and uses the same
lowercase vocabulary from BETO uncased.

4.2.4 RoBERTa-BNE
RoBERTa-BNE (Gutiérrez-Fandiño et al., 2022)
are two different sized RoBERTa (Liu et al., 2019)
models trained on Spanish using the National Li-
brary of Spain (BNE) (Gutiérrez-Fandiño et al.,
2022) corpus which is also the larger Spanish cor-
pus of this type to this date. The base model has
125M parameters while the large version has 355M.
Both version share a vocabulary of 50K BPE (Sen-
nrich et al., 2016) subwords.

4.2.5 BERTIN
BERTIN (de la Rosa et al., 2022) is a RoBERTa-
base model trained on the Spanish portion of the
mC4 (Raffel et al., 2020) dataset. It has the same
size, configuration and vocabulary of the RoBERTa-
BNE base model.

5 Results

Table 2 presents the results of each model across all
evaluated tasks. A general observation is that there
are two distinct behaviors among the tasks. Firstly,
there is minimal variation in performance between
smaller and larger models in certain tasks, as ev-
idenced by the comparable high scores achieved
by all models in the MLDoc and POS tasks. It
is hypothesized that these tasks are relatively sim-
ple, and as a result, the utilization of larger models
results in overparameterization.

Secondly, there are tasks where there is a no-
table difference in performance between smaller
and bigger models. This is evident in tasks such
as Paraphrase Identification (PAWS-X), Natural
Language Inference (XNLI), Named Entity Recog-
nition (NER) and Question Answering (MLQA,

3https://github.com/ckiplab/ckip-transformers
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SQAC, TAR/XQuAD), where the larger models
tend to outperform the smaller models. This sug-
gests that these tasks are more complex and require
a greater model capacity. Overall, the results of
this evaluation demonstrate the importance of con-
sidering the appropriate model size for a given task,
as overparameterization can lead to suboptimal in-
ference performance.

5.1 Text Classification

In our experiments on text classification tasks, we
observed that models with a depth of 8 or more
layers exhibit performance comparable to the best
larger models, while also demonstrating significant
improvements in inference time. Specifically, for
the XNLI dataset, we found that the ALBETO base-
8 model outperforms all other models evaluated in
our study.

5.2 Sequence Tagging

On NER we observe a significant difference be-
tween our faster models and the cased mod-
els (BETO, BERTIN, RoBERTa-BNE), especially
with BETO cased, which was the best model on
the task. Furthermore, we observe a difference
of almost 4.1 percentual difference (pd) between
ALBETO xxlarge, and BETO cased, even though
ALBETO xxlarge is one of the largest models in
the fine-tuning setting. Additionally, we find a dif-
ference of almost 6.3 pd between the cased and
uncased versions of BETO. Based on these ob-
servations, we posit that the difference in perfor-
mance between cased and uncased models can be
attributed to the additional hints provided by cap-
italization for solving the NER task. Specifically,
the names of persons, organizations, and places
typically begin with a capital letter. Furthermore,
our results from models trained using knowledge
distillation (KD) suggest that this hint is not easily
replicable in an uncased model.

5.3 Question Answering

The performance on Question Answering datasets,
as indicated in the final three columns of the table,
follows a pattern similar to that observed in text
classification tasks. The larger models, specially
ALBETO xxlarge and xlarge, exhibit higher perfor-
mance, while our proposed models featuring 8 or
more layers present results similar to those of the
base-sized models.

5.4 Discussion and Summary

It should be noted that some models performed
significantly worse than the others. Specifically,
the utilization of RoBERTa-BNE large on XNLI,
POS, and NER tasks produced subpar results. This
deviation from the performance of the same model
on other tasks, as well as the results reported
by Gutiérrez-Fandiño et al. (2022), suggests that
RoBERTa-BNE large may be particularly sensitive
to hyperparameter selection and may benefit from
additional hyperparameter tuning.

Our results show a general progression in per-
formance of our proposed models as the number
of layers increases. A clear trade-off between task
performance and inference speed is observed, with
a more pronounced effect in text classification and
question answering tasks, and a weaker effect in
sequence tagging. Additionally, at equal inference
speed, our models trained with task-specific distil-
lation exhibit improved performance compared to
DistilBETO, which was trained with task-agnostic
distillation, despite having significantly fewer pa-
rameters.

A similar effect can be observed when com-
paring ALBETO base-{8-10} to the original 12-
layer ALBETO base fine-tuned using standard tech-
niques, the former exhibits improved performance.
This underscores the vital role of task-specific
knowledge distillation in obtaining improved per-
formance for these faster models. Additional exper-
iments comparing straightforward fine-tuning and
the application of knowledge distillation on these
more compact and faster models are presented in
Appendix B.

