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Abstract

Closely related languages show linguistic simi-
larities that allow speakers of one language to
understand speakers of another language with-
out having actively learned it. Mutual intelligi-
bility varies in degree and is typically tested in
psycholinguistic experiments. To study mutual
intelligibility computationally, we propose a
computer-assisted method using the Linear Dis-
criminative Learner, a computational model de-
veloped to approximate the cognitive processes
by which humans learn languages, which we
expand with multilingual semantic vectors and
multilingual sound classes. We test the model
on cognate data from German, Dutch, and En-
glish, three closely related Germanic languages.
We find that our model’s comprehension accu-
racy depends on 1) the automatic trimming of
inflections and 2) the language pair for which
comprehension is tested. Our multilingual
modelling approach does not only offer new
methodological findings for automatic testing
of mutual intelligibility across languages but
also extends the use of Linear Discriminative
Learning to multilingual settings.

1 Introduction

Speakers of a given language can often partially
comprehend other languages in the same language
family. This mutual intelligibility has been demon-
strated to be dependent on several linguistic vari-
ables, such as phonological, orthographic or lexical
similarity, and extralinguistic factors, such as the
amount of previous exposure to or the attitude to-
wards the other language (Gooskens and Swarte,
2017; Gooskens et al., 2015; Heeringa et al., 2014).
In addition, the phonetic similarity between words
expressing similar meanings has been shown to be
a major factor driving cross-linguistic mutual in-
telligibility (Gooskens et al., 2018). Phonetically
and semantically similar words are often called
cognates in studies on mutual intelligibility, for-
eign language learning, and bilingualism (Squires
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et al., 2020). Originally, however, the term denotes
words inherited from the same ancestral language
in genetically related languages (List, 2016). Al-
though cognates in the original sense often exhibit
phonetic and semantic similarity across related lan-
guages, they do not necessarily do so, and words
can also be similar in pronunciation and meaning
due to other factors, including — most importantly —
intensive borrowing, and — to a much lower degree
— different kinds of sound symbolism (see Casad
1987, 87 for more details on the difference between
mutual intelligibility and genetic relationship).
Due to a focus on the abilities of language users,
research on mutual intelligibility often involves ex-
perimental studies with different groups and num-
bers of participants. Experiments are diverse, usu-
ally consisting of certain comprehension tasks. Ex-
perimental studies show some general limitations,
in so far as uniform methods are rarely used (1),
finding participants with a minimum or no ex-
posure to the test language is difficult (2), and
comparing several languages simultaneously is a
time- and resource-consuming effort (3) (Gooskens
and Swarte, 2017; Tang and van Heuven, 2009).
Gooskens and Swarte (2017) present a large-scale
study on mutual intelligibility of five Germanic
languages using a Cloze Test, i.e. a written or au-
dibly presented text in the target language with
gaps that need to be filled in. However, they re-
port a substantial loss in the number of participants
when testing inherent intelligibility, the ability to
comprehend the target language with no or little
previous exposure (Gooskens and Swarte, 2017).
In an ideal setting with zero exposure to the tar-
get language, inherent intelligibility captures how
comprehensible the target language is based on
structural similarities only. This, in turn, would
offer insights into what linguistic structures give
rise to mutual intelligibility without extralinguistic
or other language exposure-based interference. In
reality, the goal of finding participants with no or
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a minimum of exposure to certain languages is an
almost impossible requirement to fulfill due to the
status of some languages of being a common /in-
gua franca (Gooskens and Swarte, 2017; Hongyan,
2017).

In this study we propose a computer-assisted
method couched in the discriminative lexicon
framework by Baayen et al. (2019) to assess mutual
intelligibility in Germanic languages. By focusing
on computational methods instead of human sub-
jects we can overcome the mentioned limitations.
Our proposed model does not involve the recruit-
ment of participants, there are no extralinguistic
factors nor target language exposure involved in
training. We offer a uniform method that can be
adapted to various language families and lead to
new insights into intelligibility based on a careful
selection of linguistic factors that are involved in
language comprehension.

