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Abstract

The escalating prevalence of food safety in-
cidents within the food supply chain necessi-
tates immediate action to protect consumers.
These incidents encompass a spectrum of is-
sues, including food product contamination
and deliberate food and feed adulteration for
economic gain leading to outbreaks and re-
calls. Understanding the origins and path-
ways of contamination is imperative for pre-
vention and mitigation. In this paper, we in-
troduce FORCE (Foodborne disease Outbreak
and ReCall Event extraction from openweb).
Our proposed model leverages a multi-tasking
sequence labeling architecture in conjunction
with transformer-based document embeddings.
We have compiled a substantial annotated cor-
pus comprising relevant articles published be-
tween 2011 and 2023 to train and evaluate
the model. The dataset will be publicly re-
leased with the paper. The event detection
model demonstrates fair accuracy in identifying
food-related incidents and outbreaks associated
with organizations, as assessed through cross-
validation techniques.

1 Introduction

The escalating number of food safety concerns re-
mains a source of significant apprehension(Amico
et al., 2018; Kase et al., 2017; Boatemaa et al.,
2019; Nerín et al., 2016; Kase et al., 2017). Glob-
ally, foodborne diseases continue to plague popula-
tions and stand as leading contributors to both ill-
ness and mortality(Bouzembrak and Marvin, 2016;
Potter et al., 2012; Pádua et al., 2019; Lüth et al.,
2019). Recent estimates have identified norovirus
and Campylobacter as the most common reason
behind foodborne illnesses, while fatalities have
been associated with non-typhoidal Salmonella en-
terica, Salmonella Typhi, Taenia solium, hepatitis
A virus, and aflatoxin(Djekic et al., 2017; Kleter
et al., 2009; Bouzembrak and Marvin, 2019).

One of the repercussions of food safety issues is

the necessity for food recalls, which pose substan-
tial economic threats to both businesses and nations
alike(Deng et al., 2016). This underscores the im-
perative of uncovering the root causes behind these
incidents and the factors contributing to contami-
nation (Zhou et al., 2020). Cross-contamination in
food and beverages is a multifaceted issue that can
transpire at various stages of the food processing
chain, including external raw food contamination,
transportation, cleaning processes, heating, food
packaging, and even during food storage. Contami-
nation events resulting in outbreaks can manifest at
any point before, during, or after food processing
(Scallan and Mahon, 2012; Gupta et al., 2004).

Consequently, the pivotal task of identifying the
origins of contamination or the triggers for recalls
is of paramount importance (Hall et al., 2013). It is
essential to gain insights into potential sources and
pathways of contamination leading to foodborne
outbreaks and product recalls, and to devise effec-
tive measures for prevention(Tao et al., 2020; Zhou
et al., 2021; Jin et al., 2020; Marvin et al., 2017). It
is worth noting that there is a dearth of substantial
work in the development of computational and/or
analytical models addressing these concerns(Allard
et al., 2016; Moumni Abdou et al., 2019). This
scarcity of research can largely be attributed to the
limited availability of data concerning the contribu-
tory factors associated with food safety incidents.
As such, there is a pressing need to develop an
automated tool that can mine reported food safety
incidents and recalls to bridge this knowledge gap.

Applications of language technologies and data
science for food-borne risk assessment are gaining
ground(Harris et al., 2017; Altenburger and Ho,
2019; Maharana et al., 2019; Deng et al., 2021).
data-intensive systems play important roles in track-
ing food-borne illness cases and agents(Pujahari
and Khan, 2022; Oldroyd et al., 2021; Nychas et al.,
2021; Gupta et al., 2004; Scallan and Mahon, 2012;
Wang et al., 2021). Examples at the US federal
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level include PulseNet (Swaminathan et al., 2001),
the National Antimicrobial Resistance Monitoring
System (NARMS) (Gupta et al., 2004), FoodNet
(Scallan and Mahon, 2012), and the National Out-
break Reporting System (Hall et al., 2013). Im-
plementation of whole-genome sequencing (WGS)
in surveillance and outbreak investigation has fu-
eled an explosion of publicly available foodborne
pathogen genomes in new systems such as Genome-
Trakr (Allard et al., 2016), EnteroBase (Zhou et al.,
2020), and the National Center for Biotechnology
Information’s Pathogen Detection. These works are
primarily focused on a) identifying the sentiment
polarity of the documents, and b) identifying the
occurrences of a set of predefined types of entities
and events. However, none of the above works per-
form deep linguistic analysis of the textual contents
to identify food-related incidents based only on the
linguistic structure of the text. The model presented
in this paper is distinct from the earlier approaches
since it is capable of detecting novel and hereto-
fore unknown incidents from reports based only on
semantic and linguistic analysis of content.

