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Abstract
Web-crawled corpora offer an abundant source of training data for language models. However, they are generally
noisy and are typically filtered using heuristic rules or classifiers. These methods require careful tuning or labeling
by fluent speakers. In this paper, we assess the effectiveness of commonly applied rules on TQ-IS, a manually
labeled text quality dataset for Icelandic. Additionally, we advocate for the utilization of unsupervised clustering and
outlier detection algorithms for filtering. These algorithms are language-independent, computationally efficient and
do not require language expertise. Using grid search, we find the optimal configuration for every combination of
rules, optimizing for F1 score on TQ-IS. For a rule-based approach, we discover that optimal results can be achieved
with only a small subset of the full ruleset. Using five rules, we obtain an F1 score of 98.2%. We then evaluate
three unsupervised algorithms, i.e., Gaussian Mixture Models (GMMs), Isolation Forests and One-Class SVMs.
Our findings reveal that unsupervised algorithms perform well on the TQ-IS dataset, with GMMs obtaining the best
results, comparable to those obtained with the rule-based approach. Finally, we show that unsupervised methods
appear to be equally suitable for languages other than Icelandic, including Estonian and Basque.
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1. Introduction

Researchers increasingly rely on vast amounts of
web-crawled text in order to pre-train language mod-
els. Although a valuable resource, web-crawled cor-
pora are often noisy, containing a large number of
low-quality documents that, in sufficient quantities,
can degrade downstream performance (Kreutzer
et al., 2022; Muennighoff et al., 2023). This in-
cludes text that may be poorly machine-translated,
error-prone, corrupted or incoherent.

The exact definition of “noisy” or “low-quality” text
varies and is subject to interpretation. However, it
is well established that filtering web-crawled cor-
pora can significantly improve the downstream per-
formance of pre-trained language models (Wen-
zek et al., 2020; Brown et al., 2020; Raffel et al.,
2020; Muennighoff et al., 2023). Filtering is typi-
cally performed using classifiers or threshold-based
rules. In the rule-based approach, documents are
filtered out if certain metrics, such as their mean
word length, fall outside a predefined acceptable
range (Rae et al., 2022). Alternatively, a classifier
may be used to label or score documents based
on their quality. This includes supervised classi-
fiers, trained on a manually labeled text quality
dataset (Wu et al., 2021), and self-supervised clas-
sifiers, trained to distinguish between documents
from a high-quality, curated corpus and a noisy,
web-crawled corpus (Brown et al., 2020). The ef-
fectiveness of these approaches depends heavily
on the choice of metrics and thresholds for the rule-

based approach, and features, parameters, train-
ing data and model type for the classifier-based
approach. Moreover, accurate evaluation can only
be achieved with the help of fluent speakers.

There is no standardized approach to rule-based
text quality filtering. Some corpora are filtered
based on only a single metric (Wenzek et al., 2020;
Muennighoff et al., 2023), while others combine as
many as 15 distinct rules (Öhman et al., 2023). As
the size of the ruleset increases, it can become
more difficult to determine the impact that individ-
ual rules might have on the overall effectiveness
of the filtering process, whether positive or nega-
tive. Rules that may be effective when evaluated
individually can become redundant as more rules
are added to the ruleset. Conversely, a rule that
appears ineffective on its own may become more
useful when applied in conjunction with other rules.
Using TQ-IS (Daðason, 2024), a manually labeled
text quality dataset for Icelandic, we perform exper-
iments to better understand how commonly applied
rules interact with one another.

A review of the current literature on text quality fil-
tering reveals two prevailing strategies for selecting
either threshold values for rules, or parameters for
classifiers. For rules, thresholds may simply be se-
lected based on linguistic intuition (Rae et al., 2022;
Laurençon et al., 2022; Öhman et al., 2023). Alter-
natively, parameters or thresholds may be chosen
through statistical analysis, such as aligning the dis-
tribution of the filtered corpus with that of a known
high-quality corpus, or by selecting thresholds that
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discard a certain proportion of the documents, ef-
fectively filtering out outliers (Brown et al., 2020;
Muennighoff et al., 2023; Nguyen et al., 2023). In
either case, the quality of the chosen thresholds or
parameters can only be assessed through empiri-
cal validation. In practice, this may involve either
manually labeling a portion of the target corpus
for evaluation (Wu et al., 2021), or comparing the
downstream performance of language models that
have been pre-trained on filtered and unfiltered ver-
sions of the corpus (Raffel et al., 2020).

