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Abstract

Adverse drug events (ADEs) pose major pub-
lic health risks, with traditional reporting sys-
tems often failing to capture them. Our pro-
posed pipeline, called Deep-LLMADEminer,
used natural language processing approaches
to tackle this issue for #SMM4H 2024 shared
task 1. Using annotated tweets, we built a three
part pipeline: RoBERTa for classification, GPT-
4-turbo for span extraction, and BioBERT for
normalization. Our models achieved F1-scores
of 0.838, 0.306, and 0.354, respectively, of-
fering a novel system for Task 1 and similar
pharmacovigilance tasks.

1 Introduction

Adverse drug events (ADESs) are significant public
health challenges, contributing to substantial mor-
bidity and mortality (Watson et al., 2019). Effec-
tive pharmacovigilance, essential for ensuring the
safe use of medications, struggles with the under-
reporting of adverse drug reactions (ADRs), with
estimates indicating that over 90% of ADRs go un-
reported (Hazell and Shakir, 2006). Social media
offers a novel avenue for real-time, patient-centered
insights into ADRs, supplementing traditional data
sources. We developed the Deep-LLMADEminer
pipeline for the SMM4H-2024 Task 1 (Xu et al.,
2024) to extract and normalize ADEs from English-
language tweets. This study aims to assess the per-
formance of the three-part pipeline in extracting
and normalizing ADEs from tweets.

2 The Deep-LLMADEminer pipeline

In step 1, we train a classifier to detect the pres-
ence of ADEs in tweets. In step 2, we train a large
language model (LLM) to extract ADE entities
and their spans from tweet text. Finally, in step
3, we train a classifier to map the extracted ADE
entities to formal IDs in the MedDRA ontology',

"MedDRA® the Medical Dictionary for Regulatory Ac-
tivities terminology is the international medical terminology

a standardized hierarchical medical terminology
(Fig. 1). The #SMM4H 2024 Task 1 dataset (Xu
et al., 2024) comprised of 17,974 training tweets
annotated with 1,711 ADE mentions and 959 val-
idation tweets annotated with 87 ADE mentions.
Additionally, 11,799 test tweets were provided for
model evaluation.
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Figure 1: Deep-LLMADEminer pipeline

2.1 Step 1: ADE Classification

Using the RoBERTa-base model (Liu et al., 2019),
we developed a binary classification system to iden-
tify tweets containing adverse drug event (ADE)
mentions. The preprocessing involved removing
HTML tags, URLSs, user mentions, hashtags (con-
verted to plain text), special non-ASCII characters,
punctuation, and excess whitespace, and convert-
ing all text to lowercase. We fine-tuned RoBERTa
on a labeled dataset, where each tweet was tok-
enized and encoded into input IDs, attention masks,
and token-type IDs. Key training parameters were:
epochs=8, maximum sequence length=256 tokens,
and batch size=16, learning rate=1e-5. The out-
put was processed through a linear layer to clas-
sify tweets as containing or not containing ADR
mentions. Our workflow for step 1 included data
loading, preprocessing, training, validation with
mthe auspices of the International Council for

Harmonisation of Technical Requirements for Pharmaceuti-
cals for Human Use (ICH).
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cross-entropy loss, and evaluation of accuracy.

2.2 Step 2: ADE Span Extraction

In step 2 of ADE span extraction, we employed the
GPT-4 model via the OpenAl API (Achiam et al.,
2023) to develop a text span detection method for
extracting adverse drug events (ADEs) from tweets.
Data preprocessing involved merging datasets that
contained tweets with ADE mentions. Various
prompts were experimented with to enhance the
model’s detection capabilities. We provided the
model with 50 examples of tweets from training
examples using around 10 different prompts. We
explored the impacts of linguistic variations in our
prompts to optimize the detection of adverse drug
events from tweets. Specifically, we conducted ex-
periments with 10 distinct prompts that varied pri-
marily in verb usage, terminology, and the one-shot
example. These variations included the use of dif-
ferent verbs such as "identify," "extract," and com-
binations of both. Additionally, we experimented
with terminological changes, alternating between
"adverse drug reactions" and "adverse drug effects"
to assess any differences in model performance.
For our experimental setup, each prompt was tested
with a one-shot example tailored to illustrate the
specific wording of the prompt. This approach al-
lowed us to evaluate the model’s responsiveness to
linguistic nuances in a controlled manner. We did
not record the results for each prompt but the most
effective following prompt format is derived from
testing these prompts. The final specific system
message was used to guide the model: “Identify
and extract the text of adverse drug effects from the
tweets in square brackets.” An example-based few-
shot learning approach provided the model with
specific examples to cover a wide range of ADE
instances. For instance, a prompt used was: “[I
feel like a pile of crap #sick #cold #stomach re-
acting to some antibiotics. I will never again take
#ciprofloxacin #withdrawal gives you chills],” with
the model extracting and formatting the response
accordingly. The parameter temperature is set to
0 to minimize randomness, fostering deterministic
responses from the model. We employ a top_p
value of 0.95, which allows the model to consider
a broader set of possible responses, enhancing the
diversity of the output while still focusing on the
most probable ones. Both frequency_penalty
and presence_penalty are set to 0, indicating no
additional constraints on the frequency or presence
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of terms in the generated text, thus not artificially
influencing the model’s natural language process-
ing capabilities. These settings collectively ensure
that our model interactions are precisely tailored to
maximize accuracy and consistency in identifying
and extracting relevant text spans for pharmacovig-
ilance analysis. We also implemented a function to
find and return the start and end indices of detected
ADE texts.

