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Abstract

This paper introduces the concept of Language-
Guided World Models (LWMs)—probabilistic
models that can simulate environments by read-
ing texts. Agents equipped with these models
provide humans with more extensive and effi-
cient control, allowing them to simultaneously
alter agent behaviors in multiple tasks via nat-
ural verbal communication. In this work, we
take initial steps in developing robust LWMs
that can generalize to compositionally novel
language descriptions. We design a challenging
world modeling benchmark based on the game
of MESSENGER (Hanjie et al., 2021), featuring
evaluation settings that require varying degrees
of compositional generalization. Our exper-
iments reveal the lack of generalizability of
the state-of-the-art Transformer model, as it of-
fers marginal improvements in simulation qual-
ity over a no-text baseline. We devise a more
robust model by fusing the Transformer with
the EMMA attention mechanism (Hanjie et al.,
2021). Our model substantially outperforms
the Transformer and approaches the perfor-
mance of a model with an oracle semantic pars-
ing and grounding capability. To demonstrate
the practicality of this model in improving AI
safety and transparency, we simulate a scenario
in which the model enables an agent to present
plans to a human before execution, and to re-
vise plans based on their language feedback.

1 Introduction

Model-based agents are artificial agents equipped
with probabilistic “world models” that are capable
of foreseeing the future state of an environment
(Deisenroth and Rasmussen, 2011; Schmidhuber,
2015). World models endow these agents with the
ability to plan and learn in imagination (i.e., in-
ternal simulation) and have led to exciting results
in the field of reinforcement learning (Finn and
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Levine, 2017; Ha and Schmidhuber, 2018; Chua
et al., 2018; Hafner et al., 2023). These models
have been studied extensively for the purpose of
improving the autonomous performance of artifi-
cial agents.

In this paper, we endorse and enhance the
model-based approach for a different goal: to
strengthen the controllability of artificial agents.
Since all policies of a model-based agent are op-
timized with respect to a common world model, a
human can adjust multiple policies simultaneously
by making appropriate changes to this model. This
mechanism complements the model-free approach
that updates policies individually, offering greater
efficiency and flexibility in control. For example,
by incorporating the fact that the floor is slippery
into the world model of a robot, a person can
effectively remind it to handle every object in a
room with greater caution. If the performance
of the robot on a task remains unsatisfactory, the
person can continue to fine-tune its policy for that
specific task. In contrast, without a world model,
they have to separately adapt the robot’s policies
to the slippery-floor condition.

The model-based approach requires world mod-
els that can be easily modulated by humans. Tra-
ditional world models fall short in this quality be-
cause they can only be modified using observa-
tional data, which is not a suitable medium for
humans to convey intentions (Sumers et al., 2023;
Zheng et al., 2023). To overcome the limitations
of these models, we develop Language-Guided
World Models (LWMs)—world models that can be
effectively steered through human verbal communi-
cation. Agents equipped with LWMs inherit all the
benefits of model-based agents while being able
to incorporate language-based supervision. This
capability reduces human teaching effort and miti-
gates the risk of agents taking harmful actions in an
environment to explore its dynamics. LWM-based
agents can also self-improve by reading “free” texts
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Figure 1: Language-guided world models (LWMs) offer human an efficient mechanism to regulate artificial agents.
(a) We illustrate a potential application of LWMs to improving AI safety and transparency. These models enable
an agent to generate visual plans and invite a human supervisor to validate them. Moreover, the human can adjust
the plans by modifying the agent’s world model with language feedback, in addition to directly correcting its
policy. (b) We design an architecture for LWMs that exhibits strong compositional generalization. We replace
the cross-attention mechanism of the standard Transformer with a new attention mechanism inspired by Hanjie
et al. (2021) to effectively incorporate language descriptions. We then train a model that auto-regressively generates
tokenized observations conditioned on language descriptions and actions.

composed to guide humans (e.g., game manuals),
reducing the subsequent effort to fine-tune them
through direct interaction.

Building LWMs poses a unique research
challenge: grounding language to environmental
dynamics. This problem is difficult because the
language used to describe environment dynamics
can be incredibly rich and complex, encompassing
a wide range of concepts such as entity names,
appearances, motions, interactions, spatial and
temporal relations, and more. Moreover, in natural
settings, especially when describing artificial
environments (e.g., games), new concepts are often
introduced but may not always be clearly defined.
Humans deal effectively with this issue because
they possess remarkable reasoning capabilities
that allow them to infer word meanings from
observations. For example, a caption like “the Ziff,
which is chasing the player, is extremely hostile”
and a video depicting this scene likely provide
enough clues for a person to determine what “the
Ziff” refers to, assuming that they are familiar with
the concept of “chasing”. Not only understanding
word meanings, humans are also capable of apply-
ing newly learned words in novel ways, enabling
imagination of new dynamics, such as envisioning
a “fleeing Ziff” that runs away from the player.

Toward building world models with similar ca-
pabilities, we construct a benchmark based on the
game of MESSENGER (Hanjie et al., 2021). In this

benchmark, a model is given trajectory “videos”
of games involving several entities interacting
with each other. Each video is accompanied by
language descriptions of the attributes of the en-
tities. The model begins with almost zero language
understanding and has to identify the entities and
learn the grounded meanings of their attributes
purely by watching the videos. At test time, it must
demonstrate compositional generalization by being
able to simulate environments featuring entities
with attributes different from those it observes
during training. For example, it has to portray a
“fleeing mage” despite having only seen the mage
chase the player in training games. We design
three evaluation settings that test for incrementally
greater degree of compositional generalization.

