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Abstract

Training a semi-supervised end-to-end speech recognition system using noisy student training has significantly
improved performance. However, this approach requires a substantial amount of paired speech-text and unlabeled
speech, which is costly for low-resource languages. Therefore, this paper considers a more extreme case of
semi-supervised end-to-end automatic speech recognition where there are limited paired speech-text, unlabeled
speech (less than five hours), and abundant external text. Firstly, we observe improved performance by training the
model using our previous work on semi-supervised learning “CycleGAN and inter-domain losses” solely with external
text. Secondly, we enhance “CycleGAN and inter-domain losses” by incorporating automatic hyperparameter tuning,
calling “enhanced CycleGAN inter-domain losses.” Thirdly, we integrate it into the noisy student training approach
pipeline for low-resource scenarios. Our experimental results, conducted on six non-English languages from Voxforge
and Common Voice, show a 20% word error rate reduction compared to the baseline teacher model and a 10% word
error rate reduction compared to the baseline best student model, highlighting the significant improvements achieved
through our proposed method.

Keywords: speech recognition, low resource, semi-supervised training, CycleGAN, noisy student training

1. Introduction emerged. NST is an iterative self-training method
that leverages unlabeled data to enhance accuracy,
Over the last decade, there has been a significant ~ particularly in the domains of image classification
improvement in the performance of speech and lan-  and machine translation (Xie et al., 2020). Park et
guage processing technologies, with an increasing  al. adapted and improved NST by employing tech-
number of systems being deployed across mul-  niques such as SpecAugment (Park et al., 2019a,b)
tiple languages and applications. However, the  and incorporating shallow fusion with a language
majority of these efforts have been focused on  model (LM) into the teacher network. Additionally,
a limited set of languages. Given that there are  they introduced a normalized filtering score that
over 6,900 languages worldwide, the biggest chal-  aids in generating enhanced transcripts for train-
lenge today is to quickly and cost-effectively trans-  ing the student network (Park et al., 2020). The
fer speech processing systems to new languages  results demonstrate significant performance on Lib-
with minimal manual effort. In the field of automatic  rispeech (Panayotov et al., 2015) and LibriLight
speech recognition (ASR), semi-supervised end-  (Kahn et al., 2020Db).
to-end (E2E) can be applied to reduce the amount Although NST is simple and effective, it depends
of annotated data. Two prominent approaches in-  on a substantial quantity of paired speech-text to
clude consistency-based and iterative self-training-  train a teacher model, which is used for labeling the
based methods. The consistency-based method  unlabeled speech data that the student model could
focuses on enhancing the model by improving the  train on. For low-resource languages, the paired
representation of input through training a separate  speech-text is expensive. There are techniques
task (Tjandra et al., 2017; Hayashi et al., 2018; that can be explored to address this limitation. One
Renduchintala et al., 2018; Karita et al., 2018;  approach is to leverage pre-trained models, such
Hsu and Glass, 2018; Chung and Glass, 2018; as wav2vec (Schneider et al., 2019), where lever-
Chorowski et al., 2019; Hori et al., 2019; Schnei-  ages transfer learning to learn contextual represen-
der et al., 2019; Baevski et al., 2019; Ling et al., tations from a large corpus of unlabeled speech
2020). The iterative self-training technique utilizes = data. The model can then be fine-tuned for the
augmentation to improve the overall network per-  target domain using unlabeled speech data from
formance (Zavaliagkos et al., 1998; Novotney and  the same target domain. However, this approach
Schwartz, 1998; Thomas et al., 2013; Parthasarathi still requires a reasonable quantity of speech data,
and Strom, 2019; Li et al., 2019; Kahn et al., 2020a;  which is still expensive in low-resource scenario.
Synnaeve et al., 2020; Hsu et al., 2022). Among  Besides, this technique requires multi-stage tuning
the various techniques, a widely recognized ap-  processing which introduces computational cost.
proach known as noisy student training (NST) has ~ How to improve inexpensively the teacher model
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(b) The identity mapping loss. Note
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Figure 1: The framework of CycleGAN and inter-domain losses (Li and Vu, 2022).

in NST remains a key challenge especially in lan-
guage with very small data.

