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Abstract
How should text dataset sizes be compared across languages? Even for content-matched (parallel) corpora,
UTF-8 encoded text can require a dramatically different number of bytes for different languages. In our work, we
define the byte premium between two languages as the ratio of bytes used to encode content-matched text in
those languages. We compute byte premiums for 1155 languages, and we use linear regressions to estimate
byte premiums for other languages. We release a tool to obtain byte premiums for any two languages, enabling
comparisons of dataset sizes across languages for more equitable multilingual model development and data practices.
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1. Introduction

Large language datasets serve as the foundation
for modern natural language technologies. How-
ever, an often ignored question is how to compare
dataset sizes across languages. For standard multi-
lingual language models such as XLM-R, BLOOM,
and XGLM, dataset sizes are reported in bytes
(Conneau et al., 2020; Scao et al., 2022; Lin et al.,
2022).1 However, content-matched (i.e. parallel)
text in two languages does not generally have the
same size in bytes, with some languages taking
over 5× as many bytes as others (§3).

Here, we compute byte premiums (cf. tokeniza-
tion premiums in Petrov et al., 2024), the ratios of
bytes taken to encode text in 1155 different lan-
guages. We find that these byte premiums are
highly correlated across datasets. We fit linear re-
gressions to estimate byte premiums for languages
not included in our parallel datasets, and we re-
lease a simple Python tool to retrieve or predict the
byte premium between any two languages.2 Our
work enables comparisons of dataset sizes across
languages, with implications for equitable multilin-
gual model development and resource distribution.

*Equal contribution.
1Dataset sizes are also often reported in tokens,

which depend on model-specific tokenizers and which
exhibit similar cross-language disparities to bytes (Petrov
et al., 2024).

2https://github.com/catherinearnett/
byte-premium-tool

2. Related Work

Using UTF-8 encoding, which is by far the most
widespread text encoding (Davis, 2012), charac-
ters take between one and four bytes to encode
(Unicode Consortium, 2022). Numbers and Latin
characters without diacritics are one byte, and all
non-Latin scripts use two or more bytes per charac-
ter. This alone introduces a disparity in measured
dataset sizes in bytes (Costa-jussà et al., 2017),
but it must be balanced with the fact that different
scripts encode different amounts of “information”
per character. For example, Mandarin has high
UTF-8 bytes-per-character, but it generally requires
fewer characters than Latin-script languages to en-
code the same content. To account for this tradeoff,
previous work has used parallel text, finding that
byte-level tokenizers encode parallel text in some
languages using more “tokens” (bytes) than oth-
ers (“tokenization premiums”; Petrov et al., 2024).
We tie these results to dataset storage and training
dataset size measurement, we compute the byte
premium for 1155 languages, and we present a
method to predict the byte premium for novel lan-
guages. All our results use UTF-8 encoded text.

3. Computing Byte Premiums

In this section, we calculate the byte premium
BPA/B for different language pairs, which we de-
fine as the ratio of bytes taken to encode a compa-
rable amount of information in language A relative
to language B. For example, if A on average takes
twice as many UTF-8 bytes to encode the same
information (parallel text) as B, then BPA/B would
be 2.0. These byte premiums are useful when mea-

https://github.com/catherinearnett/byte-premium-tool
https://github.com/catherinearnett/byte-premium-tool
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suring “how much” content is in each language in a
corpus. In multi-parallel corpora, we note that the
byte premiums must satisfy:

BPA/B =
BytesA
BytesC

∗ BytesC
BytesB

=
BPA/C

BPB/C
(1)

This implies that if the byte premium is known
for every language relative to some language C,
then all pairwise byte premiums are determined.
Thus, we only calculate a single byte premium
BPA = BPA/C per language, all relative to ref-
erence language C. We use C = English as our
reference language, but using any other reference
language C0 would simply multiply all our byte pre-
miums by a constant BPC/C0

. In later sections, we
refer to byte premiums relative to English unless
otherwise noted. In contrast to Petrov et al. (2024),
calculating a single byte premium per language
allows byte premiums to be used for multilingual
corpora beyond just pairwise corpora.3

3.1. NLLB
Computing byte premiums requires parallel corpora
in the desired languages. We first use NLLB (Costa-
jussà et al., 2022), a dataset of pairwise parallel text
segments in 188 languages. We sample the first
100K parallel text segments for each language pair
(A,B), and we compute BPA/B as the mean ratio
of bytes used in language A versus B, averaged
over all segments. This produces a byte premium
value for every language pair.