Table 3 summarizes our findings. Following
the methodology of GLUE (Wang et al., 2018),
we compute a global score that encompasses all
tasks, which is displayed in the third column. The
score is the simple mean of the individual task
results. In the instance of Question Answering,
which provides two metrics, we opted for the F1
Score as the representative score for the task. The
ALBETO xxlarge model achieved the best overall
performance, although it was also the slowest and
had the second largest number of parameters. With
a mere 0.35 performance drop from the top model,
the RoBERTa BNE base and BETO cased mod-
els exhibited comparable results. The ALBETO
base-10, exhibiting a 19% improvement in speed
compared to BETO models, is our strongest pro-
posed model with a difference of approximately 0.5
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performance drop from the aforementioned models.
Our remaining models display varying degrees of
improved inference speed, at the expense of slight
reductions in task performance.

6 Conclusion and Future Work

In this work, we introduce Speedy Gonzales, a
novel resource for the Spanish NLP and IR com-
munities comprising a collection of computation-
ally efficient language models trained on six tasks
and eight datasets. By applying the Knowledge
Distillation technique, our models achieve compa-
rable performance to state-of-the-art models, while
showing faster inference speeds.

The full collection of models, including our pro-
posed models and all the teacher models fine-tuned
on the tasks considered, are made publicly avail-
able for further research.

We believe that the availability of these mod-
els and the expansion of the Knowledge Distil-
lation method to additional tasks will drive the
widespread utilization of large language models
in the Spanish speaking community, particularly
for individuals and organizations seeking to tackle
crucial information retrieval challenges, such as
question answering, text similarity and semantic
search, in both academic and industrial settings.

Potential directions for future research include
exploring the use of multiple teachers in the distil-
lation process and developing metrics to formally
evaluate the balance between inference speed and
task performance.
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A Selected Teacher Models

Table 4 presents the teacher models selected for
each task. The selection process is based on the
lowest validation loss achieved among the candi-
date teacher models that were fine-tuned for each
task.

Dataset Teacher Model
MLDoc RoBERTa BNE large
PAWS-X ALBETO xxlarge
XNLI ALBETO xxlarge
POS RoBERTa BNE base
NER RoBERTa BNE base
MLQA ALBETO xxlarge
SQAC ALBETO xxlarge
TAR / XQuAD ALBETO xxlarge

Table 4: The teacher models selected for each task.

B Importance of Knowledge Distillation

In addition to other experiments, we conducted
ablation experiments to evaluate the contribution of
Task-Specific Knowledge Distillation to the results
of our faster models based on ALBETO.

Tables 5, 6, and 7 compare the performance of
each of our proposed models under two training
settings: regular fine-tuning (FT) and task-specific
knowledge distillation (KD). For fine-tuning and
KD we followed the settings described in Section
3.4.

Overall, our results indicate that training using
KD generally yields better results than simple fine-
tuning, except for sequence tagging tasks (POS,
NER), where the results are mixed.

Table 5 presents the results of text classification
tasks, where we observe that KD outperforms fine-
tuning. In MLDoc, which is hypothesized as an
easier task, the performance is similar for both
training schemes and different models. However,
in PAWS-X and XNLI, we observe a significant
difference between the fine-tuning and KD training
schemes.

Table 6 presents the results for sequence tagging
tasks, where the performance of models under the

KD and fine-tuning settings are mixed. Unlike
other types of tasks, where the KD training method
is the clear winner, the results here vary. In the case
of NER, faster models perform better under the
fine-tuning setting, while those with larger compute
requirements perform better under the KD setting.

Finally, Table 7 presents the results for question
answering, where we observe that models trained
using KD generally exhibit better performance than
those trained using simple fine-tuning, with a sig-
nificant difference of around 3-4 percentage points,
depending on the model and dataset.

In summary, our results underscore the signifi-
cance of KD, particularly for harder tasks where the
effect is more pronounced, allowing for lighter and
faster models to achieve better task performance.

C Effect of Caching Teacher Outputs
During Training

A significant challenge in our experimental study
is the use of large and costly language models as
teacher models for our faster and lighter models.
Despite this, as discussed in Appendix B, the im-
portance of these teacher models is essential for
achieving better results with our proposed models.

Thus, the use of these teacher models poses chal-
lenges in terms of experimentation, particularly
when working with restricted budgets, as is often
the case in research outside big tech companies. To
mitigate this issue, we implement a cache for the
outputs of the teacher model, which allows us to
train and experiment more efficiently.

The idea behind this approach is straightforward:
since the teacher model is fixed during training,
its outputs on an input x remain unchanged during
different epochs, allowing us to compute them once
and reuse them in subsequent epochs.