Despite its apparent simplicity, our benchmark
covers many complications in building robust
LWMs. We find that the prominent Transformer
model (Vaswani et al., 2017) struggles in the harder
evaluation settings. Even with a ground-truth
disentangled representation of the observations,
the model cannot learn generalizable grounding
functions and yields minimal improvements in
simulation quality compared to a model that
ignores the language descriptions entirely. We
augment the model with the EMMA attention
(Hanjie et al., 2021), which mimics a two-step
reasoning process. Our results confirm the
effectiveness of this new architecture, as it robustly

2



generalizes even in the hardest evaluation setting,
outperforming baselines by substantial margins in
various evaluation metrics. It is even competitive
with a skyline model with an oracle semantic
parsing and grounding capability.

Last but not least, we illustrate a promising ap-
plication of LWMs by simulating a cautious agent
that, instead of performing a task right away, uses
its LWM to generate an execution plan and asks
a human to review it (Figure 1a). This form of pre-
execution communication can potentially improve
the agent’s safety and transparency, following the
spirit of the guaranteed safe AI approach proposed
by Dalrymple et al. (2024). Moreover, it allows the
human to improve the performance of the agent by
revising the plan. In this setting, our LWM-based
agent has the advantage of being able to assimilate
language feedback describing the environment
dynamics. We demonstrate that the language
understanding capabilities of our proposed LWM
are sufficient to enact this strategy. In the most
challenging evaluation setting, without gathering
additional interactions in the environment, the
agent equipped with our model achieves an average
reward three to four times higher than that of an
agent using an observational world model.

We hope that our work will serve as a catalyst
for exploring novel approaches to developing
robust language-guided world models. More
generally, we call for the design of modular agents
whose components are parameterized by natural
language. As previously argued, a modular design
can dramatically boost communication efficiency,
because the same component may be involved in
the learning of various policies. We hypothesize
that this approach can potentially surpass the
efficiency of the currently prevalent approach that
integrates language into a monolithic policy (e.g,
Bisk et al. (2016); Misra et al. (2018); Anderson
et al. (2018); Narasimhan et al. (2018); Hanjie
et al. (2021); Zhong et al. (2021) and work on
large language models like Ouyang et al. (2022)).

2 Background: world models

We consider a Markov Decision Process (MDP)
environment E with state space S, action space
A, and transition function M : S × A → ∆(S ×
R × {0, 1}), where ∆ denotes the set of all prob-
ability distributions over a set. An agent imple-
menting a policy π(a | s) : S → ∆(A) interacts
with the environment by choosing actions using

its policy. Taking an action at ∼ π(st) in state st
transitions the agent to a new state st+1, and incurs
a reward rt+1 and a termination signal dt+1, where
st+1, rt+1, dt+1 ∼ M(st, at).

A (one-step) world model Mθ (Robine et al.,
2023; Micheli et al., 2023; Hafner et al., 2023) is
an approximation of M(st+1, rt+1, dt+1 | st, at).
A model-based agent uses data gathered in the envi-
ronment to construct a world model and leverages
it to learn policies for accomplishing tasks.1 In con-
trast, a model-free agent learns its policies directly
from data collected in the environment.

Model-based agents can require less effort to
adapt. Because all policies of a model-based
agent are derived from a shared world model, any
modifications made to this model would affect
all of them. This feature can be exploited to re-
duce human effort in controlling this type of agent.
Specifically, suppose we concern m tasks in the
environment, necessitating m policies. If there is
a change in the environment dynamics, a model-
based agent only needs task-agnostic data to repli-
cate this change in its world model. It can then
re-optimize its policies with respect to the updated
model. Meanwhile, a model-free agent needs to
collect task-specific data to re-train all of its m
policies. The data collection cost of the model-
free approach scales with m, whereas that of the
model-based approach is independent of m, since
the policy re-optimization step uses only data gen-
erated by the world model.

Observational world models. The dominant
approach to world modeling learns a function
Mθ(st+1, rt+1, dt+1 | ht) parameterized by a neu-
ral network θ and conditioned on a history ht =
(s1, r1, d1, a1, . . . , st, rt, dt, at). We refer to this
class of models as observational world models be-
cause they can be adapted with only observational
data, through either in-weight learning (updating
the model parameters to fit a dataset of observa-
tions), or in-context learning (plugging in a history
of observations).

Relying on observation-based adaptation leads
to two drawbacks. First, controlling these mod-
els is difficult because observations are inadequate
for conveying complex, abstract human intentions.
Second, collecting observations requires taking real
actions in the environment, which can be expensive,
time-consuming, and risky.

1Note that Mθ includes a reward function but can be com-
bined with any other reward function for learning.
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3 Language-guided world models
(LWMs)

We introduce LWMs, a new class of world
models that can interpret language descriptions
to simulate environment dynamics. These models
address the drawbacks of observational world
models. They allow humans to easily adapt their
behavior through natural means of communication.
Consequently, humans can effectively assist these
models, significantly reducing the amount of
interactive experiences that they need to collect
in environments. In addition, these models can
also leverage pre-existing texts written for humans,
saving human effort to fine-tune them.

3.1 Formulation

We consider a family of environments E(v)
whose transition function has the form
M(st+1, rt+1, dt+1 | ht,v) where v is a pa-
rameter vector. Plugging in a specific v gives rise
to an environment. We assume that each environ-
ment E(v) is accompanied by a language manual
ℓ = (l1, · · · , lN ) consisting of language descrip-
tions li. This manual describes v and the internal
operations of M . Our goal is to learn a world model
Mθ(st+1, rt+1, dt+1 | ht, ℓ) that approximates the
true dynamics M(st+1, rt+1, dt+1 | ht,v).

