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Abstract
Historical languages present unique challenges
to the NLP community, with one prominent
hurdle being the limited resources available
in their closed corpora. This work describes
our submission to the constrained subtask
of the SIGTYP 2024 shared task, focusing
on PoS tagging, morphological tagging, and
lemmatization for 13 historical languages.
For PoS and morphological tagging we adapt
a hierarchical tokenization method from
Sun et al. (2023) and combine it with the
advantages of the DeBERTa-V3 architecture,
enabling our models to efficiently learn from
every character in the training data. We also
demonstrate the effectiveness of character-
level T5 models on the lemmatization task.
Pre-trained from scratch with limited data, our
models achieved first place in the constrained
subtask, nearly reaching the performance levels
of the unconstrained task’s winner. Our code
is available at https://github.com/bowphs/
SIGTYP-2024-hierarchical-transformers.

1 Introduction

Unlike modern languages, historical languages
come with a notable challenge: their corpora are
closed, meaning they cannot grow any further. This
situation often puts researchers of historical lan-
guages in a low-resource setting, requiring tailored
strategies to handle language processing and analy-
sis effectively (Johnson et al., 2021).

In this paper, we focus on identifying the most
efficient methods for extracting information from
small corpora. In such a scenario, the main hurdle
is not computational capacity, but learning to ex-
tract the maximal amount of information from our
existing data.

To evaluate this, the SIGTYP 2024 shared task
offers a targeted platform centering on the evalua-
tion of embeddings and systems for historical lan-
guages. This task provides a systematic testbed for

*Equal contribution.

researchers, allowing us to assess our methodolo-
gies in a controlled evaluation setting for historical
language processing.

For the constrained subtask, participants re-
ceived annotated datasets for 13 historical lan-
guages sourced from Universal Dependencies (Ze-
man et al., 2023), along with data for Old Hun-
garian that adheres to similar annotation standards
(Simon, 2014; HAS Research Institute for Linguis-
tics, 2018). These languages represent four distinct
language families and employ six different scripts,
which ensures a high level of diversity. The rules
imposed in this subtask strictly forbid the use of
pre-trained models and limit training exclusively to
the data of the specified language. This restriction
not only ensures full comparability of the applied
methods, it also inhibits any cross-lingual transfer
effects.

We demonstrate that, even in these resource-
limited settings, it is feasible to achieve high per-
formance using monolingual models. Our models
are exclusively pre-trained on very small corpora,
leveraging recent advances in pre-training language
models. Our submission was recognized as the
winner in the constrained task. Notably, it also
delivered competitive results in comparison to the
submissions in the unconstrained task, where the
use of additional data was permitted. This high-
lights the strength of our approach, even within a
more restricted data environment.

2 Pre-trained Language Models for
Ancient and Historical Languages

Much of the previous work on Pre-trained Lan-
guage Models (PLMs) for ancient and historical
languages has focused on cross-lingual transfer
learning techniques (Krahn et al., 2023; Singh
et al., 2021; Yamshchikov et al., 2022; Yousef et al.,
2022) or languages with relatively large corpora
compared to most historical languages, such as An-

131

https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers
https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers


Language: chu cop fro got grc hbo isl lat latm lzh ohu orv san

Vocab Size: 196 82 106 87 242 94 150 188 111 5714 166 222 62

Table 1: Character vocabulary sizes (including special tokens). See Appendix C for language identifiers.

cient Greek and Latin (Riemenschneider and Frank,
2023; Bamman and Burns, 2020). In this work, we
are interested in maximizing performance in more
resource-limited environments while training ex-
clusively on monolingual data.

2.1 Representing Words and Characters
Low-resource historical languages present several
challenges for subword tokenizers which are typ-
ically used by PLMs. Given that our downstream
tasks require predictions at the world level, it is im-
portant that the model learns good word representa-
tions in training. At the same time, it is important to
obtain good character representations because char-
acters carry important morphological information.
In small-scale training corpora, subword tokenizers
are ineffective at capturing information at both the
word and character levels, as shown in prior work
(Clark et al., 2022; Kann et al., 2018). As a result,
it is difficult for a model to learn meaningful repre-
sentations for rare tokens, which can be completely
opaque to the model with respect to the characters
they contain.

