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Abstract
Sign language conveys information using dynamic visual signal. Proficient signers rely on the skill in processing and
predictive motion information during sign language comprehension. Much current work in sign language corpora
development relies on video data. However, from the perspective of information transfer in communication, video
recordings are limited in capturing spatial and temporal frequencies of sign language signal in sufficient resolution. In
contrast, radar can capture 3D motion data at high temporal and spatial resolution, preserving depth articulations
lost in 2D video. Radar’s recording parameters can also be adapted in real time to optimize temporal resolution
for rapid signing motions. Thus, radar recordings provide higher-fidelity corpora for analyzing linguistic features of
sign languages and creating smart environments that respond to signed input. Crucially, radar recordings uphold
user privacy, only capturing kinematic parameters of communicative signal, as opposed to signer identity. Radar
resolution in capturing dynamic data from sign language production, and privacy advantages it provides to users,

make it uniquely suited for advancing sign language research through corpora development.
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1. Signed Communication

Sign languages convey linguistic information dy-
namically through articulator motion. Although lin-
guistic analyses of signs only identifies motion as
a component of sign phonology, on par with hand-
shape, hand orientation, and place of articulation,
research in visual perception and sign comprehen-
sion has long been clear on relevance of dynamic
motion, as opposed to static components of artic-
ulation, to proficient signers (Malaia et al., 2023).
Lifelong exposure to visual complexity inherent in
sign motion affects both perceptual and cognitive
processing in sign language users compared to
non-signers, and enhances signers’ perceptual tun-
ing to the information density in motion signals, al-
lowing them to parse continuous signal, identifying
discrete signs and their grammatical modifications
(Klima et al., 1999; Bavelier et al., 2006). Linguistic
distinctions in meaning and grammar are reflected
in the movement dynamics of the signed signal.
These distinctions can be captured in a manner
parallel to acoustic and phonetic analysis of spo-
ken signals (Borneman et al., 2018).

Fully visible articulator motion in sign language
carries all communicated information. At the same
time, sign language motion carries more informa-
tion defined as visual signal entropy than everyday
human motion (cf. Fig. 1). The parameters that
are critical to capturing information-dense features
of the continuous signal are the temporal resolu-
tion and the amount of change present in the sig-
nal within the given time window. When signs are
produced fluently in sentences, there are almost
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always transitional movements between them, for
example, when one sign ends with the hand(s) lo-
cated in one place and the next sign starts with
them located somewhere else, there must be a
movement of the hands to that next location be-
fore the next sign can start its lexical movement.
These transitions are clearly differentiable to sign-
ers, and ignored when they are asked to count/tap
to syllables (Klima et al., 1999).

The variability of motion between sign-syllables
and transitions forms the basis of the quantitative
distinction between non- informative, biological mo-
tion, and the sign language signal (Malaia et al.,
2018). Mathematically quantified amount of infor-
mation (i.e. variability) in the motion of the artic-
ulators in sign language forms the basis of sign
syllables (Malaia and Wilbur, 2020). Experimental
approaches, including video analysis using opti-
cal flow and motion capture data analysis, indicate
that information transfer in sign language critically
relies on the entropy of the articulator signal, mak-
ing it critical to capture dynamic changes in it with
sufficient spatial and temporal resolution.

2. Information Transfer in Sign
Language Signal

When evaluating and comparing modalities for cap-
turing sign language motion, and for analyzing lan-
guages in general, a key factor is the fidelity and
dimensionality with which each modality can cap-
ture the information content of the original dynamic
signal over time (Malaia et al., 2022). Itis first useful
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Figure 1: ASL and action: comparative variability
optical flow spectrograms (a - American Sign Lan-
guage; b - everyday motion).

to explain the common framework on which differ-
ent language types, and capture methods, may be
compared.