The training data for our LWMs is a
dataset {(τ i, ℓi)} where τ i is a trajectory
generated in an environment E(vi) with vi
drawn from some distribution Ptrain, and ℓi

is the accompanying manual. Each trajectory
τ = (s1, r1, d1, a1, . . . , sT , rT , dT ) is a sequence
of states, actions, rewards, and termination signals.
It can be viewed as a “video” that is annotated with
actions and rewards. The trajectories are generated
using a behavior policy, which can be a rule-based
or learned policy, or a human.

3.2 Modeling entity-based environments

We view an environment as a set of C entities inter-
acting with each other within a constrained space.
Each entity c has a set of K attributes, each of
which has value vck. There is a special attribute
called the identity of the entity (e.g., the name of a
character or object in a video game). Each action
triggers an event that changes a subset of attributes
of a group of entities. The specific change is de-
termined by the attributes of the entities involved
in the event (e.g., an enemy entity attacks a player
when colliding with them). In this work, we as-

● The ferry which is approaching 
you is a deadly adversary.

● The plane fleeing from you has 
the classified report.

● The researcher won’t budge 
and it is a vital goal.

Observation Manual

Figure 2: MESSENGER environment with manual.

sume that each description in a manual portrays
all attributes of an entity; hence, the number of
descriptions N is equal to C.

Testing for compositional generalization. With
this formulation, the environment parameters v =
(v11, · · · , v1K , v21, · · · , vC1 , · · · , vCK) is a vector that
contains the attributes of the C entities depicted in
a manual. We are concerned with building LWMs
that, at test time, can simulate environments whose
paramerer vectors are compositionally novel. The
term “compositionally novel” means that all com-
ponents of the vector are individually seen during
training, but the vector as a whole is previously
unseen. This implies that the manuals at test time
are also new.

This problem requires a LWM to be able to
learn a representation of the transition function
M(v) by studying the language of the manuals,
and to extract the specific parameters v described
by each manual. The function M(v) has two
important properties. The first is the independence
among its parameters because they represent
orthogonal attributes. The second is the locality
of the parameters, as each is an attribute associated
with only a single entity. These properties make
it difficult to recover the function exactly from
purely observational data without injecting strong
inductive biases into the learning model.

3.3 The MESSENGER-WM benchmark

The game of MESSENGER, developed by (Hanjie
et al. (2021); Figure 2) exemplifies the class of
environments discussed in the previous section.
Despite being a simple grid-world environment,
the dynamics possess the independence and
locality properties that we want to study. In fact,
it is our intention to use this visually simplistic
environment to highlight the challenges in building
LWMs that are orthogonal to the computer graph-
ics challenge of mapping state representations to
realistic-looking outputs.
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Environment dynamics. The game takes place
in a 10 × 10 grid world. A player interacts with
entities of three roles: message, goal, and enemy.
We use the stage-two version of the game, in which
there are three entities, one of each role, in a game
instance. In addition to the role, each entity is
assigned an identity among twelve possibilities
(mage, airplane, orb, etc.) and a movement pattern
(chasing the agent, fleeing from the agent, immo-
bile). The objective of the player is to acquire the
message and deliver it to the goal while avoiding
the enemy. Fetching the message is awarded 0.5
points and delivering it to the goal adds another
point. If the player collides with the enemy or
reaches the goal without carrying the message, the
game ends, and the player receives -1 points.

Game manual. A game’s manual consists of
three descriptions corresponding to the three en-
tities. MESSENGER provides a dataset of 5,316
language descriptions, each of which describes a
combination of identity, role, and movement. The
descriptions employ various linguistic expressions
for each identity, role, or movement pattern (e.g.,
an airplane can be mentioned as a “plane”, “jet”, or
“airliner”), making it non-trivial to interpret.

Evaluation settings. To test for compositional
generalization, we construct three evaluation set-
tings, ordered in increasing degree of difficulty:
• NewCombo (easy). Each game features a com-

bination of three identities that were never seen
together in a training game. However, the role
and movement pattern of each identity are the
same as during training.

• NewAttr (medium). The three identities were
seen together in a training game, but each iden-
tity is assigned at least a new attribute (role, or
movement pattern, or both).

• NewAll (hard). This setting combines the diffi-
culties of the previous two. The identity triplet
is novel, and each identity is assigned at least a
new attribute.
To generate trajectories, we implement rule-

based behavior policies that execute various inten-
tions: act randomly, avoid the enemy, suicide (go to
the enemy), obtain the message, and win the game
(obtain the message and deliver it to the goal). We
generate a total of 100K trajectories for training,
each of which is generated by rolling out a uni-
formly randomly chosen rule-based policy. More
details of the data are given in Appendix B. Our
evaluation is more comprehensive than the original

MESSENGER paper’s evaluation, which does not
construct different levels of compositional gener-
alization, and is more difficult than the setting of
Lin et al. (2024), which does not concern general-
ization.