Adopting a character-based tokenizer would
solve many of these problems, but as a downside
would result in a much higher number of input to-
kens. Critically, the computational requirements
of self-attention grow quadratically with sequence
length, making training and inference time pro-
hibitive or requiring truncated input sequences.

For these reasons, we adopt a solution for our
encoder-only models that combines the advan-
tages of word- and character-level representations.
We base our architecture on the Hierarchical Pre-
trained Language Model (HLM) architecture re-
cently proposed by Sun et al. (2023), which solves
many of our problems. HLM is a hierarchical two-
level model which uses a shallow intra-word trans-
former encoder to learn word representations from
characters and a deep inter-word encoder that at-
tends to the entire word sequence. As a result, (1)
it gives direct access to characters without requir-
ing long sequence lengths, (2) it preserves explicit
word boundaries, and (3) it allows for an open vo-
cabulary.

For the intra-word encoder, we use a sequence

length of 16 which is long enough to cover the vast
majority of words in our training data. While Sun
et al. (2023) truncate words that exceed the max-
imum sequence length of the intra-word encoder,
we instead split them into multiple subwords to
avoid any loss of information. For the inter-word
encoder we use a maximum sequence length of
512. Because the intra-word encoder is limited
to characters within the same word and the inter-
word encoder operates on word sequences, this
approach is computationally more efficient than a
vanilla character model, and even approaches the
performance of subword-based models (Sun et al.,
2023).

The input to the intra-word encoder is produced
by encoding each word into a sequence of character
tokens, with a special [WORD_CLS] token inserted
at the beginning of each word. The contextualized
[WORD_CLS] embeddings from the intra-word en-
coder are then used as the word representations for
the inter-word encoder.

We create a character tokenizer for each lan-
guage using a character vocabulary consisting of
all the unique characters found in the training data
for that language. Any unseen characters encoun-
tered in the validation or test data are replaced with
a special [UNK] token. Table 1 shows the vocab-
ulary sizes for each language, including special
tokens. The character vocabularies are typically
quite small, with the notable exception of Classical
Chinese (lzh), where most of the tokens in the train-
ing data are single characters. We experimented
with several decomposition methods, inspired by
the work of Si et al. (2023) on sub-character tok-
enization for Chinese. However, we were unable
to improve performance on our downstream tasks,
so we opted to use the same character tokenization
method for all languages.

2.2 Hierarchical Encoder-only Models
To conduct PoS and morphological tagging, we rely
on an encoder that generates the necessary word
embeddings for classification. Our encoder models
build on a modified implementation of DeBERTa-
V3 (He et al., 2023), combining the advantages of
HLM with the DeBERTa architecture. The intra-
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Figure 1: HLM-DeBERTa architecture with RTD pre-training. Input text is “πάθει μάθος”.

and inter-word modules are implemented as two
separate DeBERTa encoders, utilizing disentangled
attention (He et al., 2021) and relative position
encoding.

Replaced Token Detection. For the pre-training
task we use replaced token detection (RTD), orig-
inally proposed by Clark et al. (2020). RTD uses
a generator model to generate corrupted input se-
quences and a discriminator to distinguish between
the original and corrupted tokens. After training,
the generator is discarded and the discriminator
is fine-tuned for downstream tasks. In our ex-
periments, when applying RTD pre-training, we
achieve slightly better performance on our down-
stream tasks compared to masked language mod-
eling (MLM) as the pre-training task. Following
previous work (He et al., 2023; Clark et al., 2020),
we use a generator with roughly half the model
parameters compared to the discriminator. We
train a monolingual model for each language for
30 epochs. Further pre-training does not improve
performance on downstream tasks.

We utilize DeBERTa-V3’s gradient-disentangled
embedding sharing (GDES), which allows the em-

bedding gradients from the generator to flow di-
rectly to the discriminator, but not vice versa. This
results in more stable training compared to the
vanilla embedding sharing (ES) used by ELECTRA
(Clark et al., 2020), which allows the gradients to
flow in both directions.