To fit a single byte premium BPA = BPA/C for
each language relative to a reference language
C (in our case English), we minimize the mean
squared error of BPA/BPB relative to the ground
truth BPA/B (Equation 1) over all language pairs
(A,B). In other words, we fit 188 byte premium val-
ues (one per language) based on all 2656 pairwise
byte premium values. Fitting these single byte pre-
miums ensures that Equation 1 holds for all pairs.

Byte premiums computed from NLLB are re-
ported in Appendix Table A.1. For example,
Burmese has byte premium 5.10, so on average it
takes 5.10× as many UTF-8 bytes to encode text
in Burmese versus English. These byte premiums
are consistent when computed from different sub-
sets of the NLLB corpus, with Pearson’s r > 0.999
for byte premiums computed from ten disjoint sub-
sets of 10% of the NLLB corpus. Notably, byte
premiums computed from only 100 lines of text
per language pair correlate with the byte premiums
computed from the full NLLB dataset with Pear-

3For example, if Equation 1 does not hold, then
English-Mandarin and Arabic-Mandarin byte premiums
could produce conflicting comparable dataset sizes when
adding Mandarin data to an English+Arabic corpus.
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FLORES 0.919 0.938 0.737
Bible 0.921 0.938 0.177
UDHR 0.592 0.737 0.177

Table 1: Pearson correlations between byte pre-
miums calculated from different datasets. Correla-
tions are high between NLLB, FLORES, and the
Bible.

son’s r = 0.955, indicating that byte premiums can
be computed from fairly small parallel corpora.

3.2. Other Parallel Corpora

For comparison, we also compute byte premiums
from three multi-parallel corpora: FLORES-200
(Costa-jussà et al., 2022; 204 languages), the Bible
(eBible, 2023; 1027 languages), and the Universal
Declaration of Human Rights (Vatanen et al., 2010;
UDHR; 241 languages). For each language A in
each dataset, we compute BPA = BytesA/BytesC
relative to reference language C = English. Be-
cause each dataset is comprised of parallel text
across all included languages, these byte premi-
ums already satisfy Equation 1.

Computed byte premiums are highly correlated
between NLLB, FLORES, and the Bible (Table 1;
Pearson’s r > 0.90), suggesting that byte premiums
are fairly consistent across datasets. We posit that
lower correlations with UDHR byte premiums may
be because the UDHR corpora are much shorter
(roughly twenty total lines of text) and potentially
more domain-specific than the other corpora. For
this reason, we do not use UDHR in later sections.

3.3. Byte Premiums After Compression

Interestingly, we find that byte premiums persist
after compression with the common compression
algorithm gzip (at maximum compression level 9).
When byte premiums are computed from the com-
pressed FLORES corpora, they correlate strongly
with the uncompressed byte premiums (Pearson’s
r = 0.890). However, the scale of variation across
languages reduces substantially after compression;
for example, uncompressed byte premiums of 4.0
are roughly analogous to compressed byte premi-
ums of 1.7 (i.e. compressed data in that language
takes only 1.7× as many bytes as the reference lan-
guage rather than 4.0× as many bytes; Appendix
B). This suggests that standard compression algo-
rithms reduce but do not fully alleviate disparities
in dataset storage sizes across languages.



