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Abstract

The following is a description of the RIGA
team’s submissions for the SMM4H-2024 Task
1: Extraction and normalization of adverse
drug events (ADEs) in English tweets. Our
approach focuses on utilizing Large Language
Models (LLMs) to generate data that enhances
the fine-tuning of classification and Named En-
tity Recognition (NER) models. Our solution
significantly outperforms mean and median
submissions of other teams. The efficacy of
our ADE extraction from tweets is comparable
to the current state-of-the-art solution, estab-
lished as the task baseline. The code for our
method is available on GitHub'.

1

The SMM4H-2024 Task 1, as outlined in the
overview (Xu et al., 2024), challenged participants
to extract and normalize ADEs to MedDRA high-
level term identifiers (HLTIs).

Our submission aims to harness the capabilities
of large language models (LLMs) to enhance per-
formance. Additionally, we compare the perfor-
mance of the off-the-shelf submission, which did
not involve model training, with a fine-tuned model
that combines the original input with the output
generated by GPT.

Introduction

2 Related work

The baseline system (Magge et al., 2021) utilizes a
pipeline method for solving the task. The pipeline
involves 3 components and are executed sequen-
tially: (1) the ADE classifier for identifying tweets
containing ADE mentions, (2) the ADE span ex-
tractor or named entity recognition (NER) for ex-
tracting ADE mentions, and (3) the ADE normal-
izer, which maps the extracted ADE mention to
MedDRA HLT identifiers. In our submission we
utilize the same pipeline components.

"https://github.com/emukans/smm4h2024-riga
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Dataset Train Dev  Test
Full 18185 965 11799
Contain ADEs 1239 65 N/A

Table 1: Dataset size distribution

The paper concentrates on integrating the GPT
model generation with the original text. A com-
parable methodology was employed in SemEval-
2023 (Mukans and Barzdins, 2023), where the task
involved token classification with highly specific
tags. To streamline the process, the RIGA team
utilized GPT as a knowledge database for individu-
als, entities, food items, and other relevant entities
mentioned in the text.

According to the LLM for Generative Informa-
tion Retrieval Survey (Xu et al., 2023), our method
can be classified as a form of data augmentation.
Similar approaches have been independently em-
ployed in several studies (Amalvy et al., 2023;
Chen and Feng, 2023; Li et al., 2023)

3 Data

In contrast to the previous version of the task, the
new challenge in the most recent dataset lies in
the inclusion of negative samples (falling outside
MedDRA categories) in each data split.

As presented in Table 1, the data is highly imbal-
anced. The amount of tweets containing any ADE
is 6.8% for train data split and 6.7% for dev data
split.

4 Methodology

In order to address the issue of high data imbalance,
our pipeline includes tweet classification as the
initial step to filter out the majority of the tweets.
Subsequently, for the filtered tweets, we conduct
NER to extract the precise spans that contain an
ADEs. In the final step, we generate a sentence
embedding for the span and identify the nearest
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Submission

F1-Norm P-Norm R-Norm FI-NER P-NER R-NER

F1-Norm-Unseen

GPT few-shot 31.8 29.5 34.6 40.3 37.7 434 21.2
Custom + GPT 10.3 12.1 9 47.9 52.5 44.1 6.5
Baseline 43.9 39.3 49.8 48.1 43.1 54.3 323
Mean 28.264 29.244 33388  32.672 35.625 34.032 20.936
Median 293 33.9 32.6 37.6 43.7 374 14.1

Table 2: The performance of our submissions

HLTIs using cosine similarity.

We used four Tesla v100 16GB GPUs, provided
by our institution, for conducting these experi-
ments.

4.1 Tweet classification

According to Table 1, more than 93% of the tweets
do not contain any ADEs. To filter out these tweets,
we developed a binary classification model to iden-
tify the presence of ADE:s in the input tweets. This
model is based on a language model fine-tuned
from RoBERTa-large (Antypas et al., 2023; Liu
etal., 2019).

Before the classification model fine-tuning, all
tweets are preprocessed with GPT-4 Turbo (Ope-
nAl et al., 2024) prompt engineering (Brown et al.,
2020) to extract mentioned ADEs in the text. The
generative model simply needs to mention all
ADEs from the provided text in a free-form manner.
The prompt used in our submission is detailed in
Appendix A.

The GPT output is then concatenated with the
original tweet in the following format and used as
input to a binary classification model:

{tweet} <sep> {ADE extracted with GPT}.

4.2 ADE span extraction

All categorized tweets with ADEs are forwarded
to the span extraction stage. We employ a BIO-
tagging schema with only three tags: B-ADE, I-
ADE, and O.