In this paper, we analyze several unfiltered web-
crawled corpora, visualizing the distribution of their
documents based on metrics that are commonly
employed in a rule-based approach. In each cor-
pus, we find that there exists a distinct, large and
well-defined cluster of high-quality documents. In
contrast, low-quality documents appear as out-
liers in these distributions. We find that in TQ-
IS, the boundaries of these high-quality clusters
align closely to optimal threshold values discovered
through exhaustive grid search. On the basis of
these findings, we also describe a novel text quality
classifier by reframing the task as an outlier detec-
tion problem. We evaluate three types of clustering
and outlier detection algorithms on TQ-IS, the main
benefit of which is their unsupervised nature and ex-
plainability. This allows their few parameters to be
quickly tuned through iterative experimentation and
visualization of their decision boundaries, without
the need for fluency in the target language.

The main contributions of our work are the fol-
lowing:

• A thorough evaluation of the effectiveness of
commonly used text filtering rules on a man-
ually labeled text quality dataset. We demon-
strate that only a few rules are needed to obtain
optimal results. Furthermore, we show that
visualizing documents in a web-crawled cor-
pus based on the metrics targeted by the rules
reveals a large, well-defined cluster of high-
quality documents, and that close to optimal
threshold values can be found at the edges of
this cluster.

• An exploration of how well unsupervised clus-
tering and outlier detection algorithms perform
on the task of text quality filtering. We find that
they can obtain comparable results to a rule-
based approach, without requiring fluency in
the target language or time-consuming param-
eter optimization.

The rest of this paper is organized as follows. In
Section 2, we discuss related work, and in Section
3, the Icelandic Text Quality Dataset. Commonly
employed document-level rules are presented in
Section 4, and three types of outlier detection algo-
rithms in Section 5. The experimental setup and

our results are presented in Sections 6 and 7, re-
spectively. Finally, we conclude in Section 8.

2. Related Work

Common Crawl (CC) is an organization that main-
tains a massive repository of data crawled from over
25 billion websites.1 There are many web-crawled
corpora that are derived from the CC dataset, such
as the Multilingual Colossal Clean Crawled Corpus
(mC4), which consists of 6.3T tokens in 101 lan-
guages (Xue et al., 2021). The mC4 corpus has
only been lightly filtered with regard to text quality. A
language classifier was used to identify the primary
language of each document, duplicate occurrences
of three line spans were discarded, and lines that
did not end on a terminal punctuation mark were
removed.

MassiveText is an English-language corpus con-
sisting of 2.35 trillion tokens, created for pre-training
the Gopher language model (Rae et al., 2022). It
is composed of several curated and web-crawled
corpora. One of the web-crawled subcorpora is
MassiveWeb, which contains 506 billion tokens,
collected using a custom HTML scraper. It was
filtered using a set of seven heuristic rules. These
rules include discarding documents if their mean
word length falls outside a specified range or if they
do not contain a minimum number of unique stop
words. The authors find that the filtering results
in a lower validation loss when pre-training a 1.5B
parameter version of the Gopher model.

ROOTS is a large, multilingual text corpus span-
ning 46 natural languages, combined from a collec-
tion of mono- and multilingual language resources,
both curated and web-crawled (Laurençon et al.,
2022). The corpus was filtered using a set of seven
heuristic rules which, for example, enforce a max-
imum perplexity score, a maximum word repeti-
tion ratio and a minimum language classification
confidence. The thresholds for the rules were de-
termined by fluent speakers for each language.
ROOTS has been used to pre-train language mod-
els such as BLOOM (Scao et al., 2023).

CulturaX (Nguyen et al., 2023) is a web-crawled
corpus that was obtained by combining multiple
web-crawled corpora, all of which are derived from
Common Crawl. It consists of 6.3 trillion tokens in
167 languages and is filtered using the same rules
as were used for the ROOTS corpus. For each lan-
guage, the authors apply a variant of the interquar-
tile range (IQR) method (Dekking et al., 2005) by
considering the distribution of each metric and set-
ting minimum thresholds at the 10th percentile and
maximum thresholds at the 90th percentile. In total,
about 39% of the documents are discarded using
these settings.