3

4. Predicting Novel Byte Premiums

In many cases, we may want to compute the byte
premium for a language A outside of our existing
datasets. If a single parallel text is available from
A to any language B in our datasets, then the byte
premium can easily be calculated as (using refer-
ence language C as before):

BPA =
BytesA
BytesC

=
BytesA
BytesB

∗ BPB (2)

However, there may be cases where no parallel
text is available for language A. In this scenario,
we can break the byte premium into (1) the mean
bytes-per-character in A and C, and (2) the ratio of
characters needed to express the same information
in A and C (the “length ratio”):

BPA =
BytesA
BytesC

=
BytesA
CharsA

∗CharsA
CharsC

∗CharsC
BytesC

(3)

The bytes-per-character ratio for A can be cal-
culated with only monolingual text in A. We find
that this ratio is highly consistent regardless of the
dataset used. The computed bytes-per-character
ratios correlate strongly (Pearson’s r > 0.99) when
calculated from any of NLLB, the Bible, or FLO-
RES with 20, 200, or 2000 lines of text. Given the
consistency of these bytes-per-character ratios, we
find it efficient to break byte premiums down as in
Equation 3 such that we only need to predict the
length ratio between languages.

4.1. Predicting Length Ratios
We use linear regressions including language fam-
ily, script (writing system), script type (e.g. alphabet
vs. logography), and entropy over characters to
predict the length ratio CharsA/CharsC for a lan-
guage A relative to the reference language C =
English. From the predicted length ratio, we can
use Equation 3 to calculate the predicted byte pre-
mium for language A. Our results use length ratios,
bytes-per-character ratios, and character entropies
computed from NLLB, FLORES, or the Bible when
available, in order of decreasing priority.4

Language Family We predict that typological fea-
tures (e.g. inflection patterns or morpho-syntactic
distinctions) may drive differences in length ratios.
Languages that are in the same language family
are more likely to share typological features due to
their shared historical origin (Moravcsik, 2012).

4As with byte premiums, the choice of reference lan-
guage C only multiplies all length ratios by a constant.
NLLB length ratios are computed in the same way as
byte premiums, but using characters instead of bytes.
We obtain similar regression results using length ratios,
bytes-per-character ratios, and character entropies com-
puted from NLLB, FLORES, or the Bible (Appendix D).

Script and Script Type Some writing systems
may encode higher information content per charac-
ter than others (e.g. Chinese characters; Perfetti
and Liu, 2005), which leads to low length ratios, be-
cause the same content takes fewer characters to
write. We separate scripts into four script types (al-
phabet, abjad, abugida, and logography; Appendix
C), and we use script type as a predictor for length
ratio. We also consider the specific script as a
nested predictor (e.g. Latin vs. Cyrillic).

Character Entropy It has been proposed that lan-
guages with fewer phonemes (contrastive sounds)
in their inventories have longer words, because it
requires more sounds per word to generate the
number of contrastive sound sequences necessary
to communicate (Nettle, 1995).5 Using the same
logic, we predict that a language that tends to use
fewer unique characters will require longer charac-
ter sequences to express information (a high length
ratio). We operationalize the number of unique
characters in a language as the entropy over the
character probability distribution in that language.
A higher entropy indicates either a more even dis-
tribution over characters or a distribution over more
characters. Similar to bytes-per-character ratios
(§4), the entropy over characters is highly stable
across datasets, even computed from as few as
20 lines of text (Pearson’s r > 0.90 for the same
datasets as §4).

We fit linear regressions to predict length ratios
from three different subsets of our predictors. This
allows us to predict novel byte premiums depend-
ing on the available information about the novel
language. We consider the following three subsets:
(I) character entropy, language family, script, and
script type, (II) character entropy, script, and script
type, and (III) character entropy and script type.
The predicted length ratios can be used to predict
byte premiums using Equation 3.

