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Abstract
SL-FE is a framework designed for the phonological representation of sign languages, bridging the gap between
theoretical phonology and practical sign language annotation. SL-FE defines phonological information as a
continuous signal from pose estimation information that enables not only the extraction of the comprehensive set of
discrete phonological information but also provides a quantitative framework for theoretical analyses. By utilizing our
framework, we conduct case studies to test empirical claims of feature dominance and symmetry on phonological
complexity in Turkish Sign Language (TID). Only by defining a ranking function, we were able to classify these
conditions with high lexical retrieval accuracy offering empirical evidence to support theoretical claims. The framework

proves to be an essential tool for research in sign language linguistics.
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1. Introduction

The field of sign language research has seen con-
siderable advancements in automatic annotation
technologies, significantly enhancing the efficiency
and accuracy of sign language recognition and
translation. However, a gap persists in integrating
theoretical phonological models into these frame-
works. Traditional automatic annotation systems
primarily focus on feature extraction, serving the im-
mediate needs of recognition and translation with-
out delving into the theoretical aspects of sign lan-
guages (Skobov and Lepage, 2020; Lucie Naert
and Gibet, 2018; Gonzalez et al., 2012). While
functional for specific applications, this approach
overlooks the phonological information crucial for
comprehensive linguistic analysis and understand-
ing, with the .

In response to this need, our framework, Sign
Language Feature Extraction (SL-FE), emerges as
a novel solution for the limitations of existing an-
notation systems. Unlike its predecessors, SL-FE
is not merely an automatic annotation tool but a
robust framework incorporating a continuous math-
ematical representation of phonological information
specifically tailored for sign languages. Drawing
upon prosodic models (Fenlon et al., 2017), SL-
FE represents each phonological feature — finger
selection, movement, and location information—
through normalized feature-scoring methods. This
method leverages pose-estimation technology to
calculate the probability of feature occurrences, uti-
lizing both orthogonal and angular distances be-
tween joints and normalizing these measurements
according to the body proportions of the signer.
Such an approach ensures that our scoring remains
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invariant to variations in signer and camera angles,
providing a consistent and interpretable analysis of
phonological features in continuous sign language
videos as demonstrated in Figure 1.
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Figure 1: The pipeline of our framework for the
lexical item "EVENT", in TID Sézlik. The top
side is the cumulative plot of extracted continuous
phonological information from the sign language
video. On the bottom side, the annotations are
exported to the ELAN interface after the classifica-
tion pipeline is applied to the continuous feature
set.

A significant achievement of our framework is
its capacity to operationalize and validate typologi-
cal claims within sign language research, such as
Feature Dominance and Feature Symmetry (Bat-
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tison, 1978). By applying SL-FE to the TID (Turk-
ish Sign Language) Sézlik Dictionary database,
we have successfully computed the phonological
complexity of isolated lexical items, offering empir-
ical support for these theoretical constructs. This
capability not only demonstrates the framework’s
analytical power but also contributes to the broader
understanding of sign language phonology.

Furthermore, SL-FE is designed with accessibility
in mind. The framework includes a user-friendly
graphical user interface (GUI) that facilitates the
viewing and exporting of annotations. This feature
supports real-time and pre-recorded video analysis,
making SL-FE a versatile tool for sign language
research.

In summary, SL-FE yields a new line of method-
ology of sign language phonological research.
Through its theory-driven approach to phonolog-
ical feature representation and analysis, SL-FE
addresses the limitations of previous annotation
frameworks and paves the way for new directions
in sign language research and applications.