Starting with a simple example, a spoken lan-
guage is a 1-dimensional time series signal, car-
rying information in amplitude as a function of
temporal frequency [f;], written here as [So(f:)].
Recording of this spoken signal, usually limited in
amplitude and frequency by electronics/sampling
method, may then be treated as a series of trans-
fer functions. For instance we may have record-
ing/electronics/sampling effects, [T;.(f:)], and ef-
fects on the data due to preprocessing [T, (f:)].
Importantly, T'(f;) < 1, i.e. no recording or cap-
ture method is perfect. This means that the final
recorded language signal is not a pure recorded
sample of the original spoken language, but is
rather a modified signal [S1(f:)], where Si(f:) =
So(fe) - Tr(ft) - Tp(fe). Therefore, final analysis of
the spoken language is always done on a reduced
fidelity recording. Knowing this, a spoken language
recording method should be selected which pre-
serves the overall information density within the

temporal component, [f:]. This would require high
temporal sampling and analysis frequencies, and
most acoustic recordings may contain a minimum of
20k samples per second. This characterization may
seem trivial for a 1-dimensional spoken language,
but the framework becomes useful when dealing
with a multi-dimensional signal, such as sign lan-
guage. Compared to linear sound recordings, cap-
ture of sign language presents a significant diffi-
culty. Sign language conveys information over spa-
tial frequencies in 3 space dimensions (f,, fy, f-),
as well as in temporal frequency (f;), and there-
fore any analysis of sign languages will depend
on the accuracy and dimensionality with which the
original signal can be recorded, as well as poten-
tial dimensionality reduction and fidelity loss during
further analysis. Each recording and processing
step acts as a filtering function, potentially reducing
the fidelity of the data. Therefore, it is important to
select measurement and analysis methods which
preserve, or at least are intentional about, how di-
mensionality and fidelity are addressed. Sign lan-
guage, as a 3-dimensional spatial signal also vary-
ing in time, So(fs, fy, f=, ft), is filtered in both spa-
tial frequencies, f, fy, f-, and temporal frequen-
cies, f;, depending on how it is recorded [7}.] and
how it is preprocessed [T},] . Si(fz, fy, f=, ft) =
SO(fwvfy:fmft) 'Tr(fwafy7f27ft) 'Tp(fxafyvf27ft)
Although sign languages use relatively lower tempo-
ral frequencies as compared to spoken language,
sign language also transfers information in addi-
tional spatial dimensions. These spatial dimen-
sions must also be recorded in order to preserve the
overall information density. This description may
now be used to describe various methods of lan-
guage capture in a common framework. For exam-
ple, video capture recordings of sign language are,
in essence, a 2D spatial frequency filter, which re-
moves depth information [T).(f.) = 0], and in which
the x, y spatial plane is downsampled to s, ¢ by the
camera distance and resolution [(fu, fu) = (fz, fy)]s
and filtered such that [T'.(f., f») < 1]. The camera
resolution and position should ideally be placed
such that all hand/arm articulators in the signing
space are resolved, that is, that the articulator fre-
quencies are in the camera band-pass. Further, f;
is subsampled by the frame rate of the video record-
ing [fr = f:)], resulting in T,.(f7) < 1. Therefore,
our pure real-world sign language information sig-
nal [So(fz, fy, f=, ft)] is now recorded by video and
subsampled to only two spatial dimensions and
time [Sl,video(fs; fta fT)]

