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Abstract

This study describes the approach of Team
ADE Oracle for Task 1 of the Social Media
Mining for Health Applications (#SMM4H)
2024 shared task. Task 1 challenges partic-
ipants to detect adverse drug events (ADEs)
within English tweets and normalize these men-
tions against the Medical Dictionary for Regu-
latory Activities standards. Our approach uti-
lized a two-stage NLP pipeline consisting of a
named entity recognition model, retrained to
recognize ADEs, followed by vector similar-
ity assessment with a RoOBERTa-based model.
Despite achieving a relatively high recall of
37.4% in the extraction of ADEs, indicative
of effective identification of potential ADEs,
our model encountered challenges with preci-
sion. We found marked discrepancies between
recall and precision between the test set and
our validation set, which underscores the need
for further efforts to prevent overfitting and en-
hance the model’s generalization capabilities
for practical applications.

1 Introduction

This paper outlines Team ADE Oracle’s partici-
pation in the 9th Social Media Mining for Health
Research and Applications (#SMM4H) 2024 work-
shop’s Task 1 (Xu et al., 2024), which involved
extracting and normalizing adverse drug events
(ADESs) from tweets into Medical Dictionary for
Regulatory Activities (MedDRA) terms'. The task
complexity increased in 2024 by combining ADE
detection with normalization, a challenge height-
ened by the informal and diverse language used on
social media (Xu et al., 2024). Addressing ADEs
through social media enhances pharmacovigilance,
providing critical data for public health interven-
tions (Huynh et al., 2016; Alimova and Tutubalina,
2019; Vydiswaran et al., 2019; Magge et al., 2021;
Liu et al., 2022; Lee et al., 2023). Our approach
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employed a spaCy-based NLP pipeline, retrain-
ing a Named Entity Recognition (NER) module
to extract ADEs, and a RoBERTa model for align-
ing text with MedDRA standards (Weissenbacher
et al., 2022), navigating the trade-offs between re-
call and precision. While our system effectively
identified many ADEs, the prevalence of false pos-
itives points to a need for further refinement to
enhance the accuracy and utility of our methods for
public health surveillance.

2 Dataset

This study employed the #SMM4H 2024 Task
1 dataset, comprising 30,949 tweets distributed
across 18,185 training, 965 validation, and 11,799
test tweets (Klein et al., 2024; Xu et al., 2024).

3 System Description

Our methodology for the #SMM4H 2024 Task 1
involves a two-stage process: We use an NER pack-
age to extract ADEs, followed by the normalization
of these entities against the MedDRA using vector
similarity techniques (Yazdani et al., 2023a,b).

3.1 Preprocessing

For preprocessing the dataset, we implemented a
two-step approach to optimize data for training. Ini-
tially, all labeled entities representing ADEs were
converted to lowercase to ensure consistency and
address case discrepancies between labels and their
occurrences in the tweet text. Subsequently, we em-
ployed the tokenizer? from the blank, spaCy "en"
model? to tokenize the text (Dai et al., 2017).

3.2 NER for ADE Extraction

We chose to use the blank spaCy model "en"
for training a customized NER model tailored

2ht’cps: //spacy.io/api/tokenizer
Shttps://spacy.io/usage/models
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to the extraction of ADE entities due to its ro-
bust handling of English syntax and adaptability
to the specialized domain of pharmacovigilance
(Dai et al., 2017; Jiang et al., 2022). Specifi-
cally, we trained the model’s span categorizer*
component to identify and label ADE spans within
tweets effectively. The span categorizer com-
prises two main components: a suggester func-
tion and a labeler model. The suggester function,
employing the spacy.ngram_suggester.v1l, was se-
lected to propose candidate spans with designated
lengths—specifically one to five tokens. These
candidates, which may overlap, are presented in
a ragged array format comprising two columns
that denote the start and end positions of each span.
Subsequently, the labeler model evaluates each can-
didate span, assigning the ADE label as appropriate
based on the predictive outcomes.

This model was trained on the 18,185 labeled
tweets of the official training set. Optimization was
achieved over 49 epochs with a batch size of 8 and
a dropout rate of 0.5, selecting the best-performing
iteration for our analyses.