Our previous work “cycle-consistent generative
adversarial networks (CycleGAN) and inter-domain
losses”, which is the dissimilarity between the inter-
mediate representations of encoded speech and
its hypothesis (Li and Vu, 2022), was proposed
for semi-supervised E2E ASR. The architecture is
shown in Figure 1a. CycleGAN and inter-domain
losses (CID) encourage the model to learn the
common representations from the speech and
text. With the advantage of this structure allow-
ing speech and text input, we observe that training
a model by CID with small paired speech-text and
additional external text (without additional speech)
can still improve the ASR performance. Therefore,
we propose leveraging it into the training pipeline
of NST to enhance the teacher model solely using
a large amount of external text. Subsequently, the
improved teacher model generates better labels for
the unlabeled speech, which the student model can
train on.

In this paper, we make several contributions in
the following aspects: Firstly, we observe that train-
ing a model by CID (Li and Vu, 2022) with lots of
external text significantly boosts performance (sub-
section 2.2); Secondly, we enhance CID by incorpo-
rating automatic hyperparameter tuning, calling en-
hanced CID (subsection 2.3); Thirdly, we improve
the NST training pipeline for low-resource scenar-
ios by boosting the teacher model using enhanced
CID (subsection 2.4); Fourthly, we evaluate our
method on six languages on the Voxforge and Com-
mon Voice (section 3 and section 4). The results
demonstrate that our proposed approach achieves
a 20% word error rate reduction (WERR) compared
to the baseline (NST) teacher model, and a 10%
WERR compared to the baseline student model
for most languages. Notably, the improvement of
teacher model is accomplished without the need
for additional speech data. Lastly, we provide an

analysis of the recognition output and cherry-pick
hypothesis (section 5).

For the sake of simplicity, throughout the rest of
this paper, we use the term “paired data” to refer
to “paired speech-text,” the term “unpaired data” to
refer to “unpaired speech-text,” the term “CID” to
refer to the “CycleGAN and inter-domain” approach,
and our proposed NST pipeline designed for low-
resource using CID is denoted as “cNST”.

2. Method
2.1. CycleGAN and Inter-Domain Losses
(CID)

Figure 1a shows the CID architecture, which is
based on semi-supervised E2E speech recogni-
tion and joint CTC-attention E2E (Kim et al., 2017;
Watanabe et al., 2017; Karita et al., 2018). The
encoder is e = é o f when the input is speech. If
the input is text, the encoder is the composition of
text embedding ¢(.) and the share encoder é. i.e.,
¢é o g. The model is trained by jointly CTC-attention
objective on paired data S = {X, Y} and by CID on
unpaired data U = {X', Y’} simultaneously. The
objective is as follows (Karita et al., 2018; Li and
Vu, 2022),

L= aﬁpuir(ev d, S) + (1 - a)ﬁunpair(fa g,¢€,d, U)
(1)
where the supervised ratio « is a tunable parameter.
The supervised objective is negative log like-
lihood of the ground-truth y given the encoded
speech e(x) (Watanabe et al., 2017):

Lpair(e.d,S) =~ > logd(e(x))
(z,y)€S
|yl
- _ Z logHPr(yt|yt—17€(l’))
(mes i1
(2)
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Model paired data unpaired text without LM with LM
(#lines) WER(%) WER(%)
Initial model (M,) Voxforge German (5 hrs.) 0 63.6 63.1
CID model (M) Voxforge German (5 hrs.) 10K (Goldhahn et al., 2012) 38.6 36.3
Voxforge German (5 hrs.) 100K (Goldhahn et al., 2012) 31.2 29.4
Voxforge German (5 hrs.) 300K (Goldhahn et al., 2012) 30.8 29.1

Table 1: WERs on the Voxforg German test set. Note that the initial model is trained by supervised
objective in Equation 2 with five-hour Voxforg German train data, and the CID model (M) is trained with
same five-hour Voxforg German train data and external text from Leipzig corpus (Goldhahn et al., 2012)

via semi-supervised objective in Equation 1.