2. Related Works and Theoretical
Aspects

2.1. Related Works

Traditional automatic sign language annotation
frameworks have largely been oriented with a fo-
cus on feature extraction utilized in recognition
and translation models for classifying handshape
(Mukushev et al., 2022; Lucie Naert and Gibet,
2018), detecting sign boundaries (Momeni et al.,
2022) or the recognition of lexical items (Dreuw and
Ney, 2008). In the automatic annotation process,
these models either utilize RGB images from sign
language videos or pose estimation information in
the classification of the feature set. Although these
methods introduce novel architectures for automa-
tion, they heavily rely on the prior annotations done
for the training. Despite the practical utility of these
systems, their contribution to theoretical linguistic
inquiry is less pronounced. Theoretical research
on sign language linguistics, focusing on systemic
structure and function, requires a detailed interpre-
tation of sign language as a linguistic system. Re-
cent literature reflects an increasing interest in ap-
plying pose estimation techniques to provide quan-
titative insights into sign languages. These studies
aim to bridge the gap between signs’ physical artic-
ulation and linguistic implications (Chizhikova and
Kimmelman, 2022; Ghaleb et al., 2024; Keles et al.,
2023; Stamp et al., 2022). This shift has been partly
propelled by advancements in pose estimation tech-
nologies, enabling the articulatory components of
sign languages to be quantitatively analyzed. In
response to this growing interest, our framework,

336

SL-FE, has been developed for both the automatic
annotation of sign languages and the quantitative
analysis of their phonological features concerning
theoretical components of linguistic research.

2.2. Theoretical Aspects

Our framework’s core innovation lies in its ability
to provide a continuous representation of phono-
logical features (i.e. Selected Fingers, Location,
Orientation, and Movement) within a given sign
language video. In the process of grounding our
framework, we rely on the literature on theoret-
ical aspects of sign language phonology where
features are grouped into Inherent Features (IF)
and Prosodic Features (PF) (Fenlon et al., 2017;
Van der Hulst, 1993; Brentari, 1998). Namely, while
Inherent Features provide a static snapshot within
a single frame, the transition between position fea-
tures (the thumb’s interaction with the selected fin-
gers, i.e. open to close or close to open), the transi-
tions between settings in major locations (i.e. from
proximal to distal, or from ipsilateral to contralat-
eral), and changing orientation features (i.e. from
palm to back of the hand, or from ulnar to radial
parts of the hand) give rise to dynamic, Prosodic
Features (PF). This treatment of phonological fea-
tures and the appropriate mathematical modeling
of these respective feature types are essential not
only for extracting phonological information in a the-
oretically more informed manner from large corpora
to be used in the different domains and tasks (i.e.
sign segmentation and sign recognition in computer
science), but they also provide a novel quantitative
basis for theories of sign language phonology and

typology.

3. Methodology

Our methodology focuses on four primary phono-
logical feature types: Finger Selection, Orientation,
Location, and Movement. Each feature type is ex-
tracted through a series of computational steps,
leveraging pose-estimation technology and mathe-
matical models to achieve a continuous and inter-
pretable representation of sign language phonology
regarding the variation and noise within sign lan-
guage videos.

3.1.

The preprocessing stage employs the Mediapipe
hand and pose estimation models (Lugaresi et al.,
2019), a tool for accurate human pose estima-
tion. The model is critical to our framework, as
it identifies and tracks various landmarks across
the signer’s body and hands in each frame, facilitat-
ing detailed phonological analysis. The landmarks
include:

Pose Estimation



* Hand Pose Landmarks: Essential for ana-
lyzing movement, orientation, and finger se-
lection, the model provides detailed informa-
tion on the hand by identifying 21 joints per
hand. Each joint is crucial for the in-depth ex-
amination of handshapes, movements, and
orientations.

* Pose Landmarks: Primarily utilized for ex-
tracting location information, the model out-
puts 31 pose landmarks. These landmarks en-
able the framework to analyze how the signer’s
body interacts with space. These are either se-
lected or generated according to the major and
minor locations defined for sign languages.