5. Evaluating Byte Premium
Predictions

We validate the byte premium predictions from our
linear regressions by looping through languages
with known byte premiums (from NLLB, FLORES,
or the Bible, in that order of priority), evaluating the
byte premium prediction for that language when
holding it out from regression fitting.6 We report

5We also measure the number of phonemes per lan-
guage (PHOIBLE; Moran et al., 2014), but it does not
help predict length ratios (R2 = 0.002). Therefore we do
not include it in our linear regressions.

6To prevent skew of regression coefficients, we clip
byte premiums to a maximum of 4.0 (three languages;
Appendix A).
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Regression
I II III

Scripts with count ≥ 5 0.261 0.288 0.290
Scripts with count < 5 0.770 0.739 0.589

Table 2: RMSEs when predicting byte premiums
using different regressions, for languages with com-
mon and uncommon scripts.

the root mean squared error (RMSE) for the three
linear regressions described in the previous sec-
tion (I, II, and III). We compute separate RMSEs for
(1) languages whose script is shared by less than
five languages in our datasets, and (2) languages
whose script is shared by five or more languages
in our datasets. Languages whose script is uncom-
mon may have more poorly fitted script coefficients
(and potentially language family coefficients), so we
might expect them to exhibit larger byte premium
prediction errors.

Results are reported in Table 2. For languages
with common scripts (scripts with count ≥ 5), the
regressions improve as predictors are added (III, II,
then I). For these languages, RMSEs reach 0.261,
indicating that the predicted byte premiums are on
average approximately 0.261 away from the true
byte premiums.

As expected, we also find that languages with
uncommon scripts (scripts with count < 5) have
higher errors in their predicted byte premiums, in-
dicating that their script and family coefficients are
poorly fitted. Likely due to these poorly fitted coeffi-
cients, for those languages, the regression with the
lowest validation error is regression III, which only
includes character entropy and script type as pre-
dictors. The validation RMSE is 0.589, indicating
that predicted byte premiums for languages with
uncommon scripts are on average approximately
0.589 away from the true byte premiums. Given that
byte premiums can range from below 0.75 to over
5.00, even this simple regression is a substantial im-
provement over a naive assumption that languages
take equal bytes to encode information (i.e. byte
premium 1.0).

6. Introducing the Tool

Finally, we introduce a Python tool that re-
turns pre-computed or predicted byte premiums
for any language pair. The tool is available
at https://github.com/catherinearnett/
byte-premium-tool. If both input languages
are in our set of 1155 languages, the pairwise byte
premium is computed from Equation 1 using our
pre-computed byte premiums. Otherwise, the byte
premium is computed from a user-provided paral-
lel text (if available). If no parallel text is available,
the tool asks for a small monolingual corpus in

the novel language(s), from which it can compute
the character entropy and bytes-per-character ra-
tio per language, to use in the regressions from
§4. Following the validation results in §5, the tool
uses regression I, II, or III (in order of decreasing
priority) for languages with common scripts. For
languages with uncommon scripts, regression III is
always used. Aside from character entropy (which
is computed from the user-provided monolingual
text), regression III requires only the script type for
the novel language(s), which can easily be found
on sites such as Wikipedia. Thus, our tool provides
a simple interface from which to obtain the pair-
wise byte premium between any two languages,
enabling easy dataset size conversions.

7. Discussion and Conclusion

Measuring Dataset Sizes One implication of our
work is that researchers currently may overesti-
mate the amount of data that multilingual NLP mod-
els are trained on for non-Latin script languages
(languages with high byte premiums). These lan-
guages are often already underrepresented in NLP
(van Esch et al., 2022). For example, if it is reported
that a model is trained on 1GB of Georgian data,
then based on its byte premium of 4.34 relative to
English, we should consider the model to be effec-
tively trained on the Georgian equivalent of about
230MB of English data.

As a preliminary investigation into whether scal-
ing training data quantities by byte premiums per
language is indeed a “better” measure of training
data quantity, we use this scaled measure to pre-
dict multilingual language model performance on
various per-language benchmarks. Across models
and tasks, we find that the scaled data proportions
do predict performance in different languages bet-
ter than reported proportions, but not significantly
(p = 0.13; see Appendix E for details).