The unsupervised objective CID consists of the
identity mapping loss, the cycle-consistent inter-
domain loss, and the text-to-text autoencoder loss
with tunable hyperparameter speech-to-text ratio
B €10,1] (Li and Vu, 2022),

[/unpair(fv 9, é7 d7 U) = [fidt(fa g, é? U)
+ ﬂ * Ecyc,dom(.ﬂ g, é» dv U)
+ (1= B) * Liear(g,6,d,U)
(3)

The identity loss enhances the shared encoder é(.)
to preserves important features after translation.
The computation of loss in Figure 1b is as follows,

(4)

where the representation is coming from speech
b= f(x)ortextb = g(y).

The cycle-consistent inter-domain loss is the dis-
similarity between the representations of encoded
speech and its hypothesis, which aims to let net-
works learn common knowledge from speech and
text. The illustration of loss is shown in Figure 1c
and the definition is as follows,

Liar =[1é(b) = bllx

Leye.dom = D(input_B, cycle_B)
= D(e(z), é(g(d(e()))))

where D(.) is a distance measure of the distribu-
tions. In our previous work, we use Maximum Mean
Discrepancy (MMD) because it achieves the best
result (Li and Vu, 2022).

The text-to-text autoencoder loss measures a
negative log-likelihood that the encoder-decoder
network can reconstruct text from unpaired text
(Hinton and Salakhutdinov, 2006; Karita et al.,
2018), see the orange line in Figure 1a. The loss
is defined as follows,

Licat = — »_log Pr(ylé(g(y)))

()

(6)

2.2. CID Solely with External Text

In low-resource settings, acquiring paired data or
speech data can be costly. Therefore, this sec-
tion focus on enhancing the model inexpensively.
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In our previous work (Li and Vu, 2022), we train
model by CID with an equal amount of unlabeled
speech and text. However, training a model by
CID without additional unlabeled speech and with
only external text (i.e., U = {X,Y’}) might still
gain performance improvements. To validate this
hypothesis, Table 1 presents the evaluation of mod-
els on Voxforge German test set. These models
are trained by jointly CTC-attention objective on
paired data S = {X,Y} and by CID on speech
from paired data and text from Leipzig German cor-
pus (Goldhahn et al., 2012) U = {X,Y”’} simulta-
neously. The results demonstrate that CID models
trained with 10K/100K/300K lines of external text
improve WERs from 63.6% to 38.6/31.2/30.8% with-
out involving a language model. Moreover, when
evaluated with a language model, the CID model
improves WERs from 63.1% to 36.3/29.4/29.1%.
These findings highlight the effectiveness of incor-
porating CID with external text to enhance the per-
formance of E2E model. It also indicates that the
CID allows text to benefit not only the language
model (LM) but also the encoder-decoder model.

2.3. Enhanced CID by Incorporating
Automatic Hyperparameter Tuning

Although the CID model achieves a significant re-
duction in character error rate (CERR) across En-
glish datasets, WSJ and Librispeech, as well as
low supervision non-English datasets (Voxforge)
(Li and Vu, 2022), it requires effort to tune the two
hyperparameters, the supervised ratio o and the
speech-to-text ratio 3, for each dataset. To stream-
line the training pipeline, we propose using super-
vised ratio decay and automatic speech-to-text ratio
tuning by performing an operation on the unsuper-
vised losses with all the possible values for the
speech-to-text ratio during the training. The de-
tails are as follows: Firstly, we suggest that the
model obtains lots of guidance from the supervi-
sion data at the early stages of training. Therefore,
« starts at 0.9 for the first three epochs and gradu-
ally decays after three epochs until the training is
completed, which enables the model to explore the