Although we utilize the Mediapipe model in the
current preprocessing due to its real-time process-
ing and low CPU requirements, we are considering
integrating the OpenPose framework (Cao et al.,
2019). This prospective addition aims to broaden
the framework’s applicability and enhance its ana-
lytical depth to offer a more versatile and detailed
tool for sign language research.
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Figure 2: Hand Landmark list for left hand from
Mediapipe

3.2. Finger Selection

Finger Selection is the first critical phonological
feature our framework addresses. This process
involves identifying key anchor points across each
finger, focusing on four main inner joints for both
hands (Joints 2-3, 6-7, 10-11, 14-15, 18-19 as des-
ignated in Figure 2). The angular distances be-
tween these joints are calculated to represent the
fingers’ selectional properties, such as curvature
and contact points. The final feature values are
obtained through min-max scaling of these angles
across the video data, providing a continuous mea-
sure of finger selection within a normalized range
of [0,1]. This normalization allows for a compara-
tive analysis across different signers and sign lan-
guages, ensuring that the variations in individual
signer’s hand shapes do not skew the analysis.

1 ZJ L(pj-1,P,Pj+1)
o j—15D Pj+1
peJ

In the finger selection feature extraction process
defined in Eq. 1, F'S(h, f) serves as a quantifier
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for the selection state of a given finger f on a given
hand h. This mathematical representation is central
to our framework, encapsulating the finger’s pos-
ture in a numerical format. The set J denotes the
collection of joint indices, namely, Metacarpopha-
langeal (MCP), Proximal Interphalangeal (PIP), and
Distal Interphalangeal (DIP) joints. These joints are
pivot points that define the curvature and extension
of each finger.

The formula calculates the normalized average
angular difference between consecutive joints in the
set J. For each joint pin J, the angle (p;_1,p, pj+1)
is computed, which measures the angle at joint p
formed by the line segments connecting it to its
immediate neighboring joints p;_; and p;41. This
angle is then normalized by dividing the angle by
180 degrees to scale the value between 0 and 1.
Summing these normalized angles and dividing by
the cardinality of the set |J| gives us an average
value, F'S(h, f), that represents the overall curva-
ture of the finger.

The resulting feature score F'S is then catego-
rized into one of three states based on its value:
"unselected" if F'S(h, f) smaller than 0.2, "curved"
if FS(h, f) falls between 0.2 and 0.7, indicating
a partially flexed finger posture, and "selected" if
FS(h, f)is greater than 0.7, signifying a finger that
is actively selected by extending the finger in the
formation of a sign shown in Eqg. 2. This ternary
categorization simplifies the interpretation of the
finger's importance, distinguishing the overall hand-
shape.

unselected, if FS(h, f) <0.2
FS = { curved, if0.2 < FS(h,f)<0.7 (2
selected, if 0.7 < FS(h, f)

3.3. Orientation

The Orientation feature encompasses three main
sub-features, each reflecting a distinct aspect of
hand orientation in signing space during signing:

+ Palm-Back Score: This score is derived from
the relative orientation of the hand along the
(x,y) axes, using the index knuckle and the
pinky finger knuckle joints (Joints 5-17). It
quantifies the extent to which the palm or back
of the hand faces the interlocutor.

« Radial-Ulnar Score: Based on the hand’s ori-
entation along the (y,z) axes, this score also uti-
lizes the index and pinky finger knuckle joints.
It assesses the radial or ulnar deviation of the
hand.

 Tips-Wrist Score: This score measures the
orientation of the fingertips relative to the wrist
along the z-axis, using the wrist and middle



fingertip joints (Joints 0-12). It captures the
flexion or extension of the fingers relative to
the wrist.

The granularity of phonological feature analysis
is done by normalizing each orientation score to
the absolute length of the signer’s hand. This axis-
specific normalization ensures that the resulting
scores are relative to the signer’s unique hand di-
mensions. Subsequently, these normalized scores
are constrained within a [0,1] range for each fea-
ture tuple. We employ a softmax function to classify
these orientation labels, which provides a proba-
bilistic interpretation of each hand orientation.

A1 2
O(h) = o(ZaelPuz ~ Pusl, 3)
llp* = p?|

The equation for deriving the orientation feature
vector is formulated to capture the relative position
of the hand in space. In this equation, O(h) rep-
resents the orientation feature vector for a hand
h. The function o denotes the softmax function,
which is applied to the sum of normalized differ-
ences across a set of axes A for each feature used
to define the orientation.