2 Linear Discriminative Learning

With the discriminative lexicon framework (DL),
Baayen et al. (2019) propose a model of language
processing that explores the cognitive mapping
mechanisms involved in language learning. Lan-
guage comprehension is understood as a mapping
of phonological forms onto meaning (Baayen et al.,
2019). Mathematically, it is implemented as multi-
variate multiple regression in the Linear Discrimi-
native Learner (LDL) model. Given a phonological
matrix C' and a semantic matrix .S, the comprehen-
sion matrix F’ is obtained by post-multiplying C
with F: CF = S. The F matrix then specifies
the associaton weights between all phonological
cues and all semantic dimensions (Chuang et al.,
2023). Multiplying C' with F' finally predicts the
semantic vector S for all input word forms that
can be used for evaluating comprehension accuracy
of the model. Computationally, the LDL model
conceptualizes language comprehension as a sim-
ple artificial neural network directly connecting
phonological and semantic vectors without any
hidden layers (Nieder et al., 2023; Chuang et al.,
2023). In this study, we make use of LDL to ex-
plore the mutual comprehension of the Germanic
languages Dutch, German and English based on a
cross-language learning setting (see also Chuang
et al., 2018, for another multilingual approach us-
ing LDL). As phonological input we use cognate
sets from all languages. For the semantic matrix,
we opted for the multilingual ConceptNet Number-
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batch word embeddings version 19.08 from Speer
et al. (2017) that offer the possibility to directly
compare the meaning of cognate concepts.

3 Materials and Methods

3.1 Dataset of German Cognates

We use cognate sets derived from Kluge’s etymo-
logical dictionary in a rather recent, updated edition
(Kluge, 2002). From the etymological dictionary
of German, we hand-selected 340 entries that had
reflexes in Dutch, German, and English with their
proto-forms in Proto-Germanic, added phonetic
transcriptions, and provided phonetic alignments
by annotating the data with the help of the EDIC-
TOR tool (List, 2023).

In order to ease data sharing and reuse, the
etymological dataset was shared in the formats
recommended by the Cross-Linguistic Data For-
mats initiative (Forkel et al., 2018) using the work-
flow developed for the construction of the Lex-
ibank repository (https://lexibank.clld.org,
List et al. 2022). This means in this specific
case that languages are linked to Glottolog (https:
//glottolog.org, Hammarstrom et al. 2023) and
that the individual speech sounds employed in
the phonetic transcription we provide follows the
Cross-Linguistic Transcription Systems (CLTS,
https://clts.clld.org, List et al. 2021). CLTS
is a reference catalog for speech sounds which pro-
vides a standard transcription system that defines a
subset of the International Phonetic Alphabet (IPA,
1999) as a standard (Anderson et al., 2018), which
has by now been mapped to several datasets provid-
ing phoneme inventory data (Anderson et al., 2023)
and also underlies most data in Lexibank.

3.2 Multilingual Semantic Vectors

For semantic vectors, we used the multilingual
ConceptNet Numberbatch word embeddings ver-
sion 19.08 from Speer et al. (2017). The Concept-
Net Numberbatch word embeddings did not pro-
vide any data for the Dutch word form beukeboom
‘beech’, thus we deleted the German and English
counterparts from the data resulting in a set of 339
cognates in total. To ensure that the embeddings
capture semantic similarites of the cognate dataset,
we computed the cosine similarity for each word
triplet across the languages. Figure 1 shows the
distribution of cosine similarity values between
language pairs. While the peaks for all language
pairs are located at around 0.9, indicating an overall
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Figure 1: Distribution of cosine similarity scores between language pairs for all cognate triplets. Note that smoothing

of the distribution results in values exceeding 1.0.

high semantic similarity of the word embeddings
for cognate triplets, some of the German-English
data and Dutch-English data is distributed over a
lower cosine similarity range (green and red curve).
This results in less concentrated peaks for these
language pairs. From this we can conclude that
German vs. Dutch cognates are semantically more
similar than German vs. English or Dutch vs. En-
glish cognates.

3.3 Multilingual Sound Classes

Scholars have proposed to test mutual intelligibility
by representing word forms in phonetic transcrip-
tions and measuring string similarity for words that
express the same meaning (Tang and van Heuven,
2007). This approach to intelligibility has, how-
ever, the disadvantage of not being able to test for
asymmetric forms of intelligibility by which speak-

English German
Word drink trinken
IPA drigk trigkon
IPA (trimmed) drigk trigeo

Sound Classes TRVNK TRVNKVN
Sound CI. (trimmed) TRVNK TRVNKYV

Table 1: Exemplary data representation for English and
German with full forms vs. trimmed forms and sound
class representations.

39

ers of one language can understand speakers of
another language more properly than vice versa.
For our model-based approach, we need a more
abstract — phonetically broader — representation
of speech sounds that allows us to capture broad
phonetic similarities in a multilingual setting. Tak-
ing inspiration from computational approaches in
historical linguistics, we decided to represent word
forms with sound class models. Sound classes have
been first introduced by Dolgopolsky (1986), who
proposed 9 broad classes by which all possible con-
sonants can be represented, searching for cognates
across distantly related languages. While this is a
really crude reduction of phonetic detail, Dolgopol-
sky sound classes have been shown to work very
well for comparative tasks (Turchin et al., 2010). In
our approach, we use Dolgopolsky’s original conso-
nant classes and represent vowels by an additional
symbol.