1https://commoncrawl.org/about/

https://commoncrawl.org/about/
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Young et al. (2024) combine heuristic rules, clas-
sifiers, and unsupervised semantic clustering to
filter a large, web-crawled corpus consisting of doc-
uments in Chinese and English. The rules are used
to discard documents based on their length, ratio
of special symbols, ratio of short, incomplete or
consecutive sentences, and other metrics. The
thresholds for the rules are determined using the
IQR method described above. Classifiers are used
to filter documents based on their perplexity as well
as quality, coherence, and safety scores. Finally,
documents in the corpus are grouped by seman-
tic similarity and each cluster is annotated with a
quality label. The effectiveness of these filters is
not reported.

We have previously evaluated several text quality
classifiers on web-crawled corpora in Icelandic, Es-
tonian and Basque (Daðason and Loftsson, 2024).
We found that the classifiers performed well on the
TQ-IS dataset, with a supervised classifier obtain-
ing an F1 score of 99.01%. However, for all three
languages, we observed only a very modest benefit
to downstream performance after filtering the web-
crawled corpora, potentially owing to their relatively
small size. For this reason, we omit an evaluation
on downstream tasks in this work.

3. TQ-IS

TQ-IS (Daðason, 2024) is a dataset that consists of
2,000 unique documents that were sampled from
several web-crawled corpora, such as the Icelandic
Crawled Corpus (Daðason, 2021) and the Icelandic
subset of the mC4 dataset. Each document con-
tains between 50 to 500 space-delimited tokens.
The source corpora have primarily been filtered
using language classifiers and by enforcing a mini-
mum token or character count, but have otherwise
undergone minimal filtering with regard to text qual-
ity. Each document in TQ-IS was manually labeled
as either high or low-quality, based on specific anno-
tation guidelines presented in (Daðason and Lofts-
son, 2024). The two categories are equally repre-
sented in the dataset.

There is no precise definition of what constitutes
a high or low-quality document when it comes to
pre-training language models, beyond the impact
(positive or negative) that it may have on the model
with regard to downstream performance. It is diffi-
cult to know where exactly the line between these
two categories of documents lies. Therefore, TQ-
IS only includes documents that were considered
to be clear-cut examples of each category. Docu-
ments were labeled as high-quality if they primarily
consist of running text in the form of sequences of
full, grammatically structured sentences that are
connected in a meaningful and coherent way. High-
quality documents contains few errors, if any, and

the text is properly capitalized and punctuated. Doc-
uments that are disjointed, incoherent, error-prone,
repetitive, or largely consist of non-Icelandic, non-
running, or non-linguistic text were classified as
low-quality. For a more detailed overview of what
we consider to be low or high-quality text, we refer
to the TQ-IS annotation guidelines.

4. Rules

Rules are typically applied on the token, line, sen-
tence, paragraph, or document level. More granu-
lar filtering methods can result in more text being
preserved, but this may come at the cost of mak-
ing filtered documents less coherent. Furthermore,
tokenization and sentence and paragraph segmen-
tation errors may degrade the quality of filters that
rely on their accuracy, especially in noisy corpora.
For this reason, we only consider document-level fil-
tering in this paper. We describe 12 document-level
rules that were used to filter the ROOTS and Mas-
siveWeb corpora, and propose one additional rule
based on our analysis of low-quality documents in
the TQ-IS dataset. All 13 rules, described in this
section, are included in our experiments.

4.1. ROOTS
In our experiments, we evaluate several rules that
were used to filter the ROOTS corpus. We omit
one rule that discards documents if they contain
too many sexually explicit words, as such word lists
are not readily available for all languages. We also
exclude a rule that discards documents containing
too many or too few words, as documents in TQ-IS
are already limited to between 50 and 500 space-
delimited tokens in length.