To succeed in MESSENGER-WM, a model must
be able to understand the non-trivial concepts repre-
sented by the attributes. For example, the concept
of “chasing” involves planning actions to reduce
the distance between two entities. The model must
also capture the independence of the attributes, de-
spite observing correlations in the training data
(e.g., the “mage” is never immobile during train-
ing). Finally, to reflect the locality of the attributes,
the model needs to learn a representation that dis-
entangles the entities and to route attributes to the
right entities. For example, the movement of one
entity should not influence that of another. These
are among the difficult, under-explored problems
in machine learning, making MESSENGER-WM a
respectable research challenge. We will empirically
show that the state-of-the-art Transformer architec-
ture struggles to perform well on the benchmark,
suggesting that it may be insufficient for tackling
more complex world-modeling problems.

4 Modeling approach

State representation. In MESSENGER, a state s
is represented by an H ×W grid with C channels
(an H ×W × C tensor), where each channel cor-
responds to an entity. In each channel c, there is a
single non-zero cell s(h,w, c) that represents the
identity of the entity. The position of this cell is the
location of the entity in the grid. We note that this is
an idealized representation that disentangles the en-
tities. Even so, the problem remains challenging, as
the model needs to recognize attributes mentioned
in the manual and associate them with the right en-
tity token. This requires a special attention mech-
anism, which we will introduce shortly. Mean-
while, learning entity-disentangled representations
for pixel-based environments remain an open prob-
lem, which we defer to future work.

World modeling as sequence generation. Our
model (illustrated in Figure 1b) is an encoder-
decoder Transformer (Vaswani et al., 2017) which
encodes a manual ℓ and decodes a trajectory τ . We
transform the trajectory into a long sequence of
tokens and train the model as a sequence generator.

Concretely, our model processes a data point
(τ, ℓ) as follows. For the manual ℓ = {li}Ni=1, we
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first use a pre-trained BERT model to convert each
description li into a sequence of hidden vectors.
We feed each sequence to a Transformer encoder,
which outputs a tensor menc of size N × L ×D,
where N = C is the number of descriptions, L is
the maximum number of words in a description,
and D is the hidden size.

For the trajectory, we convert each tuple
(at−1, st, rt, dt) into a token block Bt. The
first action a0 is set to be a special <s> to-
ken. Each state st is mapped to 3C to-
kens (i1t , h

1
t , w

1
t , · · · , iCt , hCt , wC

t ), which repre-
sents each of the C entities by its identity i fol-
lowed by its location (h,w). The real-valued re-
ward rt is discretized into an integer label, and
the termination signal dt is translated into a binary
label. In the end, Bt consists of 3C + 3 tokens
(at−1, i

1
t , h

1
t , w

1
t , · · · , iCt , hCt , wC

t , rt, dt). Finally,
we concatenate all T blocks in the trajectory into
a sequence of T × (3C + 3) tokens, embed them
into a T × (3C+3)×D tensor, and add positional
embeddings. We will use bold notation (e.g., a, i)
to refer to the resultant embeddings of the tokens.

Entity mapper with multi-modal attention. We
implement a variant of EMMA (Hanjie et al.
(2021)) that first identifies the description that men-
tions each entity and extracts from it words corre-
sponding to the attributes of the entity. From the
tensor menc

n computed by the encoder, we generate
a key tensor mkey and a value tensor mval, both of
which are of size N × L×D, where

mkey
n = Softmax(Linearkey(m

enc
n )⊤)menc

n

mval
n = Softmax(Linearval(m

enc
n )⊤)menc

n (1)

for 1 ≤ n ≤ N . Here, LinearD→1
key and

LinearD→1
val are linear layers that transform the

input’s last dimension from D to 1, and Softmax(·)
applies the softmax function to the last dimension.
Intuitively, we want each m

key
n to retain words that

signal the identity of the entity mentioned in the n-
th description (e.g., ferry, plane, researcher), and
mval

n to retrieve words depicting the other attributes
(e.g., approaching, deadly, fleeing).

Let ict be the embedding of the identity of entity
c. We perform a dot-product attention with ict as
the query, mkey as the set of keys, and mval as the
set of values to compute the attribute features of c

zc
t = DotAttend(ict ,m

key,mval) (2)

The features are added to the identity tokens ict .
The final input of the model is as follows:

(at−1, (i
c
t + zc

t ,h
c
t ,w

c
t )

C
c=1, rt,dt) (3)

Unlike the standard encoder-decoder Transformer,
our architecture does not perform cross-attention
between the encoder and the decoder because in-
formation from the encoder has already been incor-
porated into the decoder through EMMA.

Model training. We train the model to minimize
cross-entropy loss with respect to the ground-truth
(tokenized) trajectories in the training set. The
label at each output position is the next token in
the ground-truth sequence. In particular, we do not
compute the losses at the positions of the action
tokens and the first block’s tokens, because those
tokens will be set during inference.

5 Experiments

5.1 Baselines

We compare our model, which we call EMMA-LWM,
with the followings:
(a) Observational world model does not lever-

age textual information. It is identical to
EMMA-LWM except that we zero out the man-
ual representation menc;

(b) Standard is the encoder-decoder Trans-
former model following Vaswani et al. (2017)
with multi-headed cross-attention between
the decoder and the encoder. Similarly to
EMMA-LWM, the model uses BERT to initially
encode the manual into hidden vectors. The
encoder applies self-attention to the hidden
vectors of each description separately, instead
of joining all vectors into a sequence and
applying self-attention to it;

(c) GPTHard is similar to EMMA-LWM but uses
ChatGPT instead of EMMA to ground
descriptions to entities. More details about
this model are in Appendix A;

(d) OracleParse is the same as GPTHard, but
uses an oracle information extraction function.
A description like “the crucial target is held
by the wizard and the wizard is fleeing from
you” is converted into “mage fleeing goal”
for this model.