Byte-Level Tokenization Our results also have
implications for dataset tokenization. Previous work
has argued that byte-level tokenizers enable more
uniform treatment of different languages in a model
(Zhang and Xu, 2022; Xue et al., 2022), but our byte
premiums demonstrate that some languages may
still be at a disadvantage with byte-level tokenizers.
Tokenization length inequalities can lead to higher
costs, longer latencies, and restricted effective con-
text lengths for some languages (Ahia et al., 2023;
Petrov et al., 2024), in this case languages with
high byte premiums.

Equitable Resource Costs Finally, languages
with high byte premiums require more storage
space than other languages to store comparable

https://github.com/catherinearnett/byte-premium-tool
https://github.com/catherinearnett/byte-premium-tool
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content, and they are likely to require higher band-
width connections to transmit text content. In cases
where storage is charged per (giga)byte or Internet
connections are charged based on bandwidth and
usage, uniform pricing rates across languages may
lead to higher technology costs for low-resource
language communities. While only a marginal step
towards solving such issues, our work makes it
possible to take byte premiums into account when
measuring text data sizes across languages.
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Appendices

A. NLLB Byte Premiums

Byte premiums calculated from NLLB are reported
in Table A.1.

B. Byte Premiums After Compression

Byte premiums after compression by gzip, com-
pared to those before compression, are plotted in
Figure B.1.
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Figure B.1: Byte premiums before and after com-
pression by gzip. Each point is a language’s byte
premium relative to English.
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C. Writing System Types

Our regressions in §4 require the script type for
each language. The four possible script types are
described below.

Alphabet Alphabets are writing systems where
each segment (either consonant or vowel) is rep-
resented by a symbol (Daniels, 1990). Latin script
is one of the most widely used alphabets. Other
alphabets include Greek, Cyrillic, and Mkhedruli
(Georgian).

Abjad Abjads are writing systems which repre-
sent each consonant with a symbol (Daniels, 1990),
but vowels are often not represented. Arabic and
Hebrew are written with abjads, for example.

Abugida Abugidas, also sometimes referred to
as neosyllabaries, represent consonant-vowel se-
quences, often with vowel notation secondary
to consonant notation (Daniels, 1990). Exam-
ples of abugidas include Devanagari (e.g. Hindi),
Ge’ez (e.g. Amharic), and Canadian syllabics (e.g.
Ojibwe).

Logography Logographies are different from al-
phabets, abjads, and abugidas in that they rep-
resent semantic information as well as phonetic
information. Chinese characters are the only lo-
gography that remains in use. The majority of Chi-
nese characters are composed of one semantic
component and one phonetic component (Williams
and Bever, 2010). A relatively small number of
characters are also pictographs or ideographs, rep-
resenting only semantic information (Ding et al.,
2004).

D. Validation from Different Datasets

In Table D.1, we report validation RMSEs for each
regression (§5) when computing character en-
tropies and bytes-per-character ratios from differ-
ent datasets. Within each dataset, we separate
the languages for which there are less than five
other languages with the same script in the dataset
from those which have five or more languages with
the same script in the dataset. RMSE results are
similar regardless of the dataset used to compute
character entropies and bytes-per-character ratios.

E. Downstream Performance

To evaluate the impact of byte premiums on down-
stream performance, we compile reported training
data proportions (measured based on bytes) per
language for existing massively multilingual models.