Perplexity A language model is used to calculate
the perplexity score of a document, giving an esti-
mate of how likely it is that the model could generate
the same text. The less predictable the text is, the
higher its perplexity score will be. A high perplexity
score means that the document differs from the
language model’s training corpus in some respect.
When used to discriminate between low and high-
quality documents, perplexity is usually calculated
using a language model that has been trained on
a curated corpus containing minimal noise. This
ensures that low-quality documents should tend to
receive higher perplexity scores than high-quality
documents. Documents with a perplexity score
above a certain threshold are discarded.

Character Repetition Ratio This rule targets
documents that have a high proportion of repeated
character n-grams. This ratio is calculated as the
number of frequently occurring character n-grams
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divided by the total number of character n-grams.
A high ratio can be indicative of a document that
largely consists of automatically generated text
(e.g., log files) or text-based visuals (e.g., ASCII
art). If the character repetition ratio exceeds a max-
imum threshold, it is discarded.

Word Repetition Ratio Similarly, the word repe-
tition ratio of a document is calculated by dividing
the number of frequently repeated words by the
total number of words it contains. A high word rep-
etition ratio may suggest that a document contains
a large amount of spam or content intended for
search engine optimization (e.g., keywords that are
repeated in an effort to increase search rankings)
or automatically generated text. Documents with a
high word repetition ratio are discarded.

Special Character Ratio Documents that con-
tain a large proportion of non-alphabetic charac-
ters, such as emojis, Unicode symbols, digits and
punctuation marks may be corrupted (e.g., due to
incorrect character encoding) or otherwise contain
a limited amount of natural language text. If the
special character ratio within a document exceeds
a certain maximum threshold, it is discarded.

Stop Word Ratio In the context of text quality
filtering, stop words generally consist of common
function words, i.e., words that serve a syntactically
and grammatically important purpose, but lack any
significant meaning on their own. This generally
includes word classes such as conjunctions, prepo-
sitions, pronouns and articles. A document that has
a very low ratio of stop words is unlikely to contain
coherent, running text in a natural language.

Language Confidence Score A language clas-
sifier is used to determine the primary language
of each document. If the primary language is not
targeted for inclusion in the corpus, or if the confi-
dence falls below a certain threshold, the document
is discarded.

4.2. MassiveWeb
We also consider the rules that were used to filter
the MassiveWeb corpus. We omit one rule that
enforces a minimum and maximum word length for
documents.

Mean Word Length If the mean word length
within a document falls outside an expected range,
it could suggest that the document is malformed
(e.g., poorly digitized text where spaces have been
frequently inserted or removed) or does not contain
text in a natural language. Only documents with

a mean word length within a specified range are
retained.

Symbol to Word Ratio If a document contains a
high ratio of hashtag or ellipsis characters to words,
it may suggest that the documents consists in large
part of keywords or text that has been truncated. If
this ratio exceeds a maximum threshold, the docu-
ment is discarded.

Initial Bullet Point Ratio Documents that contain
a large number of lines beginning with a bullet point
likely consist primarily of itemized lists rather than
running text. If the ratio of such lines is too high,
the document is discarded.

Trailing Ellipsis Ratio If a large proportion of
lines in a document end with an ellipsis, it may
suggest that it contains a large amount of truncated
text. This indicates that the text in the document
may be incoherent. If this ratio exceeds a maximum
threshold, the line is discarded.

Alphabetic Character Ratio A low ratio of tokens
containing at least one alphabetic character within
a document may suggest that the text is primarily
non-linguistic. If the ratio falls below a minimum
threshold, the document is discarded.

Stop Word Count If the document does not con-
tain at least two unique stop words, it is discarded.
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Figure 1: The distribution of documents in the TQ-
IS dataset based on their perplexity score and their
stop word ratio. High-quality documents form a
single, dense cluster with a large number of low-
quality outliers. The red, dashed line shows the
optimal perplexity and stop word ratio thresholds
that were found using grid search.

4.3. Other Rules
Finally, we propose one additional rule based on
our observations on the TQ-IS dataset.
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Mean Subword Length Subword tokenizers pro-
cess out-of-vocabulary tokens by breaking them
down into sequences of known subwords (Wu et al.,
2016). When documents contain a large amount of
foreign words, numbers, URLs, or other tokens that
might not exist in the tokenizer’s vocabulary, they
tend to get broken down into many, short subwords.
We propose a new rule that discards documents
with a mean subword length (i.e., average num-
ber of characters per subword) that falls below a
minimum threshold.