We train all models using AdamW (Loshchilov and
Hutter, 2017) for 105 iterations. For further details,
please refer to Appendix C.
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Figure 3: A qualitative example taken from the NewAll split. The Observational model mistakenly captures the
movement patterns of the immobile queen goal and the chasing whale message. It also misrecognizes the whale as
an enemy, predicting a wrong reward r and incorrectly predicting a termination state d after the player collides with
this entity. The GPTHard model incorrectly identifies the queen as the message and predicts the whale to be fleeing.
Meanwhile, our model EMMA-LWM accurately captures all of those roles and movements.

Table 1: Cross entropy losses (↓) of different models on
test ground-truth trajectories. Note that the minimum
loss is non-zero because the MESSENGER environment
is stochastic. We run each model with five different
random seeds, selecting the final checkpoint for each
seed based on the loss in the development NewAll split.
We report the mean losses with 95% t-value confidence
intervals. The bold number in each column indicates
the best non-oracle mean.

NewCombo NewAttr NewAll
World model (easy) (medium) (hard)

Observational 0.12 ± 0.04 0.18 ± 0.02 0.19 ± 0.01

Standard 0.10 ± 0.04 0.15 ± 0.04 0.16 ± 0.03

GPTHard 0.10 ± 0.02 0.15 ± 0.01 0.16 ± 0.00

EMMA-LWM 0.08 ± 0.01 0.10 ± 0.02 0.13 ± 0.01

OracleParse 0.08 ± 0.01 0.09 ± 0.02 0.12 ± 0.06

5.2 Results
Evaluation with ground-truth trajectories.
Table 1 shows the cross-entropy losses of all
models on ground-truth trajectories sampled
from the true environment dynamics (more in
Appendix E). In the more difficult NewAttr and
NewAll splits, our EMMA-LWM model consistently
outperforms all baselines, nearing the performance
of the OracleParse model. As expected, the
Observational model is easily fooled by spurious
correlations between identity and attributes, and
among attributes. A specific example is illustrated
in Figure 3. There, the Observational model
incorrectly captures the movement of the whale
and the queen. It also mistakenly portrays the
whale as an enemy, whereas, in fact, the entity
holds the message. In contrast, EMMA-LWM is
capable of interpreting the previously unseen
manual and accurately simulates the dynamics.

The performance of the Standard model is sen-
sitive to initialization; in some runs, it performs as

well as EMMA-LWM, but in others it performs as badly
as Observational. A plausible explanation is that
the model’s attention mechanism lacks sufficiently
strong inductive biases to consistently find gener-
alizable solutions. Our results agree with previous
work on the lack of compositional generalizabil-
ity of Transformers, which is often remedied by
adding various forms of inductive bias (Keysers
et al., 2020; Jiang and Bansal, 2021; Chaabouni
et al., 2021; Dziri et al., 2023).

Another interesting finding is that the GPTHard
model does not perform as well as expected. As a
reminder, this model relies on ChatGPT to parse
identities from descriptions and only needs to learn
to extract attributes. Its underperformance com-
pared to EMMA-LWM can be attributed to (i) the im-
perfection of ChatGPT in identifying identities in
descriptions (its accuracy is around 90%; see Ap-
pendix B) and (ii) the fact that EMMA-LWM jointly
learns to extract both identity and attribute words,
which may be more effective than learning to ex-
tract only attribute words.

Evaluation with imaginary trajectories. In this
evaluation, for each world model and test trajec-
tory, we reset the model to the initial state of the
trajectory and sequentially feed the actions in the
trajectory to the model until it predicts the end
of the episode. This process generates an imag-
inary trajectory. We refer to the evaluation tra-
jectory as the real trajectory. We compute pre-
cisions of predicting non-zero rewards (r ̸= 0)
and terminations (d = 1). To evaluate move-
ment prediction, we compare the distances from
the player to an entity in the real and imaginary
trajectories. Concretely, let δreal

c,t and δ
imag
c,t be the

Hamming distances from the player to entity c at
the t-th time step in a real trajectory τreal and an
imaginary trajectory τimag, respectively. We cal-
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Table 2: Results on imaginary trajectory generation. ∆dist measures the similarity between the distances from the
player to an entity in a real trajectory and the corresponding imaginary trajectory. The bold number in each column
represents the best non-oracle result. EMMA-LWM outperforms all baselines in all metrics.

∆dist(↓) Non-zero reward precision (↑) Termination precision (↑)
NewCombo NewAttr NewAll NewCombo NewAttr NewAll NewCombo NewAttr NewAll

World model (easy) (medium) (hard) (easy) (medium) (hard) (easy) (medium) (hard)

Observational 2.04 2.91 3.00 0.39 0.20 0.15 0.51 0.33 0.28
Standard 0.82 1.48 1.68 0.68 0.43 0.50 0.75 0.55 0.62
GPTHard 0.89 2.74 2.89 0.75 0.34 0.25 0.79 0.45 0.45
EMMA-LWM 0.57 1.14 1.29 0.88 0.69 0.70 0.88 0.75 0.71
OracleParse 0.49 0.77 0.92 0.93 0.81 0.77 0.89 0.84 0.79

culate the average difference in a specific time
step: ∆dist =

1
|Deval|

∑
τreal∈Deval

1
Tmin

∑Tmin
t=1 |δreal

c,t −
δ

imag
c,t | where Deval is an evaluation split, Tmin =
min(|τreal|, |τimag|), and τimag is generated from
τreal . For example, for a chasing entity, δreal

c,t de-
creases as t increases. If a model mistakenly pre-
dicts the entity to be immobile, δimag

c,t remains a
constant as t progresses. In this case, ∆dist is non-
negligible, indicating an error. All evaluation met-
rics are given in Table 2. The ordering of the mod-
els is similar to that in the evaluation with ground-
truth trajectories. EMMA-LWM is still superior to all
baselines in all metrics.