For each axis in A, the difference between the
normalized joint positions p., and p2,, is calculated.
These joint positions correspond to specific points
on the hand, like knuckles or fingertips, relevant
to the orientation being measured. The absolute
value of this difference is then taken to ensure a
non-negative measure of displacement. The nor-
malization ||p* — p?|| is the Euclidean distance be-
tween the two joints for each hand, serving as the
denominator in the equation, which scales the ori-
entation score relative to the size of the hand.

3.4. Location

Location analysis involves determining the relative
positioning of each hand to major and minor lo-
cations (namely, Head, Nose, Ear, Mouth, Torso,
Shoulder, and Chest). The technique measures
the distance between the center of each hand and
these landmarks, scaling these distances to the
minimum and maximum values observed in each
video frame. This scaling normalizes the data, ac-
commodating variations in signer physique and
positioning relative to the camera, thus ensuring
the reliability of our phonological feature extraction
across diverse datasets. We represent the overall
relativized locations as the unit vector L of the dis-
tance between the center point of selection of the
hand and all selected locations.

3.5. Movement

The Movement feature extraction is the most com-
plex because the model synthesizes continuous
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phonological information derived from each hand’s
Finger Selection, Orientation, and Location anal-
yses. Our framework models primary movement
types (i.e. path movement, aperture change, and
orientation change) while we are still working on
modeling secondary movement types, which can-
not be derived from changes in IF features (i.e.
path-shape and temporal alignment properties). In
this regard, although we do not provide a compre-
hensive movement feature set, we provide a basis
for the derivation of the movement in accordance
with the theoretical aspects of movement features.

To demonstrate that our framework lays a basis
for deriving complex features within sign language
corpora, we empirically test and display the prac-
tical implications of our model with case studies
within the TID S6zllk dataset. These studies focus
on phonological information complexity to substan-
tiate theoretical claims about feature Dominance
and Symmetry which we define in the next section.

4. Case Studies

Our framework’s application in these case studies
is primarily motivated by the need to empirically test
and validate phonological theories in Turkish Sign
Language (TID). Utilizing the TID So6zlik dataset,
we apply our framework to quantify phonological
complexity to derive dominance and symmetricity
conditions. We have selected these two conditions
regarding the theoretical discussion on these condi-
tions indicating that the definitions are derived by dif-
ference or the similarity between information com-
plexity between hands in two-handed signs. Earlier
claims only provide hand configuration limitation
on these conditions, while Eccarius and Brentari
(2007) argue that each condition can be defined as
the maximization of the difference in phonological
information (Dominance) or the minimization (Sym-
metry) which is the initial motivation for selecting
as our case studies.

4.1. Constraints on Two-handed Signs

The constraints on two-handed signs, concerning
Dominance and Symmetry (Battison, 1978) where
the Dominance Condition articulates that in two-
handed signs if handshapes differ, one hand (typ-
ically the non-dominant, passive hand, or weak
hand) adopts an unmarked handshape. These un-
marked handshapes are typically simpler in struc-
ture. Eccarius and Brentari (2007) extends this by
discussing featural complexity, positing a limit to
the featural complexity permissible in a sign.

The study also introduces the Featural Symme-
try Condition, which posits that signs reduce their
featural complexity by making the two hands mirror
each other regarding selected fingers and orien-



tation changes in the articulation of a sign. This
suggests a balance or trade-off in complexity within
the sign, resonating with the Dependency model,
which views sign language structure in terms of
interdependent features.

By applying these theoretical constructs to the
TID dataset within our framework, we aim to pro-
vide empirical evidence for these phonological con-
straints. Our approach mathematically quantifies
phonological complexity and symmetry, allowing us
to test and validate the theoretical claims posited
by phonological theory in sign language.