Masking Strategy. We use character-level mask-
ing to allow for open-vocabulary language model-
ing. The character token sequence is restored by
concatenating the character representations from
the intra-word module with the word representa-
tions from the inter-word module, replacing the
initial [WORD_CLS] with the contextualized repre-
sentation. We follow the original HLM approach
for the language modeling prediction head: an addi-
tional single-layer intra-word transformer module
followed by a simple feed-forward network. A
softmax layer is used for the generator’s output
distribution and a sigmoid layer is used for the dis-
criminator. The relative position embedding matrix
is shared between the initial intra-word encoder
and the intra-word language modeling head. Fig-
ure 1 shows an overview of our architecture for
RTD pre-training.
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We compare the following masking strategies:

• Whole-word masking: mask the characters in
15% of the words (original HLM approach),

• Character masking: randomly mask 15% of
the characters,

• Character n-gram masking: mask random
spans of 1-4 characters until 15% of the char-
acters are masked.

Through experimentation we found that charac-
ter n-gram masking performed best for our down-
stream tasks, by a small margin. Random charac-
ter masking performed similarly to whole-word-
masking. We hypothesize that it is too difficult for
the model to learn to predict whole words from the
small training corpora. Conversely, random char-
acter masking is too easy, as MLM pre-training
accuracy reaches high levels very quickly.

2.3 Character-level Encoder-decoder Models
While encoder-only models are very effective for
classification tasks, lemmatization is most naturally
treated as a sequence-to-sequence problem, where
the inflected form is “translated” to its lemma. We
therefore choose to train an encoder-decoder model
that handles sequence-to-sequence tasks naturally.
Specifically, we train a T5 model for each lan-
guage (Raffel et al., 2020) using the nanoT5 library
(Nawrot, 2023) and the t5-v1_1-base configuration.
In lemmatization, our aim is to prioritize the char-
acters within a word, rather than focusing on a de-
tailed understanding of contextualized words (see
Section 3.3 for our approach). Moreover, extend-
ing a hierarchical structure to (encoder-)decoder
models like T5 is not straightforward. Therefore,
we employ character tokenization in the T5 models
for lemmatization.

3 Using our PLMs for Downstream Tasks

Many systems focusing on Universal Dependen-
cies, often introduced in shared tasks, utilize cross-
lingual transfer and multi-task learning. For in-
stance, UDPipe (Straka et al., 2019), which em-
ploys multilingual BERT, is fine-tuned on specific
treebanks for PoS tagging, morphological tagging,
lemmatization, and dependency parsing. UDify
(Kondratyuk and Straka, 2019) learns these tasks
for 75 languages in one model.

Given that in our setting cross-lingual transfer
is excluded, we investigate multi-task learning as

a remaining option to leverage additional training
signals for resource-poor languages.

3.1 Morphological Tagging
Following Riemenschneider and Frank (2023),
we treat morphological tagging as a multi-task-
classification problem, where every token is pro-
cessed through k classification heads, correspond-
ing to each possible morphological feature in a
dataset. Whenever a feature is missing in a token,
the model is trained to predict a class indicating the
feature’s absence.

To represent a token, the HLM architecture
yields two kinds of embeddings: those derived
from the intra-word encoder, informed by a word’s
characters but not by other sentence words, and
those that are contextualized by surrounding tokens.
In line with Sun et al. (2023) as well as earlier work
(Clark et al., 2022; Plank et al., 2016), we concate-
nate these embeddings to create a unified final word
representation.

We use a simple feed-forward network followed
by a softmax function on top of the last hidden
state of this word representation. The final loss is
computed as:

Lmorph =
1

k

k−1∑

m=0

Lm

where k is the number of morphological features.
We further extended the multi-task framework

to include additional related tasks, hypothesizing
that obtaining training signals from auxiliary tasks
could improve the model’s capabilities, particularly
under our low-resource conditions. To this end,
we incorporated tasks such as dependency parsing
and PoS tagging. Contrary to our expectations,
this approach led to slower convergence and did
not provide any performance benefits, occasionally
even producing marginally inferior results. We
discuss these findings in Section 5.