2.3 Step 3: ADE Normalization

For ADE normalization, we fine-tuned
BioBERT (Lee et al., 2020) to map the ex-
tracted ADE mentions from tweets to their
respective  MedDRA Preferred Terms (PTs),
making it a multiclass classification task. The
preprocessing involved converting all ADE men-
tions to PT ID levels, utilizing a comprehensive
dictionary containing approximately 80,000
entries. This facilitated the accurate alignment
of lower-level term (LLT) IDs with PT IDs.
The training configurations were: epochs=8,
batch size=16, and learning rate=5e-5. Our
methodological pipeline comprised data loading,
preprocessing to ensure consistent ID levels, and
model training on processed data. Subsequent
evaluation on validation data assessed the model’s
performance, ensuring effective normalization of
tweets to corresponding PT IDs for enhanced phar-
macovigilance. Other attempts to further enhance
performance included fine-tuning GPT3.5 Turbo
with 1,711 normalization examples. However, time
constraints prevented a full evaluation.

3 Results
Models Accuracy F1 Precision Recall
Validation Set (n=932)
(1) RoBERTa  0.955 0.838 0.817 0.862
Evaluation Test Set
(2) GPT-4 - 0.306 0.378 0.338
(3) BioBERT - 0.354 0.395 0.321

Table 1: Performance on the unseen validation set for
step 1 and the evaluation test set for steps 2 and 3.

Table 1 includes the performance metrics of
RoBERTa on the unseen validation set (n=932) for
step 1. We ultimately selected RoOBERTa for ADE
Classification with an F1-score of 0.838. It also
shows the performance metrics on the evaluation
dataset for steps 2 and 3. We employed models



from GPT-4 for ADE span extraction, achieving
an Fl-score of 0.306, and utilized BioBERT for
ADE normalization, which achieved an F1-score of
0.354. The effectiveness of ADE normalization in
step 3 is influenced by the quality of the extracted
ADE spans in the preceding task. Therefore, the rel-
atively modest F1 score in step 2 directly impacted
the overall performance in step 3.

To facilitate further development and reproduca-
bility, we have shared the implementation code for
our system participation on GitHub.?

4 Conclusion

In our submission to the #SMM4H 2024 Task 1, we
evaluated models for ADE classification, span ex-
traction, and normalization steps using ROBERTa,
GPT-4, and BioBERT, respectively. Despite some
model errors in identification and resource limi-
tations, our methods remained efficient and cost-
effective.. Future work will focus on refining these
models and addressing data imbalance to improve
ADE detection and reporting. Specifically, for step
1, we plan to implement weighting strategies to
correct dataset imbalance for more balanced and
improved outcomes. For step 2, increasing the
number of training examples will potentially boost
model accuracy. For step 3, we aim to fine-tune
hyperparameters based on validation datasets to
enhance model performance.

Limitations

Our approach was not without limitations. In step
1, our methods did not address the potential is-
sue of database imbalance; in step 2, we limited
ourselves to one-shot learning to minimize costs;
and in step 3, we avoided fine-tuning due to the
high costs and lengthy training times associated
with such processes. Additionally, we utilized the
Unified Medical Language System (UMLS) to ob-
tain synonyms for enhancing our normalization
efforts in step 3. However, due to the large dataset
size and limited training time, we couldn’t fully
leverage this approach to improve our performance.
Addressing these issues and exploring these addi-
tional strategies can potentially lead to improved
overall performance. Finally, the notable perfor-
mance drop in Task 2 bottlenecks performance in
Task 3, which challenges the utility of the over-

>The software code, written in Python, is available for
research use at: https://github.com/NLP4HealthUMich/Deep-
LLMADEminer

all pipeline. Further optimization should prioritize
Task 2 performance for the more practical utility of
the full end-to-end system.
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