In this stage, we also incorporate GPT output
as additional context for downstream fine-tuning.
The prompt utilized in our submission is detailed
in Appendix B.

As shown in Table 2, the ADEs generated by
GPT few-shot demonstrate strong performance in
comparison to the mean and median scores. How-
ever, a notable limitation of GPT is its verbosity
and propensity for hallucinations. Often, the gener-
ated spans contain verbs that contribute to coherent
sentence structures but are not directly pertinent to
ADEs.
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Furthermore, the model may generate text that
deviates from the original text. For instance, it
might produce ADE expressions that do not exactly
match the words in the given tweet. This issue goes
beyond minor discrepancies, such as differences
in American and British spelling, and highlights
a broader challenge in utilizing generative models
for extracting ADEs from tweets. The foundational
model’s training datasets, like C4, which predom-
inantly feature texts with American dialects, con-
tribute to this bias (Dodge et al., 2021).

To fine-tune DeBERTaV3 for span extraction
(He et al., 2021), we adopt a similar input structure
as in the classification step. However, since tweets
may contain multiple ADEs, we separate each ADE
in the input using the sep token.

The output generated by the fine-tuned model
Custom + GPT, using the following input format is
less noisy compared to the original GPT results.

4.3 Span mapping to MedDRA HLTIs

In total, MedDRA contains 23,389 HLTTs, but the
training and development data only contain 319
unique identifiers. This indicates that the majority
of HLTTIs are not present in our dataset.

Training a classifier to map the spans to the
HLTTs using the provided data would be futile due
to the high variety of HLTIs. Additionally, the
test data includes unseen categories that the trained
classifier would not be able to identify.

In our submission, we utilized an off-the-shelf
solution by leveraging OpenAI’s Embedding API.
Initially, we computed an embedding representa-
tion for all MedDRA HLTTs, followed by doing the
same for each ADE span. Subsequently, we iden-
tified the closest HLTIs by calculating the cosine
similarity between the embeddings.

Unfortunately, we ran out of resources and time
to achieve a higher F1-Norm score for the Custom
+ GPT model. Despite using the same approach
as the GPT few-shot model, the Custom + GPT
model’s performance on F1-Norm suffered.



5 Results

In Table 2, we compare our solutions with the cur-
rent state-of-the-art solution, which serves as a
baseline for the task. The competition evaluates
performance using two metrics: F1-Norm and F1-
NER. Our primary focus was on the F1-NER met-
ric, where the Custom + GPT model demonstrates
performance comparable to the baseline and signif-
icantly higher than both the mean and median. The
GPT few-shot submission also achieved results
above both the mean and median for both metrics.
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A Classification prompt

For tweet classification we used the following
prompt:

You will be provided with a tweet.
Summarise it into a brief sentence and
highlight already happened adverse drug
events (ADE) if there are any related to
drugs.

Format:
Summary: {text}
ADE: {text or null}

Tweet:

nnn

{tweet}

nnn

The model generates two lines in the output:
"Summary" and "ADE." In our submission, we
utilize only the "ADE" field. The intention be-
hind the "Summary" field was to classify summa-
rized tweets instead of the original text, potentially
simplifying the task by producing summaries in
a unified language and style. Unfortunately, this
hypothesis did not hold. GPT likely omits impor-
tant keywords common to many ADE-containing
tweets, or the semantics of the generated text do not
match the original tweet. It is probable that using a
"rewrite" instruction instead of "summarize" would
have been more effective.

B ADE extraction prompt

For mining text spans containing ADEs we used
the following prompt:
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You will be provided with a tweet.
Your task is to identify and highlight
any adverse drug events (ADEs) mentioned
in relation to drug use. Only the
exact phrases describing the ADEs should
be outputted, without including any
additional context. Each ADE should
be listed on a new line. If the same
ADE is mentioned multiple times, each
occurrence should be listed separately.
If multiple different ADEs are identified
within the same tweet, they should be
listed on separate lines. If no ADEs are
found, output "null”.

Format:
SPAN: {text or null}

Samples:

Tweet:

””Gser

if avelox has hurt your liver, avoid
tylenol always, as it further damages
liver, eat grapefruit wunless taking

cardiac drugs

nnn

SPAN: hurt your liver

Tweet:

losing it. could not remember the word
power strip. wonder which drug is doing
this memory lapse thing. my guess the
cymbalta. helps

SPAN: not remember

SPAN: memory lapse

Tweet:

is adderall a performance enhancing drug
for mathletes?

nnn

SPAN:

null

Tweet:

nnn

{tweet}

nnn

Since the most of tweets will be filtered out dur-
ing the classification step, and token classification

is more complex task, than sequence classification,
the prompt contains more instructions and output
samples.