5. Outlier Detection

A visualization of feature pairs in TQ-IS, shown
in Figure 1, reveals that high-quality documents
form a single, dense and well-defined cluster. Low-
quality documents, on the other hand, are most
densely distributed in areas around the high-quality
cluster, growing more sparse the further away they
are. This suggests that it may be possible to ac-
curately classify documents as low or high-quality
using unsupervised clustering or outlier detection al-
gorithms. We evaluate three such algorithms which
are described in the following sections. For these
algorithms, we use the same features that were
used for the rule-based approach (e.g., perplexity,
character repetition ratio, word repetition ratio, and
so on).

5.1. Gaussian Mixture Model
A Gaussian Mixture Model (GMM) is a probabilistic
model that can be used to estimate the parame-
ters (means, covariances and mixture weights) of
Gaussian distributions within a dataset. It can be
used as a clustering algorithm under the assump-
tion that each Gaussian distribution corresponds to
a distinct cluster. Unlike density-based clustering
algorithms, GMM is parametric and offers a soft
clustering approach. This means that it can be fit-
ted to one dataset and then used to probabilistically
assign each data point in another dataset to these
clusters.

5.2. Outlier Detection Algorithms
We also evaluate One-Class Support Vector Ma-
chines (OCSVM) (Schölkopf et al., 2001) and Isola-
tion Forests (Liu et al., 2008), two outlier detection
algorithms that are based on fundamentally differ-
ent strategies. OCSVMs map the dataset into a
higher-dimensional feature space using a kernel
function. They then attempt to find the smallest
possible boundary that encapsulates the densest
region of the data, while maximizing the distance
between the boundary and the feature space’s ori-
gin. Data points that fall outside this boundary are
considered to be outliers.

Isolation Forests generate an ensemble of binary
trees (i.e., a forest) for a dataset, by repeatedly and
randomly splitting the data until all data points have
been isolated. Each data point is scored based on
the average number of splits required to isolate it
across all trees. A data point with a low average
score is regarded as an outlier under the assump-
tion that outliers are few and different.

6. Experimental Setup

In this section, we describe how we extract certain
metrics from documents, our choice of languages
for evaluation, how we apply grid search to optimize
the thresholds for the rule-based approach, and
how we tune the parameters of the clustering and
outlier detection algorithms. We release the code
used for our experiments with an open license.2

6.1. Feature Extraction
Extracting features from a document is usually a
straightforward process, although some features
require additional considerations. In order to cal-
culate perplexity, we follow the general approach
described by Guillaume et al. (2020), where the
curated corpus is first processed by a subword
tokenizer and an n-gram model is trained on the
processed corpus. We choose to use a bigram
model and a byte-pair encoding tokenizer with a
vocabulary of 32k, following the results obtained by
Daðason and Loftsson (2024). We use the same
tokenizer to calculate the mean subword length of
a document.

Character and word repetition ratios are calcu-
lated based on the proportion of recurring n-grams.
We evaluate character n-gram sizes between 2 and
20 and word n-gram sizes between 2 and 10. For
each rule, we choose whichever size yields the
highest F1 score when applied to the TQ-IS corpus
in conjunction with other rules. While the optimal
threshold value varies with n-gram size, the overall
impact of both rules remains consistent. Based on
our experiments, we calculate 5-gram word and
10-gram character repetition ratios.

We use the langid.py library for Python (Lui and
Baldwin, 2012) to calculate a language confidence
score for each document in TQ-IS. For documents
where the primary language is not Icelandic, we
set the confidence score to zero.

6.2. Language Selection
We evaluate the methods on a selection of three
languages: Icelandic, Estonian and Basque. All
three languages are reasonably well represented in

2The code used for our experiments is available at
https://github.com/jonfd/tq-is.

https://github.com/jonfd/tq-is
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Language Curated (tokens) mC4 (tokens)
Icelandic 1.7B 1.1B
Estonian 505M 3.0B
Basque 288M 576M

Table 1: The number of space-delimited tokens
in the curated and web-crawled corpora for each
language.

the mC4 corpus and, for each language, there ex-
ists a publicly available, high-quality curated corpus.
Additionally, for Icelandic, TQ-IS (see Section 3)
allows us to accurately assess the effectiveness of
different text filtering approaches. Each language
belongs to a different language family, with Ice-
landic being Indo-European, Estonian being Finno-
Ugric and Basque being a language isolate. This
represents a diverse selection of morphologically
rich languages that should present a significant test
for the robustness of any text filtering technique.

