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Abstract
Unsupervised representation learning offers a promising way of utilising large unannotated sign language resources
found on the Internet. In this paper, a representation learning model, VQ-VAE, is trained to learn a codebook of
motion primitives from sign language data. For training, we use isolated signs and sentences from a sign language
dictionary. Three models are trained: one on isolated signs, one on sentences, and one mixed model. We test these
models by comparing how well they are able to reconstruct held-out data from the dictionary, as well as an in-the-wild
dataset based on sign language videos from YouTube. These data are characterized by less formal and more
expressive signing than the dictionary items. Results show that the isolated sign model yields considerably higher
reconstruction loss for the YouTube dataset, while the sentence model performs the best on this data. Further, an
analysis of codebook usage reveals that the set of codes used by isolated signs and sentences differ significantly. In
order to further understand the different characters of the datasets, we carry out an analysis of the velocity profiles,
which reveals that signing data in-the-wild has a much higher average velocity than dictionary signs and sentences.
We believe these differences also explain the large differences in reconstruction loss observed.
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1. Introduction

Sign languages play a critical role in the commu-
nication of deaf communities worldwide, with over
300 different sign languages in use. Despite their
significance, sign languages are generally under-
resourced compared to spoken languages, with
small corpora and limited lexicon due to the need
for a manual gloss annotation of sign language
videos. While processing of written and spoken
languages has advanced rapidly in recent years,
with technology performing on par with humans,
the same trend has not yet been observed in sign
language processing.

Recent progress in speech and text processing
has been possible thanks to self-supervised rep-
resentation learning methods that can be carried
out on vast corpora without the need for manual
annotation. It has been shown for a speech gener-
ation task that learning a powerful data represen-
tations significantly improves speech generation
(Baevski et al. (2020), van den Oord et al. (2016)).
Importantly, this has also made it possible to train
models not only on data specifically recorded for
the purpose of language technology, but also on
in-the-wild data from various Internet sources such
as YouTube, which is very beneficial for the low-
resourced domain of sign languages.

In this paper, we are investigating how a Vec-
tor Quantized Variational Autoencoder (VQ-VAE)
representation learning model can learn a code-

book of motion primitives from pose-tracked video
data. We train this model both on dictionary signs
and short sentences, and we investigate how the
model’s performance generalizes to sign language
data from YouTube. Examples of sequences recon-
structed from the model can be seen on our project
page1.

In the future perspective this model can be used
for producing sign language data representations
that can be used as a stepping stone for the sign
language generation task.

2. Related Work

Unsupervised representation learning has been
found effective in various data domains, for exam-
ple using masked language for natural language
understanding tasks (Devlin et al., 2018) or audio
pre-training for speech recognition (Baevski et al.,
2020). For generation tasks in the motion domain,
different kinds of probabilistic representation learn-
ing schemes, such as VQ-VAEs have been suc-
cessful. For instance, in the co-speech gestures
domain, Yazdian et al. (2022) paper focuses on
learning representations for motion primitives with
the help of denoising autoencoder (DAE) model that
encodes poses into simpler representations, and
then these representations are fed as sequences
into the second model – VQ-DVAE, that learns mo-
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tion primitives. In the dance generation domain,
Siyao et al. (2022) paper uses VQ-VAE as a step
for dance generation. The VQ-VAE learns choreo-
graphic motion primitives and then an actor-critic
GPT model generates dances out of the motions
coherently with the music. For more general mo-
tion, Jiang et al. (2023) trains a VQ-VAE to create
a motion vocabulary that is then used together with
a GPT model for several tasks such as Text-to-
Motion, Motion Prediction and Motion-to-Text.

Recently, similar representation learning ap-
proaches have been applied also to sign language
data for sign language understanding task, e.g. a
SignBert paper by Zhou et al. (2021) and newer
SignBERT+ by Hu et al. (2023). More specifically, a
VQ-VAE model has been applied to sign language
in Xie et al. (2022), where the main focus is on sign
pose sequence generation using a diffusion model.
However, in Xie et al. (2022) the authors encode
poses frame by frame in the latent space, and as
a result they get encoded key points per frame in-
stead of motion primitives capturing a sequence
of frames. In our work we use VQ-VAE as a way
to learn a codebook of motion primitives for sign
language data.

3. Data

3.1. Swedish Sign Language Dictionary
This study uses the Swedish Sign Language (STS)
Dictionary Svenskt teckenspråkslexikon (2024),
which contains 21 000 entries and 6700 sentence
examples. Each dictionary entry includes a video
of the sign, phonological information, variants, and
example sentences. The Swedish Sign Language
Dictionary is also linked to the Swedish Sign Lan-
guage Corpus through ID-glosses (Mesch et al.,
2012; Mesch and Wallin, 2015). It highlights how
this focuses on lexical issues, particularly sign
lemmatization, and aims to offer a more compre-
hensive lexical description and understanding of
language use in natural conversation settings. The
total duration of the dictionary data is 664 minutes,
or 1 731 976 frames.