Model supervised ratio o adapted Equation 3 £,,,.;r CER(%)
Baseline(Li and Vu, 2022) 46.9
MIN-UNPAIR-LOSS 0.5 minﬁG{0,0.l,O.Q,...,l.O} Eunpai'r‘ 30.6
MAX-UNPAIR-LOSS 0.5 maxﬁ€{070_170_27___71_0} ﬁunpai'r 39.5
AVG-UNPAIR-LOSS 0.5 Lunpair 50.6
MED-UNPAIR-LOSS 0.5 Median(Lynpair) 50.4
DECAY-MIN-UNPAIR-LOSS decay minge(0,0.1,0.2,...,1.0y Lunpair 29.6
DECAY-MAX-UNPAIR-LOSS decay Max3e{0,0.1,0.2,...,1.0} Lunpair 44 1
DECAY-AVG-UNPAIR-LOSS decay unpair 46.6
DECAY-MED-UNPAIR-LOSS decay Median(Lunpair) 30.3

Table 2: This table compares the CERs on the Common Voice Finnish test set of models with or without
(1) the supervised ratio decay and (2) automatic speech-to-text ratio tuning. We also observe the same
conclusion in six languages test sets from Common Voice and Voxforge.

unpaired data with increased flexibility. Secondly,
we integrate the speech-to-text ratio into the training
process, we propose to use minimal, maximal, av-
erage, or median operations on the unsupervised
losses with 3 from 0.0 to 1.0. Table 2 shows our
proposed adapted unsupervised losses and the cor-
responding CERs on the Common Voice Finnish
test set. This table reveals that the model using min-
imal operation outperforms the ones using other
operations and baseline. The best model is the
model using the supervised ratio decays and mini-
mal operations on the unsupervised losses over S.
We observe the same conclusion in six languages
from Common Voice and Voxforge. Figure 2 and
Figure 3 present the training loss and the accu-
racy of baseline and models trained by our adapted
objective in Table 2. The model using minimal op-
eration on unsupervised loss performs stable and
improved accuracy during the training, whereas the
baseline and other models using maximum, aver-
age, and median operations produce mismatched
training loss and validated loss, as well as fluctu-
ating model accuracy during the training. These
figures resonated with the result from the Table 2,
the model trained by Equation 1 using supervised
ratio decay and performing minimal operation on
unsupervised loss achieves the best performance.

2.4. Noisy Student Training with
CycleGAN and Inter-Domain Losses
(cNST) for Low-Resource Languages

NST for speech recognition is effective when suffi-
cient paired data is available. However, the paired
data and unlabeled speech are often limited in a
low-resource setting. That leads to a low perfor-
mance teacher model, which generates low-quality
labels for unlabeled speech; the training for the
student model can be severely affected, resulting
in inefficient training.

We aim to improve the teacher model with little
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effort and less cost regarding time and finances.
subsection 2.2 demonstrates that the model can be
improved by CID solely with external text. There-
fore, we propose to exploit the enhanced CID in sub-
section 2.3 and external text to improve the teacher
model. A LM is also trained with the in-domain and
external text {Y,Y"’}. The NST algorithm is revised
as follows,

. Train My on S using SpecAugment.

Train M; on S and U = {Y’} by enhanced CID
and using SpecAugment. Set M = M;.

Fuse M with LM and measure performance.

. Generate labelled dataset M (X’) with fused
model.

Mix dataset M (X') and S. Use mixed dataset
to train new model M’ with SpecAugment.

Set M = M’ and go to 3.

where the initial model M is trained with the paired
data S using SpecAugment (Park et al., 2019a),
and we further re-train it at the stage 2 using the
enhanced CID with external text with SpecAug-
ment. At stage 3, the teacher model is then fused
with a LM to generate labels for the unlabeled
speech. Subsequently, the student model is iter-
atively trained with the paired and newly labeled
speech data by the supervised objective. We work
with small data, so it is better to utilize the available
data wisely rather than removing any of it. There-
fore, we simplify the NST training recipe, making
it easily applicable to all languages by discarding
the sophisticated filtering and balancing stages in
(Park et al., 2020).
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Figure 2: The training loss (left) and the accuracy (right) of models using different automatic speech-to-text

ratio tuning defined in Table 2.
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Figure 3: The training loss and accuracy of models using supervised ratio decay and different automatic

speech-to-text ratio tuning defined in Table 2.