These three languages can hardly be catego-
rized as under-resourced languages anymore. Na-
tional Language Technology (LT) Programmes
have been established both for Icelandic (Nikulás-
dóttir et al., 2020; Nikulásdóttir et al., 2022) and
Estonian (Vider et al., 2012), and the development
of LT in Basque Country has quite a long history
(Alegria and Sarasola, 2017). However, as shown
in Section 7.5, our results indicate that the unsu-
pervised methods proposed in this paper should
be applicable to under-resourced languages.

6.3. Corpora
We derive all web-crawled corpora from the mC4
corpus (Xue et al., 2020). For the curated corpora,
which are used to learn the vocabulary for the sub-
word tokenizer and to train the n-gram language
model for calculating perplexity, we use the Ice-
landic Gigaword Corpus (IGC) for Icelandic (Barkar-
son et al., 2022) described in Steingrímsson et al.
(2018), the Estonian National Corpus (ENC) for
Estonian (Koppel and Kallas, 2022a), described
in Koppel and Kallas (2022b), and Euscrawl for
Basque (Artetxe et al., 2022a), described in Artetxe
et al. (2022b). For each corpus, we do not include
any subcorpora that were obtained from noisy web-
crawled sources, such as Common Crawl. The
total size of each corpus is shown in Table 1.

6.4. Threshold Optimization
To optimize the F1 score on the TQ-IS dataset, we
conduct a grid search with 10-fold cross-validation
to determine the best combination of rules and
thresholds. For each rule, we consider a range of
values starting just before the point where the first

false negative is produced (i.e., high-quality docu-
ment misclassified as low-quality) and extending to
where an F1 score of 95% becomes unattainable.

Given the large search space for the full ruleset,
we initially focus on individual rules, finding the
threshold that optimizes their F1 score. We select
the highest-scoring rule and then determine optimal
thresholds and F1 scores for all possible pairings
with the remaining rules. We then select the rule
that yields the largest improvement to the F1 score.
We repeat this process iteratively until all available
rules have been selected, or the F1 score cannot
be improved further.

6.5. Outlier Detection
For Icelandic, we optimize the parameters of each
algorithm to achieve the highest possible F1 score
on the TQ-IS dataset. For Estonian and Basque,
we use the optimal parameters for Icelandic as a
starting point, iteratively adjusting them, if needed,
by visual inspection until we deem their predictions
to be subjectively satisfactory.

For the three clustering and outlier detection algo-
rithms, we use the implementation from the scikit-
learn library for Python (Pedregosa et al., 2011).
As OCSVM is sensitive to the presence of extreme
outliers, we scale the features using scikit-learn’s
robust scaler. For GMM, we instead trim the training
set by discarding any document with a perplexity
value of 4,000 or higher. We find that this produces
better results than using the robust scaler.

Our experiments show that, when measured in
terms of optimal F1 scores, GMM models perform
best when trained on a noisy, web-crawled corpus,
while OCSVM and Isolation Forest models achieve
better results when trained on a high-quality cor-
pus. Therefore, to obtain the optimal parameters
for Icelandic, we fit a GMM model to the Icelandic
subset of the mC4 corpus, and the OCSVM and
Isolation Forest models to the IGC. We train each
model on a sample of 50,000 documents, as we
find that larger training sets do not yield improved
results. We then create a stratified 10-fold split of
TQ-IS, in each fold using 90% of the documents as
a validation set and the remaining 10% as a test set.
We select the parameters that obtain the highest
average F1 score on the validation sets.

7. Results

In this section, we detail the results of our exper-
iments with heuristic rules as well as the cluster-
ing and outlier detection algorithms. For each ap-
proach, we report F1 scores that were obtained
on the TQ-IS dataset and visualize the predictions
made by the best performing algorithm on the Ice-
landic, Estonian and Basque subsets of the mC4
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corpus.