3.2. YouTube Data
For the purposes of testing our representation learn-
ing model on the in-the-wild data, we collected
data from the YouTube channel "UR Teckenspråk"2.
Our YouTube dataset contains 17 videos from the
Djupdyk playlist with a total duration of 105.6 min-
utes and a total number of frames 158 406, which
is comparable to the size of our test dataset (99
minutes and 229 802 frames respectively).

2www.youtube.com/@URTeckensprak

Figure 1: Example of extracted and normalized key-
points. Hands are relocated to wrist positions and
lines are drawn between keypoints for illustration
purposes.

3.3. Pose Tracking and Pre-Processing
DWPose (Yang et al., 2023) was used to extract

2D pose keypoints frame by frame in the videos.
The decision to use DWPose over the commonly
used MediaPipe (Zhang et al., 2020) was based on
its subjectively perceived robustness for the specific
use case. For the sake of simplicity, only keypoints
relating to the overall upper body pose, arms and
hands were used resulting in 56 2D keypoints per
frame (see Figure 1 for an example). In the future
perspective, we want to add facial features since
most non-manuals are carried out through the facial
features.

In order to preprocess the raw pose data, we
select the center of the first frame (the keypoint that
connects body with the neck) in the sequence in
order to shift the bodypose with respect to it, and
then we scale the pose by a scaling factor based
on the distance between the left and right shoulder.
The keypoints related to the hands are shifted so
that the wrist is located in the center for each frame
in order to capture finger movements and hand
shapes regardless of their global position.

3.4. Velocity Profile Examination
Our VQ-VAE model architecture requires choosing
the sequence length to encode. Since we wanted
to find motion primitives for sign language data,
we investigated velocity profiles of the STS dictio-
nary dataset to estimate the appropriate sequence
length to encode.

In order to find velocity, we calculated centroids
for each hand coordinates and then computed
the distance between the centroids of neighbor-
ing video frames separately for each hand. Ve-
locity was calculated as an Euclidean norm of the

www.youtube.com/@URTeckensprak
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Figure 2: Velocity profile for the STS sign ’kloster’.
First peak and last peak signify the transportation
phase. Velocity calculated as a distance between
hand coordinates centroids for neighboring frames.

Figure 3: Comparison of average velocity distribu-
tions for three types of data.

displacement vector between the centroids and av-
eraged between hands, because we have both left
handed and right handed signers in the dataset.

By studying the the number of velocity peaks be-
tween preparation for signing and retraction move-
ments, we found that an average number of frames
that correspond to one motion in both dictionary
signs and sentences is around 30 frames. Simi-
larly to Börstell (2023) we used the moving average
to smooth the signal and extract the first and last
peaks that correspond to transportation movements
(preparation and retraction). For the analysis, we
trimmed a signal from transportation movements,
and then extracted the peaks from the inverted ac-
tive signing signal based on a heuristic where the
peak is significant if it is higher than one standard
deviation from the mean (see example of a velocity
profile for sign ’kloster’ in Figure 2). As a result, we
estimated that the average number of frames for
motions in a sentence is 31.7 frames and 26.3 in
dictionary signs.

This information was used then in the model de-
sign stage, where we assigned sequence length
in the VQ-VAE to 30 frames for both signs and
phrases based models.

Figure 4: The VQ-VAE consists of an encoder that
takes sequences of poses as inputs, a codebook
that captures the motion codes and a decoder that
outputs reconstructed sequences.

Additionally, we compared the distributions of av-
erage velocities for videos in three datasets that
we are using (see Figure 3). As a result, we dis-
covered that signing in the wild is much faster than
both dictionary sentences and signs, as expected.
While the velocity of signing in sentences from a
dictionary is only a little bit higher than the velocity
of dictionary signs. We expected the velocity of
sentences to be closer to the signing-in-the-wild.

4. Model

4.1. VQ-VAE Architecture
Inspired by the architecture in Jiang et al. (2023),
that focuses on tokenizing body motion, we train a
2D sign motion tokenizer using a VQ-VAE (van den
Oord et al., 2018). It consists of an encoder E and
a decoder D, with a discrete latent representation
transforming motion into a structured codebook. E
generates dense motion tokens through a network
consisting of 1D convolutions that are quantized us-
ing codes from the codebook, which D, also based
on 1D convolutions, reconstructs into sequences
(see Figure 4). In our model, the encoder takes a
sequence of sign poses represented as normalized
2D keypoint coordinates, of length M , and pro-
duces latent vectors ẑ1:L = E

(
m1:M

)
, effectively

capturing sequences of frames in each latent vector
and downsampling a motion sequence L = M/l,
where l is the downsampling factor. These vectors
are then discretized into a set of codebook entries z
through quantization so that each entry zi belongs
to a learnable codebook Z =

{
zi
}K

i=1
⊂ Rd, with

K latent embedding vectors of dimension d.

zi = Q
(
ẑi
)
:= arg min

zk∈Z
∥ẑi − zk∥2 . (1)

To reconstruct the sequence the decoder uses
these embeddings and outputs a sequence of sign
poses of length M .