Regression
I II III

NLLB Script ct. ≥ 5 0.201 0.244 0.240
Script ct. < 5 0.700 0.744 0.637

Flores Script ct. ≥ 5 0.203 0.246 0.250
(20 lines) Script ct. < 5 0.682 0.557 0.538
Flores Script ct. ≥ 5 0.204 0.252 0.254
(200) Script ct. < 5 0.702 0.615 0.544
Flores Script ct. ≥ 5 0.206 0.266 0.271
(2000) Script ct. < 5 0.703 0.647 0.558
Bible Script ct. ≥ 5 0.272 0.294 0.298
(4 books) Script ct. < 5 0.766 0.680 0.577
Bible Script ct. ≥ 5 0.271 0.293 0.297
(1 book) Script ct. < 5 0.760 0.672 0.566

Table D.1: RMSEs when predicting byte premiums
using different datasets to compute character en-
tropies and bytes-per-character ratios. Results are
separated into common and uncommon scripts.

We adjust each training data proportion by dividing
the reported proportion by the byte premium for
that language. After re-scaling to sum to 1.0, this
provides the estimated effective proportion of data
for each language. If adjusted data proportions are
indeed “better” estimates of effective data quanti-
ties, then we expect them to predict downstream
task performance better than the original reported
training data proportions.

We evaluate ten models from three model fami-
lies: XGLM (Lin et al., 2022), BLOOM (Scao et al.,
2022), and mT0 (Muennighoff et al., 2023). We
compile results from XGLM 7.5B, four sizes of
BLOOM (560M, 1.1B, 3B, 7.1B), and five sizes
of mT0 (small, base, large, xl, xxl). We use bench-
mark scores from five multilingual benchmarks: XS-
toryCloze (Lin et al., 2022), XCOPA (Ponti et al.,
2020), XNLI (Conneau et al., 2018), Wikipedia next
word prediction (Guo et al., 2020), and XWinograd
(Muennighoff et al., 2023). These benchmarks
cover 22 languages: Arabic, Bulgarian, German,
Greek, English, Estonian, French, Haitian Creole,
Hindi, Indonesian, Italian, Japanese, Burmese, Por-
tuguese, Russian, Spanish, Swahili, Telugu, Turk-
ish, Urdu, Vietnamese, and Chinese (simplified
and traditional). Benchmark scores are compiled
from the Big Science evaluation results on Hugging
Face.7

We fit two linear mixed effects models. Each pre-
dicts the benchmark score for each language (all
scores between 0.0 and 1.0) from the training data
proportion for that language (either the original pro-
portion or those scaled according to our byte premi-
ums) as well as language family, with random inter-
cepts for model and task. We calculate the AICs of
the two non-nested models, along with their relative

7https://huggingface.co/datasets/bigscience/evaluation-
results

https://huggingface.co/datasets/bigscience/evaluation-results
https://huggingface.co/datasets/bigscience/evaluation-results
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log likelihoods (Wagenmakers and Farrell, 2004).
While the the data proportions scaled by byte premi-
ums better predict benchmark performance (lower
AIC and higher log likelihood), it is not a significant
difference (p = 0.13), using significance testing
as in Wagenmakers and Farrell (2004). This non-
significance may be because there are many other
factors that impact downstream performance apart
from dataset size. A larger meta-analysis would
lead to more reliable inferences.
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Language Byte premium
ace_latn 1.2419926
afr_latn 1.0373004
aka_latn 1.5750612
als_latn 1.1673181
amh_ethi 1.7210862
arb_arab 1.4651134
asm_beng 2.5264323
ast_latn 1.7490516
awa_deva 2.7014324
ayr_latn 1.0976628
azb_arab 1.4901878
azj_latn 1.0761036
bak_cyrl 2.2716371
bam_latn 1.2569819
ban_latn 1.2695671
bem_latn 1.1553301
ben_beng 2.4308225
bho_deva 2.5153669
bod_tibt 2.6040539
bug_latn 1.2279017
bul_cyrl 1.8123562
cat_latn 1.0926706
ceb_latn 1.1134194
ces_latn 1.0358867
ckb_arab 1.6521034
ckb_arab 1.6521034
cym_latn 1.0265667
dan_latn 1.0211031
deu_latn 1.0537171
dik_latn 1.1239299
diq_latn 0.9590188
dyu_latn 1.1545521
dzo_tibt 3.2736977
ell_grek 1.9673049
ewe_latn 1.0783440
fao_latn 1.1557437
fij_latn 1.2107666
fin_latn 1.0589051
fon_latn 1.5413204
fra_latn 1.1742064
fur_latn 1.0672371
fuv_latn 1.1109194
gla_latn 0.9934613
gle_latn 1.9749562
glg_latn 1.0590246
guj_gujr 2.1627759
hau_latn 1.1766293
heb_hebr 1.3555346
hin_deva 2.3701629
hrv_latn 0.9897218
hun_latn 1.0199851