Keeping in mind the above-mentioned require-
ments of end users, in this work we propose an
event detection model that can identify food safety-
related insights, recalls, and outbreaks mentioned
in regulatory reports and social media platforms.
The proposed model uses a multi-tasking sequence
labeling architecture that works with transformer-
based document embeddings. We have created
a large annotated corpus containing relevant arti-
cles published by multiple regulatory agencies over
twelve years (2011 - 2023) for training and evaluat-
ing the model. The dataset will be publicly released
with this paper. The model has been thereafter ap-
plied to recent publications. Aggregate analysis of
these extracted insights reveals interesting trends.

2 Dataset Creation

The dataset comprises regulatory news articles
from two sources namely, a) A corpus of 6000
regulatory articles comprising around 121080 sen-
tences, under Outbreak(O) and Recall(R) cate-
gories published between 2011 and 2023 by Food
Safety News (FSN)1 and b) A collection of around
2200 news articles from United States Food and
Drug Administration (FDA) recall and outbreak an-
nouncements2. All together there are 8100 articles.

1https://www.foodsafetynews.com/
2https://www.fda.gov/safety

All the news articles were manually annotated
to mark the various target entities. The annotation
was done by multiple annotators following a rigor-
ous procedure to ensure acceptable inter-annotator
agreement.

The entities and events to be identified by the
annotators are as follows:

Target Organization (TO): Of the many orga-
nization names that may appear in a document and
are detected by the NER earlier, the task during
annotation is to identify and tag the organization
whose product has been recalled.

Product Name (P): The name of the product
that has been recalled or caused the outbreak.

Infection Name (I): The name of the bacterial
infection mentioned in the report that causes the
outbreak/recall.

Safety Incident (SI) - Annotators have to tag
phrases or sequences of words that collectively are
indicative of the food safety incident.

Cause of Incident (CI) - Annotators have to
tag phrases or sequences of words that indicate the
primary cause of the food safety incident.

Number of People Affected (N): Annotators
have to tag phrases or sequences of words that
collectively are indicative of a number of people
affected due to the outbreak.

To help the annotators, each document is first
processed using the Stanford NER (Manning et al.,
2014) to obtain the organization names, locations,
and currency values as named entities. This helps
in quick localization of the first four elements, if
present in the document. The annotators are do-
main experts who are knowledgeable about the
domain.

16 annotators took part in the annotation, with
each expert annotating 700 documents using the
Stanford simple manual annotation tool3. This in-
cluded 200 documents, which were sent to all the
annotators to compute the inter-annotator agree-
ment later. The average length of a document is
around 23 sentences. The experts read each docu-
ment and performed the following tasks,

Task-1: - Label sentences of each document
as Food Recall - if the document reported events
of a product recall or Disease Outbreak - if the
document mentions events that report an foodborne
disease outbreak or NEUTRAL- in case none of
the above factors hold.

Task-2: - This task had two components: (a)

3https://nlp.stanford.edu/software/
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From among the named entities, the target organi-
zation, product name, infection, and locations were
marked, if any, and (b) Mark phrases in the text that
indicate food safety incidents, and its cause. At the
end of the annotation, each word in the document is
assigned a label TO, P, I, SI, CI, N, or None. Table
3 in A.2 illustrates the annotation with some exam-
ple News texts. For the sake of understanding, we
have shown labels of only the phrases that belong
to any one of the following classes {TO, P, I, SI,
CI, L, or N}.

Using the annotations obtained for 200 common
documents, we measured the inter-annotator agree-
ment using the Fleiss Kappa (Fleiss et al., 1981)
measure (κ). This is computed as: κ = P̄−P̄e

1−P̄e
The

factor 1 − P̄e gives the degree of agreement that
is attainable above chance, and P̄ − P̄e gives the
degree of agreement achieved above chance. It was
observed that the inter-annotator score for Task-1
was 0.83, which is appreciably high. For Task 2,
it was found to be 0.71. The scores are computed
using word-label matches assigned by different an-
notators. The very high scores indicate that all ex-
perts were marking fairly uniformly and therefore,
the expert annotated dataset is reliable to be used
for training incident detection systems. Out of the
165,080 sentences from 82000 documents, around
27500 sentences were found to contain words be-
longing to at least one type mentioned in the inci-
dent knowledge schema. Altogether, we obtained
13000 safety incidents, 12100 causes, 2223 Tar-
get Organizations, 3300 locations, 4695 product
names, and 4101 infection names. The entire anno-
tated data will be publicly released with this paper.

Model Model Name Sequence
No. Classification

P R F1
I. Single task CNN-BiLSTM 0.63 0.59 0.62
II. Single task PreTrained BERT 0.75 0.72 0.73
III. Single-task-BERT-CNN-BiLSTM 0.72 0.75 0.73
IV. LLAMA-2 0.75 0.79 0.78
V. Mistral7B 0.73 0.79 0.77
VI. Multi-task BERT-CNN-BiLSTM 0.83 0.89 0.86

Table 1: Results reporting accuracy of classifying food
safety events as Food Recall or Disease Outbreak.