Optimization employs reconstruction loss (Lr),
which compares the mean squared error between
the input and the output of the VQ-VAE, and a com-
mitment loss (Lc) that ensures the encoder com-
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mits to an embedding and limits the growth of the
embedding space. We also employ other addi-
tional techniques for quality enhancement such as
replacing the embedding loss (Le) that minimizes
the difference between the encoded sequences
and the closest code embeddings, with exponential
moving average (EMA) as in Razavi et al. (2019).

5. Experiments

For the following experiments we used a codebook
size, K, of 512 and also set the dimension of the
embedding vectors, d, to 512, following Jiang et al.
(2023). Based on our analysis of velocity profiles,
we used a sequence length, M , of 30 frames, and
for the encoder network, we used a depth of 3 and
stride 2 resulting in a downsampling factor, l, of 7.5
and a latent encoding of length, L, of 4. This was
to ensure that each token in our codebook would
correspond to a motion and not only keyframes as
in other works such as Xie et al. (2022).

We trained three models on the Swedish Sign
Language Dictionary: one using only individual
signs (signs model), one using only sentence data
(sentences model) and one using all data (mixed
model). The data was split 80/10/10 in a train,
validation and test set and the same split was used
for all models to prevent information leakage.

Training Dataset
Test Dataset Signs Sentences Mixed
Signs 0.0067 0.0214 0.0077
Sentences 0.0074 0.0044 0.0074
YouTube 0.0211 0.0146 0.0157

Table 1: Reconstruction loss for models trained on
different subsets of the Swedish sign data mea-
sured as the mean squared error between the input
and the output of the VQ-VAE

As can be seen in Table 1 the models trained on
only signs or sentences exhibited better reconstruc-
tion for the type of data they were trained on, which
was expected. It can also be seen that the recon-
struction loss on data from YouTube was lower for
the model trained on sentences.

To further investigate how the models learn to
represent motion primitives in the codebook, we
evaluated the use of codes for the model trained on
all the data for 5000 test and training samples from
signs and 5000 test samples from sentences re-
spectively. Figure 5 shows that there is a difference
in the usage of the codebook and that the distri-
bution over codes for the samples is more similar
between signs than between signs and sentences.

Figure 5: Codebook usage for the model trained on
both signs and sentences. The three histograms
are sorted horizontally by most used codes for the
training data for individual Signs (left).

6. Discussion and Conclusion

The results in this paper indicate that it is possible
to capture some of the dynamic nature of signing
using an unsupervised model such as a VQ-VAE.
As is seen in the reconstruction results between the
different models and on the different types of data,
it is clear that capturing motion primitives more
similar to the dynamic of the target data yields better
results (see Table 1).

6.1. Time Dependence

In its current setup, the VQ-VAE model architecture
puts fixed limits on a sequence length, which means
data is cut and/or padded to deal with different
lengths of motions. The previous works usually set
a fixed sequence length based on the domain of
the data. For instance, the authors of Siyao et al.
(2022) use longer sequence length in their model
– 240 frames, compared to co-speech gestures
paper Yazdian et al. (2022), who use 30. This
editing makes it possible to train a model on data
of different lengths.

However, if the same kind of motion primitive is
performed with a different velocity, it can change the
model’s ability to represent it with the same code.
In the domain of signing data, the same signs can
also be produced at different speeds, so that one
motion primitive is produced within a different num-
ber of frames. This is supported by the difference
we discovered in the types of codes a mixed model
learns from different types of data, indicating that
the current architecture needs different codes for
different velocities. As a result, there is a limit to
the current model’s ability to learn and generalize
well over different types of data, even when dealing
with the exact same signs. This highlights the need
to investigate the possibility to create an unsuper-
vised setup that can capture time-invariant motion
primitives for this task.
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6.2. Generating New Samples
Given the limited amount of annotated sign lan-
guage data, training an unsupervised model that
can be used for a downstream task such as sign lan-
guage production is of great interest. Even though it
is possible to directly sample from the codebook of
our model, it yields human-like but nonsensical re-
sults. Training a class, or language, guided model
for code generation could yield more interesting
results but is left as future research.

Additionally, by observing sampled and recon-
structed sequence data we identify some limitations
of the setup such as a need to improve the finger
tracking and also increase the expressiveness of
the model. For examples of generated sequences
we refer to our project page3.
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