3.2 PoS Tagging
Analogous to our approach in morphological tag-
ging, we represent each token by concatenating its
intra- and inter-word embeddings, followed by a
classification head. However, in contrast to mor-
phological tagging, we notice slight improvements
when the model is also tasked with predicting mor-
phological features. Thus, we determine the loss
as LUPoS +Lmorph, disregarding the morphological
tagging predictions during inference.
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3.3 Lemmatization

As outlined in Section 2.3, lemmatization is most
naturally treated as a sequence-to-sequence prob-
lem, where the form to be lemmatized is transduced
into its lemma, which is why we propose using a
T5 model for this task. Ideally, our model should
receive the word to be lemmatized in its original
context, while marking the word to be lemmatized,
similar to the approach used by Riemenschneider
and Frank (2023). For instance, given the input se-
quence ξύνοιδα [SEP] ἐμαυτῷ [SEP] οὐδὲν ἐπισ-
ταμένῳ, the model would be expected to predict
the lemma of ἐμαυτῷ, which is ἐμαυτοῦ. This ap-
proach would enable us to train the model in an
end-to-end fashion, allowing it to autonomously
learn the relevant information directly from the
word within its contextual surroundings.

However, this training method is prohibitively
expensive, requiring repeated passes through the
model, once for each token in the sentence. More-
over, we noted that the models exhibited excep-
tionally slow convergence. Allowing the model
to predict lemmata for all words in a sentence in
a single forward pass mitigates the computational
challenges, as it requires only one pass per sentence
per epoch. Yet, this strategy still encounters prob-
lems with very slow, and at times nonexistent, con-
vergence, while also introducing new challenges
for the model, particularly in assigning exactly one
lemma to each token accurately.

Therefore, we adopt a pipeline approach, follow-
ing Wróbel and Nowak (2022), by providing the
model with the inflected form and its correspond-
ing UPoS tag. For training purposes, we use the
gold UPoS tag, whereas for inference we rely on
the UPoS tag as predicted by our HLM-DeBERTa
model. We predict lemmata using beam search
with a beam width of 20, restricting the maximum
sequence length to 30.

4 Results

Our results are computed using the SIGTYP 2024
official evaluation script.1 The script computes
PoS tagging scores as the unweighted average of
the accuracy and the F1 score. For morphological
tagging, it computes the averaged accuracy across
each token, with deductions for any feature cat-
egories predicted by the model but absent in the
label. The lemmatization scores are the unweighted

1https://github.com/sigtyp/ST2024/blob/main/
scoring_program_constrained.zip.

average of the accuracy@1 and the accuracy@3.
We report our results in Table 2 and provide

dataset statistics in Appendix C. In PoS and mor-
phological tagging, our system emerges as the
winner of the constrained task. Its performance is
consistently almost on-par with that of the uncon-
strained task winner, being only 0.69 percentage
points lower on average. A notable outlier is seen
in Old French (fro) PoS tagging, where our system
falls short by 3 percentage points. This perfor-
mance difference might be linked to the small size
of the Old French corpus in the treebank, although
our model generally shows strong performance in
learning from small datasets, as demonstrated by
its robust performance in other datasets of similar
size, such as Ancient Hebrew (hbo), Gothic (got),
and Vedic Sanskrit (san).

Results in lemmatization display greater diver-
sity, likely due to the differing architectures in par-
ticipants’ approaches. Our model achieves 99.18%
in Classical Chinese (lzh), a language where dis-
tinct lemmata do not really exist, usually turning
the task into mere form replication. This score,
though precise, is somewhat lower than the near-
perfect range of 99.81 to 99.96% achieved by the
other methods in the shared task.