3 A Multi-tasking Neural Model for Food
Safety Knowledge Extraction

The proposed model works on each sentence at
a time to detect elements of interest that are de-
fined in the incident knowledge schema. Multi-task
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Figure 1: Distribution of occurrences of recalled prod-
ucts.

learning utilizes the correlation between related
tasks to improve classification by learning tasks in
parallel. In the present work, the two related tasks
are task-1: classifying a sentence into either Recall
or Outbreak classes as discussed earlier and task-2:
labeling appropriate phrases in the text as per the
incident knowledge schema.

A cascaded CNN-BiLSTM layer for the com-
bined tasks of sentence classification and sequence
label prediction, using the fine-tuned BERT for
creating the sequence embeddings.

To obtain the multi-tasking model for dual tasks
of sequence classification and sequence labeling,
the BERT−CNN−BiLSTM layers have been
trained with two separate loss functions L1 and
L2. Where, L1(θ) = −∑M

t=1

∑K
k=1 ȳ

k
t log(yt) and

L2(θ) = −∑N
t=1

∑J
j=1 q̄

i,j
t log(qit).

Here, qt is the vector representation of the pre-
dicted output of the model for the input word wi

t. K
and J are the number of class labels for each task.
The model is fine-tuned end-to-end by minimizing
the cross-entropy loss.

We define the joint loss function using a linear
combination of the loss functions of the two tasks:

Ljoint(θ) = λ∗L1(θ)+(1−λ)∗I[ysentence==1]∗L2(θ) (1)

Where λ controls the contribution of losses of
the individual tasks in the overall joint loss.
I[ysentence==1] is an indicator function that acti-
vates the loss only when the corresponding sen-
tence classification label is 1 since we do not want
to back-propagate sequence labeling loss when the
corresponding sequence classification label is 0.

4 Evaluation and Results

The performance of the proposed model has been
compared with a number of baseline models used
for single-objective document classification and
sequence labeling tasks as well as large language
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Model Sequence labeling task
No. TO P I SI CI N

P R F P R F P R F P R F P R F P R F
I. 0.76 0.78 0.77 0.71 0.67 0.69 0.77 0.78 0.77 0.72 0.77 0.74 0.77 0.8 0.78 0.72 0.78 0.72
II. 0.77 0.78 0.78 0.69 0.74 0.71 0.79 0.77 0.78 0.78 0.75 0.76 0.74 0.75 0.76 0.78 0.80 0.79
III. 0.80 0.81 0.80 0.71 0.75 0.73 0.76 0.86 0.80 0.78 0.79 0.78 0.75 0.76 0.75 0.78 0.77 0.78
IV. 0.82 0.87 0.84 0.75 0.79 0.77 0.82 0.86 0.82 0.78 0.79 0.78 0.78 0.72 0.75 0.84 0.89 0.86
V. 0.82 0.89 0.85 0.80 0.82 0.81 0.82 0.87 0.83 0.76 0.79 0.78 0.78 0.79 0.79 0.92 0.90 0.91
VI. 0.81 0.89 0.84 0.79 0.83 0.80 0.82 0.87 0.84 0.82 0.90 0.84 0.85 0.91 0.88 0.86 0.88 0.88

Table 2: Results reporting the performance of the food safety incident and entity extraction task.
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Figure 2: Distribution of germs found in the recalled
products.

models like LLAMA-2 7B and fined-tuned Mistral
7B. Table 1 presents the precision, recall, and F1
scores of classifying food safety events as food
recall or disease outbreak. We have obtained the
highest F1 score of 0.86 with a high precision of
0.89.

Table 2 presents the accuracy of subsequent la-
beling of word sequences within a sentence by their
respective categories - TO, P, I, SI, CI, or N, as de-
scribed earlier. For both the cases, the performance
of the proposed multi-objective architecture has
been compared with several baseline state-of-the-
art models designed with single objective functions.
It was observed that for most of the classes like,
S, SI and CI, the Multi-task BERT-CNN-BiLSTM
model significantly outperforms the baseline mod-
els. On the other hand, mistral-7B model trained
over the given dataset performs better recognizing
the TO, P and N classes.