In contrast, radar is capable of capturing 3D mo-
tion data over time, with adaptive temporal resolu-
tion based on user-configurable recording param-
eters. Radar signal processing algorithms may
extract range-Doppler (RD) maps (2D images of
range versus Doppler frequency) or micro-Doppler
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signature (Doppler frequency versus time). There-
fore, radar records motion along the depth axis
z, subsampled to w resolution[f,, =~ f.], such
that [7..(fw) < 1] through the line of sight dis-
tance. The remaining spatial dimensions f, f,
are convoluted into a radial velocity and angle of
arrival such that [(f,, f.) « (fz, fy)] and therefore
[T-(fr, fa) < 1]. Temporal resolution is adjustable
based on the pulse repetition frequency (PRF), and
can be set to match sign language motion band-
widths, and is generally faster than video frame
rates, [T,-(fr) < 1]. For Frequency Modulated
Continuous Wave (FMCW) radar, the PRF also
determines the maximum measurable radial veloc-
ity (vmaz = PRF x \/2) and the velocity resolution
Av = PRF/N, where N is the total number of
pulses transmitted. With higher transmit frequen-
cies, the Doppler frequency shift incurred due to
even slower motions is greater and hence more
easily measurable; however, this also reduces the
maximum velocity limit. Thus, selecting a high PRF
is advantageous both from the perspective of en-
suring unaliased velocity measurements and high
temporal sampling of motion during signing. In prior
work comparing the resulting radar micro-Doppler
signatures of lower bandwidth (3), lower PRF sig-
nal with low duty cycle (d) (8 = 750 MHz, PRF
= 3.2 kHz, d = 51.2%) versus one of high band-
width, PRF and duty cycle (5 = 4 GHz, PRF = 6.4
kHz, d = 96%), we found that the latter enabled
crisp and pristine micro-Doppler signatures of sign
language (Gurbuz et al., 2022a). Spatial depth
resolution depends on the transmitted waveform’s
bandwidth as Ar = ¢8/2, where c is the speed of
light. Ideally, an FMCW radar with high bandwidth
and high PRF is best suited for sign language mea-
surements, as this enables both high spatial and
temporal resolution measurements. Automotive
radars are well-suited for this aim as they typically
have bandwidths of 4 GHz and are designed with
PRFs so high as to measure vehicular speed. As
the commercial applications of low-cost, low-power
radar sensors are ever expanding, it is now pos-
sible to find sensors having bandwidths of 5 or
even 7 GHz. The main disadvantage of operat-
ing the sensor at such high bandwidth and PRF
is the high volume of data that results from high
spatiotemporal sampling. However, such consid-
erations can be mitigated by interactively adapting
the transmission parameters of the waveform so
that a low spatiotemporal resolution waveform is
transmitted when no human presence is detected,
or if a person is simply engaging in daily activities,
while a high spatiotemporal resolution waveform
is transmitted once a device is triggered and sign
language recognition is needed (Kurtoglu, 2024).

Therefore, our pure real-world sign language in-
formation signal [So(fz, fy, f=, ft)] is sub-sampled
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Figure 2: Sample radar micro-Doppler signature
for the sign KNIFE.

with radar to two convoluted spatial dimen-
sions, one pure spatial dimension, and time
[S1,radar (fvs fas [z, ft)]- This dimensional analysis
is useful to evaluate not just hardware capture, but
signal processing (Malaia et al., 2022). However
it is seen here that compared to 2D video, radar
provides crucial depth information about sign articu-
lations in 3D space. Radar’s recording parameters
can also be selected to maximize temporal resolu-
tion appropriate for capturing the rapid motions of
signing - a PRF of 6.4 kHz, as utilized in our earlier
example, offers much higher temporal sampling
than that of a high-speed webcam, which can have
a frame rate of about 200-300 frames per second
(fps). Thus, the micro-Doppler signature offers a
novel representation of sign language corpora that
can capture sign language kinematics in a unique
fashion, while also doing so in an ambient fash-
ion without recording private imagery. Consider,
for example, the micro-Doppler signature for the
sign KNIFE, shown in Figure 2. Not only can the
maximum and minimum velocity in both directions
be measured, but also the timing of the repetitive
motion and the number of times the fingers moved
back and forth. Notice also that from the radar
image we cannot infer any information about the
location or environment the recording was made or
even who was signing.



In addition to manual articulations, sign lan-
guages also involve facial expressions, mouth
shapes, contact between the fingers and body, as
well eye movements, which hold linguistic signifi-
cance. These are areas of ongoing, active research
in radar technology, which may one day make radar-
based sign language studies beyond manual ar-
ticulations possible. For example, lip reading un-
der face masks using radar has been proposed
(Hameed et al., 2022) to enable speech recogni-
tion when camera-based techniques are not pos-
sible due to the obstruction by the mask. Emotion
recognition (Dang et al., 2022) has also become a
topic of interest, as such facial movements during
expressions is coupled with vital signs recorded by
the radar. Moreover, through the use of a high num-
ber antenna array elements in both the azimuth and
elevation, newly developed high-resolution imaging
radars (Braunig et al., 2023) have been developed
that can provide a distinct image of hand shape,
which can thus enable recognition of fingerspelling.
The principle downside of this current technology,
however, is that such imaging radars are not able to
dynamically acquire images and require the hand
to be stationary. However, as automotive radars
are commercialized with an increasing number of
array elements, so is the azimuth and elevation an-
gular resolution increasing so that potentially new
Al/ML algorithms operating directly on the raw radar
data can be developed to enable such functions
that require high spatial resolution and localization
(such as detection of finger-body contact).