Language Byte premium
hye_armn 1.7241548
ibo_latn 1.3451287
ilo_latn 1.0765437
ind_latn 1.1788023
isl_latn 1.1543925
ita_latn 1.0669230
jav_latn 1.1468920
jpn_jpan 1.3220250
kab_latn 1.0287174
kac_latn 1.3451812
kam_latn 1.2177037
kan_knda 2.6420061
kas_arab 1.7762307
kas_deva 2.5259810
kat_geor 4.3381046
kbp_latn 1.4408085
kea_latn 0.7821679
khk_cyrl 1.8046135
khm_khmr 3.9051643
kik_latn 1.2930516
kin_latn 1.1340740
kir_cyrl 1.9635570
kmr_latn 1.0351712
knc_arab 2.5022926
knc_latn 1.1769876
kor_hang 1.2933602
lao_laoo 2.7071355
lij_latn 1.1438412
lin_latn 1.1393024
lit_latn 1.0300780
ltg_latn 1.0028570
ltz_latn 1.2253827
lug_latn 1.2175185
luo_latn 1.0358323
lus_latn 1.1689564
lvs_latn 1.2070388
mag_deva 2.5555142
mai_deva 2.3896953
mal_mlym 2.8852389
mar_deva 2.4793638
min_latn 0.9497956
mkd_cyrl 1.8349890
mlt_latn 1.0884567
mni_beng 3.0027416
mos_latn 1.1413713
mri_latn 1.1826053
mya_mymr 5.1034592
nld_latn 1.0516739
nob_latn 0.9977426
npi_deva 2.4202344
nus_latn 1.2935254

Language Byte premium
oci_latn 1.0146652
ory_orya 2.5109372
pag_latn 1.0439418
pan_guru 2.2208951
pbt_arab 1.7366557
pes_arab 1.5973940
plt_latn 1.1512264
pol_latn 1.0774161
por_latn 1.0979270
quy_latn 1.1639224
ron_latn 1.1151666
run_latn 1.1193204
rus_cyrl 1.8228284
sag_latn 1.1632489
san_deva 2.5428913
sat_beng 2.1131754
shn_mymr 2.8224643
sin_sinh 2.4463506
slk_latn 1.0415468
slv_latn 0.9722273
sna_latn 1.1192729
snd_arab 1.5880165
som_latn 1.4224149
sot_latn 1.1661078
spa_latn 1.0838621
srp_cyrl 1.4249495
sun_latn 1.0970417
swe_latn 1.0210256
swh_latn 1.0696621
tam_taml 2.7292892
taq_latn 1.2093634
tat_cyrl 1.8543562
tel_telu 2.6198705
tgk_cyrl 1.7469201
tgl_latn 1.1176348
tir_ethi 1.7631466
tuk_latn 1.7850561
tur_latn 1.0444815
tzm_tfng 1.9259158
uig_arab 2.3082357
ukr_cyrl 1.7514786
umb_latn 1.1673612
urd_arab 1.7079714
uzn_latn 1.6455453
vie_latn 1.3493725
wol_latn 1.0787309
xho_latn 1.1988860
ydd_hebr 1.8074376
yor_latn 1.3750599
zsm_latn 1.1438457
zul_latn 1.1639372

Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each language code is comprised
of the ISO 639-3 (language) and ISO 15924 (script) codes separated by an underscore.
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