The primary reason for the poor performance of
LLAMA-2 as well as mistral-7B can be attributed
due to two reasons: a) lack of environmental do-
main knowledge due to which critical domain con-
cepts like, Salmonella, Listeria monocytogenes and
E.Coli gets ignored. b) Unable to identify phrase
boundaries. We observe that despite in most of the

cases LLAMA-2 correctly identified the safety inci-
dent and cause phrases, but the span of the phrases
are either too long or too short. as a results of
which outputs of the model get penalized. Similar
observations were made for mistral 7B, however,
since the mistral model is fine-tuned over the cur-
rent dataset, problems related to domain concept
mismatch were relatively less. However, the output
word span detection for incident and causes still
remains a challenge.

Apart from the classification and extraction of
food Safety incidents, it is equally important to per-
form some basic analytics on the dataset. Figure
1 shows the distribution of the top five causes of
food recall across different locations in the United
States. In general, we have observed that infec-
tions such as Salmonella, Listeria monocytogenes
and E.Coli are the biggest causes of food recall in
the United States. Figure 2 depicts the top food
products that contain the aforementioned germs.

5 Conclusion

In this paper we present resource creation and
extraction of critical information related to food
safety and food-borne infection from regulatory
reports and social media platforms. The proposed
model, founded on a multi-tasking sequence label-
ing architecture integrated with transformer-based
document embeddings, demonstrates its effective-
ness in this task. To develop and evaluate our
model, we meticulously curated an annotated cor-
pus comprising pertinent articles. Our initial anal-
ysis demonstrate the proposed multi-task model
surpasses the performance of almost all the base-
line models including LLMs such as LLAMA-27B
and finetuned mistral-7B.
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A Appendix

A.1 Fine-tuning the BERT language model
The basic BERTbase model was first fine-tuned
with a portion of the food safety corpus using over-
sampling, to create FoodSafety-BERT, referred to
as FS-BERT hereafter. A labeled document is bro-
ken into multiple smaller chunks, such that each
chunk can be fed as a unit to BERTbase to cre-
ate its corresponding vector. Each chunk is asso-
ciated with a label that is the same as its parent
document. A classification task is now defined
with these chunks during which the basic BERT
model is fine-tuned while training. This model is
designed as a fully connected layer over the BERT
base model, with softmax as the activation function.
Training was done with learning rate set to 2×10−5

using the Adam optimizer (Kingma and Ba, 2014).
The model is fine-tuned for a few epochs (3-4) only
to avoid over-fitting. The chunk representations
are saved from the CLS token embeddings created
during the process. The fine-tuned BERT model,
FS-BERT, is subsequently used for document and
incident recognition tasks.

A.2 Example Annotation Sentences
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[ORGName]/TO of Poughkeepsie, NY, is [recalling its 2-lb., 5-lb. and 15-lb. boxes]/SI of
"[Abady Highest Quality Maintenance & Growth Formula for Cats]/P" because they have the
[potential to be contaminated with Salmonella]/CI.
[ORGName]/TO of Brampton, Ontario, [recalled 36 pounds of fully cooked pork baby back ribs in
recalled 36 pounds of fully cooked pork baby back ribs in] /SI today because they were not presented for in-
spection at the U.S. border. The problem was discovered when U.S. Department of Agriculture Food
Safety and Inspection Service import staff reviewed records and discovered that the independent third-
party carrier [did not present a product for USDA inspection at the U.S.-Canadian border]/CI. According to a
Public Health Alert released by FSIS, being recalled are 18-pound cases containing 1.5-pound packages of
"[Cobblestone Farms Fully Cooked Pork Baby Back Ribs in Honey Garlic Barbeque Sauce]/P" bearing package
code “Sell By 2015-AL-08” and case code “15201” bearing the Canadian mark of inspection with establish-
ment number “624.” The product was distributed to a retailer in [New York]/L. In its announcement, FSIS stated
that it is working on solutions to prevent future failure-to-present episodes from occurring, including outreach to
industry, foreign food-safety agencies, and importers.
A Listeria outbreak in the [Midwest]/L linked to [one death]/N and a miscarriage likely was caused by
[contamination during the cheese-making process]/CI, according to a new report from the U.S. Centers for Disease
Control and Prevention. The Minnesota Department of Agriculture tested samples of the cheese from two retail
outlets, revealing the outbreak strain to be [Listeria monocytogenes]/I.
About [96,000 pounds]/SI of [Oscar Mayer Classic Wieners]/P [were recalled]/SI Sunday by [ORGName]/TO of
Columbia, MO, because of a [packaging error]/CI.
[ORGName]/TO of Detroit, MI, is [recalling approximately 1.8 million pounds]/SI of [ground beef products]/P
that may be [contaminated with E. coli O157:H7]/CI, the U.S. Department of Agriculture’s Food Safety and
Inspection Service (FSIS) announced Monday. At the time that the recall was issued, there were [11 illnesses]/N
linked to the recalled product.

Table 3: Sample Food Safety News texts with the respective annotated entities and events. Note that all the target
organization names were intentionally masked by the token [ORGName] to maintain anonymity.
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