5.3 Application: agents that discuss plans
with humans

In this section, we showcase the practicality of
our LWM by illustrating that it can facilitate
plan discussions between an agent and a human
supervisor. This approach has the potential to
improve the transparency, safety, and performance
of real-world agents.

We imagine an agent ordered to perform a task
in a previously unseen environment (Figure 1a).
Letting the agent perform the task immediately
would be extremely risky because of its imperfect
knowledge of the environment. Implementing a
world model enables the agent to imagine a solution
trajectory and present it to a human as a plan for
review. Conveying plans as trajectories helps the
human envision the future behavior of the agent
in the real world. Furthermore, the human can
improve this behavior by providing feedback to
enhance the policy that produces the plan.

A human can update the policy by telling the
agent which actions it should have taken. This type
of feedback can be incorporated using some form
of imitation learning. An agent equipped with a
LWM additionally enables the human to update
its policy by giving language feedback that

aims to modify its world model. Although an
observational world model also allows this form of
adaptation, it requires much more effort from the
human to generate the feedback. Concretely, the
human has to generate observations in the same
format as those in the agent’s plan (e.g., they have
to draw grids in this setting). Furthermore, many
abstract concepts may not be efficiently or precisely
specified through non-verbal communication.

We simulate this scenario by placing agents with
randomly initialized policies in test environments.
These agents are forbidden to interact with the
environments. However, they are equipped with
world models, which allows for imaginary policy
update. The world models are the ones we
evaluated in the previous section. Importantly, the
models were not trained on any data collected in
the environments, simulating the fact that these
environments are completely new to the agents.

We train all policies with imitation learning, con-
sidering two types of feedback: in online imitation
learning (Ross et al., 2011), the expert suggests the
best actions to take in the states present in the plan;
in the filtered behavior cloning setting, the expert
simply overwrites the agent’s plan with their own
plan. In the latter setting, the agent chooses the
plans that achieve the highest returns according to
their world models to imitate. We experiment with
a near-optimal expert and a suboptimal expert. We
provide more details in Appendix D.

The agents endowed with LWMs can also
process language feedback aiming to change their
world models. This feedback is simulated by the
game manuals accompanying the environments. It
serves as the input ℓ of the LWMs. We suppose
that a human gives this feedback once to an agent,
before adapting it via imitation learning.

We present the performance of the agents af-
ter adaptation in Table 3. Learning with the
Observational world model amounts to the case
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where the human provides only imitation-learning
feedback and cannot adapt the world model via
language. Meanwhile, learning with EMMA-LWM rep-
resents the case where the human can use language
feedback to improve the world model. In all evalua-
tion settings, we observe significant improvements
in the average return of policies that adopt our
EMMA-LWM. There are still considerable gaps com-
pared to using the OracleParse model, indicating
that our model still has room for improvement.

Table 3: Average returns (↑) in real environments
of policies trained with imaginary imitation learning
using world models. Bold numbers indicate the best
non-oracle means in the corresponding settings. An
expanded table with all models and details on how the
metric was computed are available in Appendix E.

NewCombo NewAttr NewAll
Setting World model (easy) (medium) (hard)

Observational 0.75 ± 0.16 -0.41 ± 0.21 -0.21 ± 0.21
EMMA-LWM (ours) 1.01 ± 0.12 0.96 ± 0.17 0.62 ± 0.21

Online IL
(near-optimal)

OracleParse 1.04 ± 0.13 0.85 ± 0.20 0.91 ± 0.18

Observational 0.77 ± 0.14 -0.42 ± 0.15 -0.30 ± 0.16
EMMA-LWM (ours) 1.18 ± 0.10 0.75 ± 0.20 0.44 ± 0.18

Filtered BC
(near-optimal)

OracleParse 1.17 ± 0.11 0.84 ± 0.19 0.80 ± 0.18

Observational 0.71 ± 0.15 -0.35 ± 0.18 -0.33 ± 0.17
EMMA-LWM (ours) 0.98 ± 0.13 0.29 ± 0.25 0.13 ± 0.19

Filtered BC
(suboptimal)

OracleParse 1.09 ± 0.13 0.50 ± 0.24 0.49 ± 0.18

6 Related work

World models. World models have a rich history
dating back to the 1980s (Werbos, 1987). The base
architecture has evolved from feed-forward neural
networks (Werbos, 1987), to recurrent neural net-
works (Schmidhuber, 1990a,b, 1991), and most re-
cently, Transformers (Robine et al., 2023; Micheli
et al., 2023). In RL settings, world models are the
key component of model-based approaches, which
train policies in simulation to reduce the amount of
interactions with real environments. Model-based
RL has been successful in a variety of robotic tasks
(Finn and Levine, 2017) and video games (Hafner
et al., 2019, 2020, 2023). However, the incorpo-
ration of language information into world models
has been underexplored. Cowen-Rivers and Narad-
owsky (2020) propose language-conditioned world
models but focus on emergent language rather than
human language. Poudel et al. (2023) incorporate
features language into the representations of the
model. These approaches, however, do not use
language to control a world model.