7.1. Rule-based Approach
When performing a grid search on the TQ-IS
dataset, our results show that perplexity is the sin-
gle most effective feature when it comes to dis-
cerning between low and high-quality documents.
When evaluated individually, we find the optimal
maximum perplexity threshold to be 400, which
yields an average F1 score of 94.58%. We observe
that the optimal threshold is relaxed significantly
when other rules are included in the grid search,
rising to 460 for the optimal ruleset.

For TQ-IS, we find that the optimal F1 score is
obtained when applying a combination of five rules,
leaving eight rules unused. This includes all six
rules that were used to filter the MassiveWeb cor-
pus (see Section 4.2), as well as the character rep-
etition ratio and language confidence rules used
for the ROOTS corpus. The rules and their overall
impact are shown in Table 2.

Metric Ratio F1 score
Perplexity 44.85% 94.06%
+ Stop word ratio 35.25% 97.48%
+ Mean subword length 40.50% 97.86%
+ Word repetition ratio 5.80% 98.15%
+ Special character ratio 13.60% 98.20%

Table 2: Optimal ruleset and thresholds obtained
for the TQ-IS dataset using cross-validated grid
search. The rules appear in decreasing order of
impact. The table shows the F1 score of each rule
when applied in conjunction with the rules above
it, and the ratio of documents that fall outside the
optimal threshold for each metric. In total, 50.2%
of the documents are filtered with these rules.

Method Features F1 score
GMM PPL/SWR/MSL 98.32%
OCSVM PPL/SWR 96.40%
Isolation Forest PPL/SWR/MSL 97.52%

Table 3: F1 scores obtained on TQ-IS using outlier
detection models with optimized parameters (as
described in Section 6.5). The GMM and Isola-
tion Forest models obtained the best results using
perplexity (PPL), stop word ratio (SWR) and mean
subword length (MSL) as features, while OCSVM
performed best using only perplexity and stop word
ratio.

If we do not consider rules that require additional
resources beyond a high-quality corpus (e.g., the
stop word ratio) or additional tuning (e.g., character
and word repetition ratios, which are n-gram based),

we obtain an optimal F1 score of 97.43% using only
rules for perplexity and mean subword length. This
may prove to be a reasonable approach for large,
multilingual corpora, given the relatively low penalty
that is incurred to the F1 score.

7.2. Interquartile Range

We also evaluate the IQR method for selecting min-
imum and maximum thresholds, as described by
Nguyen et al. (2023) (see Section 2). In this ap-
proach, all thresholds are configured to discard the
exact same proportion of documents. For example,
we might set the maximum perplexity, word repe-
tition and special character ratio thresholds to the
90th percentile, and minimum stop word and mean
subword length thresholds to the 10th percentile.
Using the IQR method, we find the optimal ratio for
the five rules shown in Table 2 to be 27%, which re-
sults in an F1 score of only 91.53%, a notably lower
score than was obtained through grid search. Hav-
ing each rule discard the same proportion of doc-
uments results in some rules being underutilized
(e.g., perplexity and mean subword length) and
others being applied much too aggressively (e.g.,
word repetition ratio). Table 2 shows that under op-
timal settings, each rule classifies between 5.8% to
44.9% of the documents as low quality. Choosing
a threshold somewhere in between leads to poor
overall results. We therefore conclude that IQR
is not an ideal approach to approximating optimal
thresholds for text quality filtering.

7.3. Outlier Detection

The results for the three clustering and outlier detec-
tion algorithms are shown in Table 3. We observe
that the optimal set of features for all three meth-
ods is smaller than the number of metrics used
for the optimal rule-based approach, with OCSVM
using only two features. This may be explained, in
part, by the fact that the modest benefit to F1 score
offered by some rules, such as word repetition ra-
tio (+0.29%) and special character ratio (+0.05%),
may not make up for the cost of increasing the
dimensionality of the data by adding a new feature.