3.3 Vectorization and Normalization

For the normalization stage, we employed the base
model RoBERTa to vectorize the ADE entities and
MedDRA entries (Liu et al., 2019; Gencoglu, 2020;
Weissenbacher et al., 2022). We did not further fine-
tune the base ROBERTa model, as our focus was
solely on utilizing its semantic representation capa-
bilities. We extracted and vectorized ADE entities
from the validation set using our span categorizer,
and vectorized the textual descriptions of MedDRA
adverse event terms. The MedDRA vectors were
stored in a vector database from Facebook’s Faiss
library, which is designed for efficient similarity
searching of dense vectors at scale (Johnson et al.,
2019; Douze et al., 2024). We then iterated through
our extracted entities and used Euclidean distance
(L2 distance) to identify the closest match between
each ADE entity vector and the MedDRA term
vectors in the database.

3.4 Evaluation Metrics

The performance of our NER model in identifying
ADE:s, along with the pipeline’s effectiveness in
matching ADEs to MedDRA terms, was evaluated
using the official metrics of #SMM4H 2024 Task
1, specifically F1, precision, and recall.

4ht’cps ://spacy.io/api/spancategorizer

Task & Metric F1 P R

ADE Extraction 16.6 15.1 184
ADE Normalization 8.4 7.5 94

Table 1: Validation Set Scores for ADE Tasks

Task & Metric F1 P R
ADE Extr. official 13.2 8.0 374
ADE Norm. official 82 5.0 237

ADE Norm. unseen IDs 14 0.7 10.0

Table 2: Comprehensive Test Set Scores for ADE Tasks

4 Results

Our system consisting of the NER model for ADE
extraction and RoOBERTa for the normalization task
is evaluated in Tables 1 and 2 on the validation set
and the official test set, respectively.

4.1 ADE Extraction

Table 2 shows that the ADE extraction model
achieved an F1 of 13.2 on the test set, with pre-
cision and recall scores of 8.0% and 37.4%, respec-
tively. These results highlight the model’s higher
success in recall, indicating its effectiveness in iden-
tifying ADE mentions. However, the model’s low
precision of 8.0% highlights a significant challenge
in specificity. The model’s unexpectedly high recall
on the test set compared to the validation set, where
recall and precision were more balanced, indicates
differences in the distribution and complexity of
the validation and test set.

4.2 ADE Normalization

For ADE normalization, the official scores in Ta-
ble 2 show a precision of 5.0%, a recall of 23.7%,
and an F1 of 8.2. Additionally, when evaluating the
model’s performance on previously unseen Med-
DRA IDs, it returned significantly lower metrics
(precision: 0.7%, recall: 10.0%, F1: 1.4). This con-
siderable drop suggests challenges in generalizing
to new, unseen ADE terms, reflecting potential lim-
itations in the model’s generalizing capability. The
results on the validation set were somewhat con-
sistent, with an F1-score of 8.4 and slightly lower
precision and recall of 7.5% and 9.4%, respectively.

4.3 Discussion

Our results point to the challenges inherent in
biomedical NLP tasks, especially in balancing pre-
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cision and recall and generalizing to new data. The
low precision observed shows issues with general-
izability beyond training data in NER. The results
may also reflect the complexities of social media
language, complicating ADE detection and normal-
ization.

Moreover, the differences in results between
validation and official test data underline the im-
portance of robust cross-validation strategies to
mimic real-world performance and prevent overfit-
ting. Further efforts need to focus on integrating
domain-specific knowledge bases to heighten nor-
malization accuracy and better manage new ADE
identifiers.

5 Conclusion

Our contribution to #SMM4H 2024 Task 1 consists
of an NER model retrained to identify ADEs and
a similarity-based RoBERTa model to normalize
them. The findings from our system underline the
challenges and opportunities presented by the use
of NLP in detecting and normalizing ADEs from
social media. Despite achieving high recall, our
model’s low precision highlights a significant chal-
lenge in accurately identifying relevant ADEs amid
the informal language prevalent on platforms like
Twitter. Furthermore, the task has demonstrated
that while our current methodology is capable of
initial identification, it falls short in scenarios in-
volving generalizing to data different from the train-
ing data, which is crucial for practical applications.

For future work, we will investigate enhancing
model precision through advanced linguistic analy-
sis, employing models pre-tuned on ADE datasets,
fine-tuning RoBERTa for vectorization of ADE
entities and MedDRA entries, and incorporating
additional ADE data.
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