Language-based adaptation. Language infor-
mation has been incorporated into various aspects
of learning. In instruction following (Bisk et al.,
2016; Misra et al., 2018; Anderson et al., 2018;
Nguyen and Daumé III, 2019), agents are given
descriptions of the desired behaviors and learn to
interpret them to perform tasks. Language-based
learning (Nguyen et al., 2021; Scheurer et al., 2023)
employs language-based feedback to train models.
Another line of work uses language descriptions of
environment dynamics to improve policy learning
(Narasimhan et al., 2018; Branavan, 2012; Hanjie
et al., 2021; Wu et al., 2023a; Nottingham et al.,
2022; Zhong et al., 2020). Rather than using texts
to directly improve a policy, our work leverages
them to enhance a model of an environment. Re-
cently, several papers propose agents that can read
text manuals to play games (Wu et al., 2023a,b).
Our work differs from these papers in that we aim
to build models that capture exactly the transition
function of an environment.

Compositional generalization for language-
guided world models. Lin et al. (2024) model
a variety of text-augmented environments but
do not demonstrate the generalizability of their
approach in MESSENGER. Recent work (Zhao
et al., 2022; Du et al., 2024; Zhou et al., 2024;
Zhang et al., 2024) has developed LWMs with
compositional generalizability. While these papers
operate on more visually realistic domains than
ours, the language they study is simpler, focusing
on concepts that correspond to straightforward
mappings from input to output such as colors and
objects. In contrast, the concepts in MESSENGER

are more intricate, regarding interactions among
multiple entities.

7 Conclusion

We introduce Language-Guided World Models,
which can be adapted through natural language.
We outline numerous advantages of these models
over traditional observational world models. Our
model is still lacking in performance and the grid-
world environments we experiment with severely
underrepresent the real world. Nevertheless, we
hope that this work helps envision the potential of
LWMs in enhancing the controllability of artificial
agents and inspires future efforts to address the
compositional generalization challenge.
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A GPTHard model

This approach leverages the language-
understanding capabilities of ChatGPT. Through
few-shot prompting, we instruct this model to
determine the identity of the entity mentioned in
each manual description. In this approach, we
generate only the set of values mval as in Eq 1.
Instead of learning soft attention, we directly route
the values to the identity embeddings. Concretely,
the feature vector added to ict in Eq 3 is zc

t = mval
jc

where jc is the index of the description that
mentions entity c according to ChatGPT.

We compose the following prompt for parsing
descriptions. We use the “May 3, 2023” release of
ChatGPT. We feed to the model one description at
a time instead of a whole manual of three descrip-
tions. We ask it to also extract the role and move-
ment pattern, but use only the parsed identity in the
GPTHard model. The “ChatGPT identity-parsing”
column in Table 4 shows the fraction of games
in each split in which ChatGPT correctly identi-
fies all three identities in a game. Note that the
OracleParse model uses the ground-truth parses
rather than these parses.
You are playing a role -playing video

game where you will need to read
textual descriptions to figure out
the attributes of a character.

This is a list of characters and their
corresponding IDs:

airplane: 2
mage: 3
dog: 4
bird: 5
fish: 6
scientist: 7
thief: 8
ship: 9
ball: 10
robot: 11
queen: 12
sword: 13

This is a list of movement types and
their corresponding IDs:

chasing: 0
fleeing: 1
stationary: 2

This is a list of role types and their
corresponding IDs:

dangerous enemy: 0
secret message: 1
essential objective: 2

Now , read a description and tell me
which character is being mentioned
and what are its movement type and
role type. Your answer should follow
this format:

```
Answer: Character ID, movement type ID,

role type ID
```

Here are a few examples:

Description: the plane that 's flying
near where you are is the critical
objective.

Answer: 2, 0, 2

Description: the escaping humanoid is an
important goal.

Answer: 11, 1, 2

Description: the mage is inching near
you is a lethal opponent.

Answer: 3, 0, 0

Description: the classified document is
the hound coming your way.

Answer: 4, 0, 1

Description: the important goal is the
orb which is creeping close to you.

Answer: 10, 0, 2

Now provide the answer for the following
description. Follow the format of

the previous answers:

Description: [PLACEHOLDER]

B Dataset

Statistics of our dataset are provided in Table 4.
The maximum trajectory length is 32. We imple-
ment five rule-based behavior policies: survive
(avoid the enemy and goal), win the game,
suicide (go to the enemy), obtain the message,
and act randomly. The survive policy acts ran-
domly when the distances to the enemy and the
goal are greater than or equal to 6. Otherwise, it
takes the action that makes its distance to those
entities at least 3. If that is impossible, it chooses
the action that maximizes the minimum distance to
one of the two entities. The win the game policy
is not optimal: it simply aims to obtain the message
and then run to the goal, without having a strategy
to avoid the enemy. We run a breadth-first search
to find the next best action to get to an entity.

For the training split, we generate 66 trajectories
per game. The behavior policy for each trajectory
is chosen uniformly randomly among the five rule-
based policies. For each evaluation split, we gener-
ate 5 trajectories per game, using every rule-based
policy to generate trajectories.
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Split Unique games Unique descriptions Trajectories ChatGPT identity-parsing accuracy (%)

Train 1,536 986 101,376 92

NewCombo 896 598 4,480 89
NewAttr 204 319 1,020 88Dev
NewAll 856 1,028 4,280 86

NewCombo 896 587 4,480 90
NewAttr 204 306 1,020 93Test
NewAll 856 1,016 4,280 88

Table 4: MESSENGER data statistics. The last column shows the fraction of games in each split in which ChatGPT
correctly identifies all three identities in a game.