1 Ch
o) = i hZCh abs(An[f](ch))  (4)

Equation 4 defines the phonological complex-
ity C'(h) for a hand h by averaging the absolute
changes in phonological features across a set of
channels C. In this context, Ch is a collection of
channels, each representing a different aspect of
phonological information, namely finger selection,
orientation, and location. The function Ap[f](ch) is
the absolute forward finite difference function that
calculates the change in a specific phonological fea-
ture f within the channel ch from adjacent frames.
We obtain a measure of total phonological change
by taking the absolute value of this change and
summing it across all channels. This sum is then
normalized by the number of channels |Ch|, result-
ing in an average measure of complexity for the
hand across all considered phonological features.
This computation allows for the quantification of
complexity in a sign, providing a scalar value that
can be used to analyze and compare the phono-
logical structures within sign language corpora.

Additionally, in refining our understanding of two-
handed sign constraints within the categorizations
and lists the unmarked handshapes for TID Kubus
(2008). These definitions are particularly relevantin
evaluating the performance of our framework when
retrieving lexical items. The research outlines a
set of unmarked handshapes specific to TID, which
serve as a benchmark for assessing phonological
complexity and dominance in two-handed signs.

4.2. Dataset

The TID Sézluk Dictionary (Makaroglu and Dikyuva,
2017) is a comprehensive online corpus for Turkish
Sign Language. It includes over 3000 isolated lexi-
cal items and within-sentence examples for each
synonym. This dataset is not only a valuable edu-
cational resource but also a rich corpus for linguis-
tic analysis, as it contains annotated handshape
and location information for each lexical variant. In
our study, the distribution of handshapes from this
dataset serves as a basis for examining symme-
try and dominance, allowing us to assign a scalar
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value representing the phonological complexity for
each hand.

4.3. Case Study on Dominance Condition
in TID

Feature Dominance in sign language phonology
posits that in two-handed signs, the less active
hand, designated as h,, should exhibit lower phono-
logical complexity compared to the more active
hand. This principle reflects the asymmetry often
observed in the phonological structure of sign lan-
guages, where the dominant hand carries more
articulatory burden.

To quantify and utilize the phonological complex-
ity between hands in demonstrating Dominance
within data, we define a ranking function for re-
trieving the signs that maximize the difference in
complexity score.

argmaxf(H) = {{h1,h2} € H | |C(h1) — C(h2)[}

(2%
(5)

Equation 5 is the ranking function f(H) designed
to order signs based on the maximization of phono-
logical complexity differences between the hands.
In the given sign, H represents the set containing
pairs of hands, where h1 is typically the more ac-
tive or dominant hand, and A2 is the less active or
non-dominant hand. The function C(h) computes
the phonological complexity for a given hand h.

The ranking function operates by identifying the
pair of hands (hl1, h2) within the set H that has
the largest absolute difference ' in phonological
complexity |C'(h1) — C(h2)|. The argmax operator
is applied to select the pair (h1, h2) for which this
absolute difference is maximized across all possi-
ble hand pairs in the dictionary V. This approach
inherently ranks signs in a way that emphasizes
the contrast in complexity between the two hands,
reflecting the dominance condition where the less
active hand is expected to demonstrate less phono-
logical complexity compared to the more active
hand. The function provides a quantitative basis
for ordering signs by their adherence to this phono-
logical principle.

Investigating the Top-100 retrieved signs that ex-
hibit the highest difference in complexity scores,
we examine the distribution of handshapes for the
non-dominant hand. This analysis reveals a cor-
relation with the unmarked handshapes for TID,
suggesting that less active hands tend to favor sim-

'"We should note that some of the signs have the
higher complexity score in left hand given dominance
hands are marked general handedness of signers which
is mostly right hand. It should be noted for additional
studies.



030 0.290909

0218182

0181818

0.181818

0127273

Handshape ID

Figure 3: The handshape distribution of non-dominant hands (h2) for the Top-100 signs with the highest
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Figure 4: The handshape distribution for the Top-100 signs with the highest symmetricity ranking

pler, unmarked configurations, as shown in Figure
3.