5 Negative Results

Multi-task Learning. We hypothesized that a
model simultaneously doing PoS tagging, morpho-
logical tagging and dependency parsing could bene-
fit from the training signals of related tasks.2 How-
ever, this approach did not significantly improve
morphological analysis and resulted in longer train-
ing times due to slower convergence. On the other
hand, jointly performing morphological and PoS
tagging in a multi-task learning setup yielded minor
improvements in PoS tagging. We believe that in-
cluding PoS information offers little extra insight to
the model for morphological tagging and simulta-
neously pressures it to form representations apt for
PoS tagging. Conversely, enriching the coarser PoS
tagging task with morphological labels provides the
model with useful additional insights. Furthermore,
our dependency parsing technique differs from the
more direct classification approach used in PoS
and morphological tagging, potentially leading to
instabilities during training.

2For dependency parsing, we adopt the head selection
method as described by Zhang et al. (2017).
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Language: chu cop fro got grc hbo isl lat latm lzh ohu orv san

Morphological Tagging

Constrained
Ours 96.04 98.60 97.87 95.32 97.46 97.46 95.29 95.17 98.68 95.52 96.30 95.00 91.58
Team 21a 94.06 80.47 94.08 93.96 96.50 71.20 94.79 93.31 97.98 85.98 94.64 92.16 90.00

Baseline 85.07 47.41 28.27 18.95 25.10 42.78 35.83 18.17 30.94 43.58 23.20 25.55 08.34

Unconstrained
UDParse 96.49 98.88 98.33 96.23 97.78 97.05 95.92 96.66 98.83 96.24 96.62 95.16 92.60
TartuNLP 67.14 74.86 98.01 92.40 97.33 95.14 95.53 95.91 98.83 88.75 75.62 80.00 86.33

PoS Tagging

Constrained
Ours 96.57 96.92 93.10 95.41 96.39 96.68 96.08 95.54 98.43 92.92 95.98 94.46 89.71
Team 21a 94.62 42.65 85.14 93.48 93.49 27.26 93.85 92.43 94.41 81.79 94.42 91.23 87.32

Baseline 93.36 94.98 91.57 93.73 90.33 94.07 94.00 92.39 97.22 90.91 93.59 90.33 89.37

Unconstrained
UDParse 97.00 97.33 96.01 96.47 96.49 97.84 96.88 96.83 98.79 93.76 96.71 94.99 90.02
TartuNLP 66.35 60.99 94.51 92.72 95.72 94.15 96.67 95.86 98.79 83.28 75.14 75.67 83.83

Lemmatization

Constrained
Ours 94.49 95.07 92.63 93.31 94.08 97.29 96.63 96.00 98.46 99.18 85.92 90.09 84.59
Team 21a 79.59 46.32 83.32 90.79 88.30 61.75 94.58 92.35 97.22 99.84 69.97 78.44 83.21

Baseline 89.60 95.74 91.93 91.95 91.06 95.28 93.78 92.08 97.03 98.81 89.43 84.44 84.24

Unconstrained
UDParse 59.56 74.78 92.47 92.81 94.02 96.85 97.96 96.74 98.91 99.96 63.43 68.55 88.10

TartuNLP 92.70 98.28 95.11 95.41 93.39 98.15 97.23 96.99 98.69 99.91 86.91 89.23 91.48

Table 2: Results on SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages.
We mark the winner of each subtask in bold and underline the overall winner. See Appendix C for language
identifiers.

Tall Models. Xue et al. (2023) found that trans-
formers with a narrower and deeper architecture
might surpass the performance of similarly sized
models in masked language modeling tasks. In-
spired by this finding, we experimented with dou-
bling the number of layers to 24 while reducing the
hidden size from 768 to 512 and the number of at-
tention heads from 12 to 8. However, although this
adjustment seemed to yield a marginal improve-
ment in pre-training with MLM, it did not result in
any performance changes when training with RTD.