7.4. Gaussian Mixture Model
Visualization

We have shown that clustering and outlier detec-
tion algorithms obtain good results on the TQ-IS
dataset. In order to determine whether the same
holds true for larger, web-crawled corpora in other
languages, we train GMMs on the Icelandic, Esto-
nian and Basque subsets of the mC4 corpus and
visualize the predictions they make. The results
can be seen in Figure 2.
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Figure 2: A visualization of the predictions made by GMMs on the Icelandic, Estonian and Basque subsets
of the mC4 corpus. A scatter plot showing approximately 1,000 predictions made by each model is
overlaid on a hexbin plot which depicts the distribution of documents in mC4 based on their perplexity
and mean subword length.

First, we note that all three subsets share the
same characteristics, having a single, large, ellip-
tical cluster, surrounded by outliers that become
more sparse the further away they are from the
cluster. The distribution of the documents largely
matches what we observed in TQ-IS, as shown in
Figure 1. With a low perplexity value and a high
mean subword length, it is easy to conclude that
all three clusters consist primarily of high-quality
documents. The predictions made by the GMMs
for each language fully agree with our evaluation.
While we lack text quality datasets for Estonian and
Basque, we feel that this visualization is a strong
indicator that clustering and outlier detection algo-
rithms are well suited for text quality filtering in most
languages.

7.5. Impact of Training Set Size

To determine the impact of training set size on the
performance of the three models, we evaluate them
on a variety of training set sizes, ranging from 100 to
30,000 documents. For each size, we sample ten
distinct training sets from the appropriate corpus
(mC4 for GMM and IGC for OCSVM and Isolation
Forests) and report the average F1 score obtained
on TQ-IS.

As Figure 3 shows, we observe significantly di-
minished returns for all three methods after increas-
ing the training set size to around 5,000 documents.
Notably, the GMM model appears to be the most
robust of the three, maintaining the most stable
score and exhibiting the smallest standard devia-
tion. These results indicate that the methods are
likely to be effective even for under-resourced lan-
guages where web-crawled text may be limited.
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Figure 3: Average F1 scores obtained by the three
clustering and outlier detection algorithms on TQ-
IS. The results show that a GMM performs very well
even when fitted only to a handful of web-crawled
documents, and that OCSVM and Isolation Forest
models only require a small number of high-quality
documents to be able to effectively identify low-
quality outliers.

8. Conclusion

In this paper, we have evaluated the effectiveness
of a large number of commonly applied heuristic
rules for text quality filtering, both individually and
when applied in conjunction with one another. We
have demonstrated that perplexity is the most ef-
fective metric, by far, when it comes to discerning
between low and high-quality documents. We have
also shown that optimal results can be obtained
with only the use of a handful of rules. Optimal rule-
sets and thresholds may differ between corpora and
languages depending on their characteristics. How-
ever, we have shown that visualizing the distribution
of documents within a corpus based on target met-
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rics can reveal close to optimal threshold values
in an intuitive manner, avoiding time-consuming
analysis, manual labeling or guesswork.

Furthermore, we have proposed a novel ap-
proach to text quality filtering based on clustering
and outlier detection algorithms. In particular, we
find that the results obtained by a GMM-based ap-
proach can match those obtained with a rule-based
approach, where the optimal set of rules and thresh-
olds have been derived from a manually labeled
dataset. The key benefits of this approach is that
it does not require time-consuming feature engi-
neering or threshold or parameter optimization, the
creation of any manually labeled data or language
expertise for the languages that are being filtered.
Finally, our experiments indicate that the cluster-
ing and outlier detection algorithms are likely to be
effective for under-resourced languages.

For future work, we intend to investigate how
different categories of low-quality text impact the
quality of pre-trained language models, particularly
with regard to downstream performance. By an-
swering these questions, we hope to gain a bet-
ter understanding of how to improve text quality
datasets such as TQ-IS, or construct them for other
languages.

9. Limitations

As we lack document-level text quality datasets
other than TQ-IS, we cannot empirically validate
the effectiveness of clustering or outlier detection
algorithms on languages other than Icelandic. How-
ever, as demonstrated in Figure 2, we have shown
that relatively unfiltered web-crawled corpora in sev-
eral languages have the same characteristics that
make these methods so effective on TQ-IS (i.e.,
containing a single well-defined cluster of what the
metrics strongly indicate to be high-quality docu-
ments).
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