A manual annotation process assesses the ac-
curacy of the signs retrieved by our model, result-
ing in a 0.90 accuracy success rate in identifying
dominant-hand signs shown in Table 1. This high
degree of accuracy underlines the effectiveness of
our phonological complexity formulation in predict-
ing feature dominance within the signs.

4.4. Case Study on Symmetry Condition
in TID

In contrast to feature dominance, the feature sym-
metry condition, suggests that two-handed signs
should exhibit similar phonological features across
both hands. This condition is motivated by featural
symmetry, where both hands are expected to have
similar finger selections, orientations, and move-
ments, often resulting in unmarked handshapes.
To accommodate the symmetry condition, we
revise our ranking function to focus on the min-
imization of phonological information complexity
differences between hands as shown in Equation 6.
This adjustment allows us to evaluate the degree
of symmetry in the phonological structure of each
sign by identifying and prioritizing those with the
least complexity difference between the hands.

argglLinf(H) = {{h1,ho} € H [ |C(h1) — C(h2)[}
(6)

Following the re-ranking of signs according to the
updated function, we investigate the distribution of
handshapes, particularly looking for the occurrence
of unmarked shapes that would be indicative of sym-
metry. We then assess the accuracy of our model’s
ability to detect symmetric signs. A higher accuracy
rate in this assessment would support our frame-
work’s capability to model phonological complexity
effectively and validate the feature symmetry con-
dition in sign language phonology. Similar to the
Dominance Condition, we also observed the high
distribution of unmarked handshapes in Top-100
retrieved sign as shown in Figure 4.

4.5. Results

In the dominance condition analysis, the model
demonstrated high performance. This accuracy
is attributed to the framework’s capability to maxi-
mize the phonological information differences be-
tween the hands, which is a direct quantification
of the dominance condition. The results were con-
sistent with theoretical expectations, affirming the
model’s validity in discerning the more active hand’s
increased complexity. While still accurate, the anal-
ysis of the symmetricity condition revealed lower
performance metrics compared to the dominance
model. This outcome is due to the complexity of
symmetricity, which is not solely about minimizing
differences between hands but each hand should
yield lower complexity separately. This dual require-
ment supports theoretical assertions of Eccarius
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and Brentari (2007) and highlights the additional
constraints involved in modeling symmetricity within
sign language phonology. Nevertheless, the base-
line scores provided for the retrieval of symmetricity
are still relatively high for further studies.

| Label | Acc. [ Pre. [Rec. [F1 \
Dominance | 0.90 1.00 0.90 0.95
Symmetric | 0.84 0.71 0.84 0.77

Table 1: The results of the performance of retrieved
Top-100 signs with highest Dominance and Sym-
metric ranking

5. Future Work

Further developments in our framework will address
the integration of movement features, which are dy-
namic and complex components of sign language.
We plan to utilize neural network models to effec-
tively model these features, which can learn and
generalize from large datasets. These models can
potentially capture the temporal and spatial move-
ment information across sign languages, translat-
ing them into meaningful phonological data that
can be used for further linguistic analysis.

The ultimate goal of our research is to achieve
a fully automated annotation process for sign lan-
guage videos via advanced neural models. This
automation will not only accelerate the annotation
process but also enhance its accuracy, consistency,
and scalability. As we integrate these advanced
neural models, we will also re-evaluate and refine
our annotation methodologies to ensure they re-
main robust and reliable for comprehensive sign
language research.

6. Conclusion

In conclusion, SL-FE proves to be a transforma-
tive tool for sign language phonological analysis,
adeptly bridging the gap between theoretical mod-
els and practical annotation. It offers a novel com-
putational approach to quantify phonological com-
plexity, providing empirical evidence for longstand-
ing theoretical constructs. The case studies con-
ducted with the TID dataset affirm the framework’s
capability to identify feature dominance and sym-
metry. Moreover, applying the two-handed sign
criteria confirms the phonological constraints and
others posited. As we continue to refine SL-FE, we
anticipate its broader application in sign language
research.
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