The fact that our original data are provided in
CLDF with standardized phonetic transcriptions
is a great advantage when it comes to the conver-
sion of phonetic strings to sound classes. Since
sound class conversion routines are readily avail-
able for phonetic transcriptions that conform to
the standard for IPA proposed in CLTS, converting
the cognate sets in German, Dutch, and English



to sound classes requires very few preprocessing
operations.

3.4 Trimming Word Forms

We experiment with two different representations
of word forms, full forms and trimmed forms,
where we automatically exclude endings. Full
forms reflect the word forms as they are typically
encountered in dictionaries (with nominative case
for nouns in German and infinitive endings for
verbs). Bare stems are typically used in historical
language comparison in order to show how words
were historically related before they were modified
in the respective descendant languages by various
morphological processes. In order to obtain bare
stems from our cognate sets in German, English,
and Dutch, we make use of the recently introduced
technique for the trimming of phonetic alignments
(Blum and List, 2023). With this technique, those
sites (columns) in a multiple phonetic alignment
that show an exceeding amount of gaps (sounds
that do not have counterparts across all languages
in the sample) are excluded from the alignment. Al-
though not identical with manually prepared word
stem representations, we find that applying this
technique drastically reduces the amount of gaps
in the multiple alignments, while at the same time
successfully removing verb endings in our sample.
Table 1 displays the representation of our data with
full forms vs. bare stems sound class representa-
tion.

3.5 Linear Discriminative Learning Model

In a first step, we evaluated the LDL model on
the cognate data of each language separately. The
model is trained and tested on all 339 word forms.
Phonological input cues are 4-gram, 3-gram and 2-
gram chunks of sound classes, while multilingual
word embeddings are representing the semantic
vectors. In a second step, we train the model on
a single language, i.e. creating a naive speaker of
a language with zero exposure to other languages,
and subsequently test the model on the cognate
data from the target language. In doing so, we are
replicating the setting of psycholinguistic studies
but overcome the limitations of previous language
exposure to exclusively focus on the predictiveness
of historical sound classes as cues to mutual intelli-
gibility.
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4-grams 3-grams 2-grams
German 0.99 0.93 0.51
Dutch 1.0 0.93 0.52
English 1.0 0.95 0.54

(a) Training data (full words)

4-grams 3-grams 2-grams
German 0.99 0.92 0.50
Dutch 1.0 0.89 0.48
English 1.0 0.99 0.57

(b) Training data (trimmed words)

Table 2: Comprehension accuracies on full (a) and
trimmed (b) training data. Top-1 candidate is taken
into account to compute accuracies.

3.6 Implementation

The experiments are implemented in the form of
Python and Julia scripts. For sound class conver-
sion, we used the LingPy Python package (List
and Forkel, 2023a). For the extraction of bare
word stems through trimming, the LingRex pack-
age was used (List and Forkel, 2023b). For the
implementation of the LDL models, the Linear
Discriminative Learner from the JudiLing pack-
age (an implementation of DL in the Julia pro-
gramming language) was used (Luo et al., 2021).
Data and code needed to replicate the experiments
from this study are curated on GitHub (https:
//github.com/digling/intelligibility) and
archived with Zenodo (https://doi.org/10.
5281/zenodo.10609356). Detailed instructions
on how to run the code are given in the repository.

4 Evaluation

4.1 Evaluation on Individual Languages

Table 2(a) displays the comprehension accuracies
on the training data for full word forms. For the
evaluation process only the predicted meaning, the
top-1 candidate, was considered. The evaluation
results suggest a good comprehension memory of
the model when Dolgopolsky sound classes are
provided as 4-gram or 3-gram chunks. If sound
classes are fed into the model as 2-gram chunks we
observe a substantial drop in accuracy, indicating a
reduced discriminative power to predict a semantic
vector S that is similar to the gold standard vector
S of the training language. Table 2(b) displays
the evaluation results after trimming word forms.
Comprehension accuracy remains high for 4-gram
and 3-gram chunks. Again, the accuracy drops
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Language Pair (a) Full Word Forms (b) Trimmed Word Forms
4-grams 3-grams 2-grams 4-grams 3-grams 2-grams