Hyperparameter Value

Hidden size 256
Number of encoder layers 4
Number of decoder layers 4
Number of decoder token blocks 33
Dropout rate 0.1
Batch size 32
Number of training batches 100K
Evaluation every 500 batches
Optimizer AdamW
Learning rate 1e-4
Max. gradient norm 10

Table 5: Training hyperparameters.

C Training details

Our implementation of Transformer is largely
based on the IRIS codebase (Micheli et al., 2023).2

We implement cross-attention for the Standard
baseline, and EMMA for our model.

Initialization. We find that the default PyTorch
initialization scheme does not suffice for our model
to generalize compositionally. We adopt the follow-
ing initialization scheme from the IRIS codebase:

def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):

module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:

module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):

module.bias.data.zero_()
module.weight.data.fill_(1.0)

which is evoked by calling
self.apply(init_weights) in the model’s
constructor. We initialize all models with this
scheme, but only EMMA-LWM and OracleParse

2https://github.com/eloialonso/iris

perform well consistently on various random
seeds.

Compute resources. Experiments were primar-
ily run on a cluster of NVIDIA RTX2080 GPUs,
and each experiment was run on a single device.
To generate Table 1, we trained each world model
for 24 GPU hours, 5 seeds each. To generate Table
3 and 6, we trained each of the 5 world models on
each of the 90 games (3 difficulties for 30 game
configurations) using the 3 different downstream
policy training strategies, with each game being 12
GPU hours.

D Imitation learning experiments

The learning policy follows the EMMA-based pol-
icy architecture of (Hanjie et al., 2021), which at
each time step processes a stack of 3 most recent
observations with a convolution-then-MLP encoder.
We train the policy with 2,000 batches using the
same optimizer hyperparameters as those of the
world models.

For the online IL setting, we use the win the
game rule-based policy (Appendix B) as the expert.
For the filtered BC setting, we train an EMMA
policy to overfit the test environment. We then
use a fully converged checkpoint of the policy as
the near-optimal expert, and a not fully converged
checkpoint as the suboptimal expert. The former is
trained for 10,000 iterations and the latter is trained
for 2,000 iterations.

The test environments are randomly chosen from
the test splits. We select 10 environments per split.
We evaluate each policy for 48 episodes in the real
environment. These episodes cover all 24 initial
configurations of a stage-two MESSENGER game.

E Extended results

Figure 4 studies the performance of the models
when conditioned on prefixes of the ground-truth
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Figure 4: The cross entropy losses of the models when conditioned on ground-truth trajectory prefixes up to a
certain length. We plot the means with 95% t-value confidence intervals. The losses generally decrease as the
prefix length increases. EMMA-LWM outperforms baselines given any prefix length.

trajectories. The losses of all models decrease as
the prefix length increases, but the baselines can-
not close the gaps with EMMA-LWM. Across all splits,
EMMA-LWM conditioned on a one-step history outper-
forms Observational conditioned on one third of
a ground-truth trajectory, demonstrating that our
model has effectively leveraged the textual infor-
mation.

Table 6 presents the results of all the models in
the simulation of plan discussion (§5.3).
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Table 6: Average returns (↑) in real environments of policies trained with imaginary imitation learning using world
models. For each world model type, we use the best checkpoint of a run chosen randomly among the five runs
mentioned in Table 1. Experiments are conducted in 90 environments randomly chosen from the test splits (30 from
each split). For each environment and learned policy, we compute the average return over 48 runs. For each split, we
report the means of the average returns in the 30 environments with 95% t-value confidence intervals. Bold numbers
indicate the best non-oracle means in the corresponding settings. EMMA-LWM outperforms all baselines in all settings.

NewCombo NewAttr NewAll
Setting World model (easy) (medium) (hard)

Observational 0.75 ± 0.16 -0.41 ± 0.21 -0.21 ± 0.21

Standard 0.93 ± 0.13 0.04 ± 0.26 0.30 ± 0.22

GPTHard 0.82 ± 0.15 -0.20 ± 0.20 -0.06 ± 0.21

EMMA-LWM (ours) 1.01 ± 0.12 0.96 ± 0.17 0.62 ± 0.21

Online IL
(near-optimal expert)

OracleParse 1.04 ± 0.13 0.85 ± 0.20 0.91 ± 0.18

Observational 0.77 ± 0.14 -0.42 ± 0.15 -0.30 ± 0.16

Standard 1.05 ± 0.14 0.20 ± 0.27 0.17 ± 0.20

GPTHard 0.79 ± 0.15 -0.10 ± 0.20 -0.07 ± 0.20

EMMA-LWM (ours) 1.18 ± 0.10 0.75 ± 0.20 0.44 ± 0.18

Filtered BC
(near-optimal expert)

OracleParse 1.17 ± 0.11 0.84 ± 0.19 0.80 ± 0.18

Observational 0.71 ± 0.15 -0.35 ± 0.18 -0.33 ± 0.17

Standard 0.68 ± 0.15 -0.15 ± 0.21 -0.10 ± 0.17

GPTHard 0.75 ± 0.22 0.05 ± 0.25 0.06 ± 0.17

EMMA-LWM (ours) 0.98 ± 0.13 0.29 ± 0.25 0.13 ± 0.19

Filtered BC
(suboptimal expert)

OracleParse 1.09 ± 0.13 0.50 ± 0.24 0.49 ± 0.18
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