3. Experimental Setup

3.1. Dataset

Common Voice is a massively multilingual collec-
tion of transcribed speech, which is also recorded

by user on Mozilla website, and recently it reaches
100 languages (Ardila et al., 2020). We conducted
experiments on a subset of European languages
which has limited data: Hungarian, Finnish and
Greek. Additionally, we ensured that there were
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Figure 4: WERs on the Common Voice (Finnish and Greek) test set against model generations.

Model Voxforge (WER%) Common Voice (WER%)
German ltalien Dutch Hungarian Finnish  Greek
Initial Model (Mo) 63.1 71.2 63.1 84.8 77.4 63.2
Baseline (NST) 49.7 471 58.2 72.0 55.1 34.0
Proposed Method (cNST) 273 42.0 56.3 58.6 48.4 294
WERR % (NST-cNST)/NST 45.1 10.8 3.26 18.6 12.7 13.5

Table 3: WERs comparison between baseline best student model and our proposed cNST best student

model across corpus.

no overlapping sentences or speakers between the
train, development and test set. The data size of
train/development/test sets are in an 80:10:10 ratio
and the test set contains at least two hours speech.
The train set is further split to five hours paired data
and the remaining portion (around three hours to
five hours) is dedicated to the unlabeled speech.
Voxforge consists of user submitted audio clips us-
ing their own microphone (Voxforge.org) and has
eight European languages. Each language has lim-
ited size of data, ranging from approximately eight
to twenty hours. In this paper, we evaluate our
proposed method on German, ltalian and Dutch
languages. The train set is further divide into five
hours paired data, while the remaining portion is
dedicated to the unlabeled speech X’. The Leipzig
corpus, which consists of annual collections of doc-
uments from various sources such as wikis, news,
and the web (Goldhahn et al., 2012), is used as
external text Y’ in the experiment.

3.2. Network Architecture

The semi-supervised E2E model using CycleGAN-
inter-domain losses is implemented under Espnet1
(Watanabe et al., 2018) and (Li and Vu, 2022). The
model consists of three layers of Vgg (Simonyan
and Zisserman, 2015) bidirectional long short-term
memory with projection (Vggblstmp) encoder and
attention based decoder, which is one layer long
short-term memory (LSTM) with 320 units. The text
embedding ¢(.) encodes the labels over {Y, Y’} to
an one-hot vector and process it by one layer bidi-
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rectional long short-term memory (BLSTM). Byte
pair encoding (BPE) (Gage, 1994; Sennrich et al.,
2016) is used for some languages, some have
better performance without using BPE. The input
acoustic feature is 80-bin log-Mel filterbank with
three pitch coefficients. For decoding, we use a
beam search algorithm with beam size of 20. Our
training recipe and code’

4. Result

4.1.

Figure 4 shows WERs on the Common Voice
(Finnish and Greek) test sets against model gener-
ations . We trained the models using our proposed
algorithm cNST in subsection 2.4 and evaluated the
teacher model and all the student models at differ-
ent stages. Based on the observed trend in model
performance, it is evident that the red line (cNST)
demonstrates a steeper progression compared to
the blue line (NST) from M, to M;. This suggests
that the enhanced CID plays a crucial role in accel-
erating the iterative training process and achieving
better results compared to the baseline for all the
model generations. Besides, red and blue lines
fluctuate over the generations, which might be be-
cause the models are over-fitting on the train set,
but it does not hurt the subsequent student model
performance.

WERs against Model Generation

"https://github.com/chiayuli/
Improved-NST-for-low—-resource-language.
git


https://github.com/chiayuli/Improved-NST-for-low-resource-language.git
https://github.com/chiayuli/Improved-NST-for-low-resource-language.git
https://github.com/chiayuli/Improved-NST-for-low-resource-language.git

Models Hypothesis
Ground-Truth es ist sehr besténdig gegen witterungseinflisse und insektenbefall
Initial Model es ist sehr BESTANDIGEN ***** WEITEREN SPATEREN SECKER