GER-DUT 0.57 (0.71) 0.51 (0.68) 0.28 (0.52) | 0.81 (0.86) 0.75(0.86) 0.39 (0.65)
DUT-GER 0.51 (0.67) 0.48 (0.61) 0.25 (0.48) | 0.82(0.83) 0.75(0.83) 0.40 (0.67)
GER-ENG 0.68 (0.75) 0.62 (0.73) 0.29 (0.53) | 0.79 (0.85) 0.75(0.84) 0.33 (0.59)
ENG-GER 0.48 (0.59) 0.46 (0.55) 0.23 (0.45) | 0.60 (0.66) 0.59 (0.64) 0.32(0.53)
DUT-ENG 0.68 (0.75) 0.6313 (0.72) 0.31(0.55) | 0.77 (0.84) 0.71 (0.81) 0.30 (0.60)
ENG-DUT 0.53 (0.64) 0.50(0.59) 0.29 (0.49) | 0.60 (0.67) 0.59(0.64) 0.35(0.54)

Table 3: Comprehension accuracies of multilingual models for comprehension for (a) full word forms and (b)
trimmed word forms. Values without brackets indicate results when the top-1 candidate is considered to compute
accuracies, values in brackets indidcate results when top-5 candidates are considered.

substantially when 2-gram chunks are taken into
account.

4.2 Evaluation Across Languages

Table 3(a) illustrates the result of the multilingual
models for full word forms. The first column con-
tains the training-test language pairs. Values with-
out brackets indicate accuracies when the top-1
candidate was taken into account for evaluation,
values in brackets indicate accuracies when the
correct meaning among top-5 candidates was con-
sidered. Allowing the model to evaluate compre-
hension accuracy based on a set of top-5 candidates
accounts for possible confusion of the target word
form with similar word forms, giving the model
room for multiple answers. The cross-linguistic
comprehension results in Table 3(a) unsurprisingly
replicate the chunk size effect we have seen in
our training models, with 4-gram chunks providing
the best comprehension results. We observe the
best comprehension results for the language pair
Dutch-English with an accuracy of 68% (75% for
an evaluation on top-5 candidates), followed by
German-English and German-Dutch. The worst
comprehension results are given for a training on
English and a test on German cognates (see row
4 of Table 3(a)). Gooskens and Swarte (2017) re-
port a similar result for human participants, indi-
cating that our LDL models show a human-like
performance when assessing comprehension abili-
ties across languages.

Table 3(b) displays the comprehension accura-
cies after applying the trimming procedure. Trim-
ming phonetic alignments results in a substantial
rise of prediction accuracies with Dutch-German,
German-Dutch and German-English providing the
best comprehension results. Again, the language
pair English-German shows the lowest comprehen-
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sion accuracy, similar to human results (Gooskens
and Swarte, 2017).

5 Discussion and Conclusion

In this study we presented a computer-assisted
method to mutual intelligibility based on a model
that captures the cognitive processes by which hu-
mans comprehend languages. We expanded the
model with multilingual semantic vectors and mul-
tilingual sound classes. Our multilingual sound
classes were predictive when a combination of at
least 3 sound classes is given, indicating that know-
ing the order of sound classes allows the model
to comprehend languages from the same language
family. However, we observe an effect of the train-
ing language, with English being the least advan-
tageous language in our setting and in the data of
Gooskens and Swarte (2017) with human partic-
ipants. We report a higher accuracy for German-
English than German-Dutch, again in line with the
human data of Gooskens and Swarte (2017). If
sound classes are trimmed, we find the opposite
effect. The pair Dutch-English shows better com-
prehension accuracies than Dutch-German, again
with the opposite picture for the trimmed version.
From a language learning perspective, the change
of direction, i.e. the better prediction for German-
Dutch and Dutch-German after trimming would
imply a certain morphological knowledge of speak-
ers. Speakers of German or Dutch knowing verb
endings and ignoring them purposefully have an
advantage in comprehending English. Our pro-
posed model does not only offer a new method
for automatic testing of mutual intelligibility but
shows clear similarities to data obtained from hu-
man participants, making it a useful cognitive tool
for research on language comprehension.



Supplementary Material

All data and code needed to replicate the
experiments discussed in this study are cu-
rated on GitHub (https://github.com/
digling/intelligibility) and  archived
with  Zenodo (https://doi.org/10.5281/
zenodo.10609356). The German cognate
dataset is also curated on GitHub (https:
//github.com/lexibank/germancognates) and
archived with Zenodo (https://doi.org/10.
5281/zenodo.10609476).

Limitations

While our model offers some fruitful results for
further investigation of mutual intelligibility, the
dataset we provided contains a limited amount of
carefully selected historical cognates. It remains
to be seen how the model would deal with a much
larger set of random words. Moreover, we cannot
account for other language families or other lan-
guages than German, Dutch and English. However,
we see our modeling procedure as a starting point
for assessing mutual intelligibility computationally.
For that reason, limiting our data to historical cog-
nates and three languages only is a necessary step.
For a complete picture, more languages from the
Germanic language family need to be tested and the
results need to be compared with comprehension
results for other language families.
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