6 Conclusion

We present our approach for the SIGTYP 2024
shared task on historical language analysis. Our
method employs a hierarchical transformer that
first focuses on a word’s characters, applying
self-attention to generate initial word embeddings.
These embeddings are then further developed by
integrating the contextual information from sur-
rounding words. We pre-train HLM-DeBERTa-V3
and T5 models with small datasets of historical
texts. The character-based methodology of our
architecture yielded promising results, effectively
leveraging the available data. Contrary to our ex-
pectations, the implementation of multi-task learn-
ing had only a negligible effect on enhancing our

models’ performance.
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nen, Linh Hà Mỹ, Na-Rae Han, Muhammad Yud-
istira Hanifmuti, Takahiro Harada, Sam Hardwick,
Kim Harris, Dag Haug, Johannes Heinecke, Oliver
Hellwig, Felix Hennig, Barbora Hladká, Jaroslava
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Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna
Kanerva, Neslihan Kara, Ritván Karahóǧa, An-
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A Pre-Training Details

Parameter Generator Discriminator

Activation GELU GELU
Hidden Dropout 0.1 0.1
Initializer Range 0.02 0.02

Intra-word encoder

Layers 3 4
Hidden Size 768 768
Intermediate Size 1536 1536
Attention Heads 12 12

Inter-word encoder

Layers 6 12
Hidden Size 768 768
Intermediate Size 3072 3072
Attention Heads 12 12

Table 3: HLM-DeBERTa hyperparameters.

Parameter Value

Optimizer Adam
Weight Decay 0.01
Batch Size 16
Learning Rate 1e-5
Learning Rate Scheduler constant
Epochs 30
Warmup Proportion 0.1
Mask Percentage 15%
Max Sequence Length (words) 512
Max Word Length (chars) 16

Table 4: HLM-DeBERTa pre-training hyperparameters.

Parameter Value

Optimizer AdamWScale*

Weight Decay 0.0
Batch Size 16
Learning Rate 1e-5
Learning Rate Scheduler cosine
Epochs 100
Warmup Steps 1000
Mask Percentage 15%
Max Sequence Length 512
Mean Noise Span Length 3

Table 6: T5 pre-training hyperparameters.
* We use the customized AdamW imple-

mentation of nanoT5 (Nawrot, 2023) that
is augmented by RMS scaling.

Parameter Encoder Decoder

Activation GEGLU GEGLU
Hidden Dropout 0.0 0.0
Layers 12 12
Hidden Size 768 768
Intermediate Size 2048 2048
Attention Heads 12 12

Table 5: T5 hyperparameters.

B Fine-tuning Details

Parameter Value

Optimizer AdamW
Weight Decay 0.01
Batch Size 16
Learning Rate 2e-5
Learning Rate Scheduler linear
Early Stopping Patience 10

Table 7: HLM-DeBERTa fine-tuning hyperparameters.

Parameter Value

Optimizer AdamW
Weight Decay 0.01
Batch Size 16
Learning Rate 1e-3
Learning Rate Scheduler linear
Early Stopping Patience 10

Table 8: T5 fine-tuning hyperparameters.
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C Dataset Statistics

Language Code Family Script Train Tok. Valid Tok. Test Tok. Train Sent. Valid Sent. Test Sent.

Ancient Greek grc Indo-European Greek 334 043 41 905 41 046 24 800 3100 3101
Ancient Hebrew hbo Afro-Asiatic Hebrew 40 244 4862 4801 1263 158 158
Classical Chinese lzh Sino-Tibetan Hanzi 346 778 43 067 43 323 68 991 8624 8624
Coptic cop Afro-Asiatic Egyptian 57 493 7272 7558 1730 216 217
Gothic got Indo-European Latin 44 044 5724 5568 4320 540 541
Medieval Icelandic isl Indo-European Latin 473 478 59 002 58 242 21 820 2728 2728
Classical & Late Latin lat Indo-European Latin 188 149 23 279 23 344 16 769 2096 2097
Medieval Latin latm Indo-European Latin 599 255 75 079 74 351 30 176 3772 3773
Old Church Slavonic chu Indo-European Cyrillic 159 368 19 779 19 696 18 102 2263 2263
Old East Slavic orv Indo-European Cyrillic 250 833 31 078 32 318 24 788 3098 3099
Old French fro Indo-European Latin 38 460 4764 4870 3113 389 390
Vedic Sanskrit san Indo-European Latin (transcr.) 21 786 2729 2602 3197 400 400
Old Hungarian ohu Finno-Ugric Latin 129 454 16 138 16 116 21 346 2668 2669

Table 9: Dataset statistics.
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