Baseline(NST)
CID

es ist sehr BESTANDIGEN ***** WEITEREN EINFLUSSE *** **x*xxixsnsix
es ist sehr BESTANDE gegen WEITERUNGSFLUSSE und IN SEKTEN BEFALL

cNST es ist sehr BESTANDE gegen WEITERUNGSEINFLUSSE und INSEKTEN BEFALL
Ground-Truth der anspruch ist von der Frau auf den Mann Ubergegangen
Initial Model der SPRUCH ist **x **x **xxx == VOLLKOMMEN REGELT

Baseline(NST)
CID

der anspruch iSt khkk kkhkk kkkk kkk kkk kkkk FRE'
ER EINE SPRUCH ist von der frau auf DIE LANDEN Ubergegangen

cNST der anspruch ist von der frau auf DIE LANDEN Ubergegangen
Ground-Truth der Traffic des ersten anbieters wird zum zweiten anbieter weitergeleitet
Initial Model der b DRITTES SPATER NETZwerK KANN NETZwerK GELEITET

Baseline(NST)
CID
cNST

der TRITTE IST ALS anbieters **** *** ZWEI LIETER GELEITET
der TRAFT IST ES ANBIETS werT ZU zweiten anbieter WEITER GELEITET
der TRAFT IST ES anbieters wird ZU zweiten anbieter WEITER GELEITET

Table 4: The hypothesis of all the models on the unlabeled speech from Voxforge German. Note that the
words in uppercase are incorrect compared to the ground-truth and the words in yellow means insertion.

Table 5: The WER, insertion, deletion, and substi-
tution at word level on the Voxforge German test
set. Note that all the results are with the same LM.

Models WER(%) INS DEL SUB
Initial Model 63.1 1.8 20.6 40.7
Baseline 49.7 1.0 21.0 27.9
CID 29.4 3.3 40 220
cNST 27.3 3.2 36 205

4.2. cNST Effectiveness across Corpus

Table 3 presents the performance of our proposed
method, cNST, across various corpora. We ex-
amine the baseline best student model and our
proposed cNST best student model on Voxforge
German, ltalien, Dutch and Common Voice Hun-
garian, Finnish Greek datasets. The result shows
that cNST outperforms the baseline by achieving
at least 10% WERR for most languages. Moreover,
when the initial model performs poorly (above 70%
WER), our proposed cNST successfully reduces
the WERSs to 40~50%, indicating the effectiveness
of our proposed method.

5. Analysis

5.1. Recognition Output

We want to gain insights and the reasons for the
improvements brought about by enhanced CID. Ta-
ble Table 5 presents the WER, insertion, deletion,
and substitution on the test set of Voxforge Ger-
man. The initial model experiences a high num-
ber of deletion errors, which are propagated to the
subsequent student models in the baseline (NST).

However, with enhanced CID, the deletion errors
decrease from 20.6 to 4.0. On the other hand, there
is a side-effect as the insertion errors increase from
1.8 to 3.3. Overall, the subsequent student model
of our proposed cNST achieve the best WER and
better substitution and deletion.

5.2. Cherry-Pick Hypothesis

Some cherry-pick examples in Table 4 demonstrate
that the initial model and baseline experience high
deletion errors. However, the baseline exhibits a fur-
ther worsening of these errors as the student model
undergoes iterative training using labels that con-
tain such errors. This observation resonates with
the findings presented in Table 5. The enhanced
CID model and our proposed cNST successfully re-
duce deletion errors. However, there is still room for
improvement in terms of substitution and insertion
errors. Interestingly, In the last example, if we com-
bine both insertion words “WEITER GELEITET” to
“WEITERGELEITET”, it aligns with the correct word
in the reference. The issue with insertions can be
attributed to inaccurate word boundary predictions
from our proposed models.

6. Conclusion

We enhance the CID by incorporating automatic
hyperparameter tuning and propose an improved
noisy student training that leverages the enhanced
CID for low-resource languages. The enhanced
CID accelerates the iterative self-training process
by sorely utilizing external text. The results demon-
strate the effectiveness of our proposed method
cNST across six non-English languages from two
datasets, surpassing the baseline by 10% WER.
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