Formally, suppose Ft and Fs represent the com-
putational cost of the forward pass for the teacher
and student models, respectively, on an entire
dataset, and E is the number of epochs used to train
our proposed models. By caching the teacher’s out-
put, the total cost of computing the forward pass
reduces from O(E · (Ft + Fs)) to O(Ft +E · Fs).

It is worth noting that typically Ft >> Fs, and
the number of epochs used in knowledge distilla-
tion is often higher than that used in simple fine-
tuning. To illustrate, our fine-tuning experiments
employ between 2 and 4 epochs, while our knowl-
edge distillation experiments use a maximum of 50
epochs.
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Model MLDoc PAWS-X XNLI
FT KD FT KD FT KD

ALBETO tiny 95.82 96.40 80.20 85.05 73.43 75.99
ALBETO base-2 94.67 96.20 73.45 76.75 72.08 73.65
ALBETO base-4 95.88 96.35 82.90 86.40 75.83 78.68
ALBETO base-6 95.88 96.40 85.20 88.45 78.42 81.66
ALBETO base-8 95.82 96.70 87.30 89.75 79.44 82.55
ALBETO base-10 95.65 96.88 88.80 89.95 79.62 82.26

Table 5: Comparison of the performance of our proposed models on text classification tasks on two settings:
fine-tuning and task-specific knowledge distillation.

Model POS NER
FT KD FT KD

ALBETO tiny 97.34 97.36 75.42 72.51
ALBETO base-2 97.46 97.17 71.70 69.69
ALBETO base-4 97.87 97.60 76.18 74.58
ALBETO base-6 98.03 97.82 78.10 78.41
ALBETO base-8 98.18 97.96 79.46 80.23
ALBETO base-10 98.17 98.00 80.46 81.10

Table 6: Comparison of the performance of our pro-
posed models on sequence tagging tasks on two settings:
fine-tuning and task-specific knowledge distillation.

To evaluate the impact of our cache implementa-
tion, we compare the training times of our proposed
models on the XNLI dataset, which is the largest
dataset considered in this study, for only 5 epochs
(1/10 of the epochs used in our primary experi-
ments) when using the cache and when not using
it. Table 8 reports the results of this experiment,
presenting the mean (noted as M) and standard de-
viation (noted as SD) over three runs. As expected,
the use of the cache reduces the training time sig-
nificantly, with results indicating that training time
is approximately 1/4 of the time required to train
without a cache. This reduction in training time
is expected since the forward pass of the teacher
model is the most costly operation and is computed
only in the first epoch and then retrieved in the next
4 epochs. Furthermore, this difference will increase
as the number of epochs increases.

In conclusion, while our cache implementation
is a simple engineering trick, it has a significant
impact on our experimentation phase in terms of
training time and required compute.
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Model MLQA SQAC TAR, XQuAD
FT KD FT KD FT KD

ALBETO tiny 51.84 / 28.28 54.17 / 32.22 59.28 / 39.16 63.03 / 43.35 66.43 / 45.71 67.47 / 46.13
ALBETO base-2 45.97 / 23.60 48.62 / 26.17 53.32 / 34.34 58.40 / 39.00 61.82 / 40.67 63.41 / 42.35
ALBETO base-4 59.99 / 35.69 62.19 / 38.28 65.66 / 45.54 71.41 / 52.87 68.91 / 49.07 73.31 / 52.43
ALBETO base-6 63.75 / 38.58 66.35 / 42.01 72.22 / 53.61 76.99 / 59.00 74.33 / 52.68 75.59 / 54.95
ALBETO base-8 64.99 / 40.58 67.39 / 42.94 75.22 / 56.43 77.79 / 59.63 75.47 / 54.11 77.89 / 56.72
ALBETO base-10 66.29 / 41.69 68.29 / 44.29 77.14 / 59.21 79.89 / 62.04 77.06 / 56.47 78.21 / 56.21

Table 7: Comparison of the performance of our proposed models on question answering on two settings: fine-tuning
and task-specific knowledge distillation.

Model
Training Time (hours)

Cache No Cache
M SD M SD

ALBETO tiny 3.8 3.1× 10−2 16.2 3.1× 10−3

ALBETO base-2 3.8 1.6× 10−3 16.3 3.6× 10−3

ALBETO base-4 4.2 3.3× 10−4 16.6 2.6× 10−3

ALBETO base-6 4.5 1.5× 10−3 17.0 1.5× 10−3

ALBETO base-8 4.8 1.9× 10−4 17.3 5.8× 10−3

ALBETO base-10 5.3 9.6× 10−3 17.6 5.6× 10−3

Table 8: Training times when using teacher cache vs
not using it. Table report the mean (M) and standard
deviation (SD) over three runs.

14
189