For these reasons, radar provides a uniquely in-
formative way for capturing sign language corpora,
which we have only yet begun to explore. Radar’s
higher-fidelity 3D motion data over time offers po-
tential for more detailed analysis of linguistic and
kinematic features of sign languages. This advan-
tage highlights radar’s promise for advancing sign
language research through improved corpora.

3. Radar-based Sign Corpora and
Machine Learning

Unlike video, radar measurements are not inher-
ently an image, but are actually a time-stream of
complex 1/Q data from which line-of-sight distance,
radial velocity, and angle of arrival may be com-
puted. The radar measurements may be visualized
via a variety of 2D and 3D data tensors. The most
widely used representation is the micro-Doppler
signature (Chen, 2019), which is computed using
the short-time Fourier transform and reveals the
micro-Doppler frequencies - or radial velocity - due
to rotational motion centered about the Doppler
shift due to translational motion. Thus, the micro-
Doppler signature is a rich source of kinematic
information relating to signing. In our prior work
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(Rahman et al., 2022), we have shown that using
micro-Doppler signatures alone, snapshots of over
100 word-level signs can be classified at over 77%
top-1 and 92% top-5 accuracy. Moreover, we found
that RF micro-Doppler frequencies also captured
significant linguistic properties of the signer, such
as co-articulation (Gurbuz et al., 2020), whether
the signer was fluent in ASL versus being a hear-
ing imitation signer (Gurbuz et al., 2021, 2022b),
and whether or not the signer was being directed to
articulate a sign versus doing a natural articulation
as part of freely playing a game (Kurtoglu et al.,
2024).

Thus, the linguistic characteristics of a signer
have a significant impact on model training: deep
neural networks (DNNSs) for recognition of natural,
fluent signing cannot be effectively trained using im-
itation signing or signing acquired via controlled ex-
periments. Integration of kinematic constraints into
the DNN architecture itself is also greatly beneficial.
For example, the envelopes of the micro-Doppler
signature measure the peak radial velocity incurred
during signing and can be provided as a dual in-
put to the discriminator of a Generative Adversarial
Network (GAN) and used to compute a physics-
based loss function, which combine enable to GAN
to synthesize kinematically more accurate data for
model training (Rahman et al., 2022, 2023). The
utilization of multi-task learning where loss func-
tions for each task are defined based on kinematic
properties is also beneficial for recognition perfor-
mance (Kurtoglu et al., 2022). For example, we
showed that a trigger sign (or wake word) could be
more effectively recognized if the DNN optimized for
five distinct tasks: 1) one versus two handedness,
2) major location of hands, 3) movement type, 4)
daily activity versus ASL, and 5) number of strokes
comprising the sign. Linguistic metrics, such as
fractal complexity, were also found to be indicative
of whether a person was signing versus doing an
everyday activity at home (Gurbuz et al., 2020).

In addition to the micro-Doppler signature, 3D RF
data tensors can be used to provide an enriched
input to DNNs and achieve greater accuracy when
trying to recognize sign language in a real-world
environment, such as would occur if a user were to
use sign language to interact with an electronic per-
sonal assistant, such as Alexa or Siri. Using radar
signal processing, the raw radar data stream can
be converted into a time series images of range-
velocity and range-angle. Joint utilization of multi-
ple radar data representations has been used to
design a Joint Domain Multi-Input Multi-Task Learn-
ing (JD-MIMTL) network (Kurtoglu et al., 2022) that
can automatically segment and extract signing se-
quences from continuous recordings of daily life,
detect whether a trigger sign has been articulated,
and recognize subsequent signs as device com-



mands. In fact, estimation of the angle at which
a person is located relative to the location of the
radar can be used to generate an angular projection
of the RF data tensor for the left and right hands
(Kurtoglu et al., 2023). A multi-view DNN was de-
signed to leverage the separate projections of the
left and right hand for increased sign recognition
performance.

A major challenge to deep learning based ASL
recognition with both video and radar remains the
limited availability of data that truly captures the nu-
anced variations of natural signing. To overcome
this challenge, an interactive game (Kurtoglu et al.,
2024), ChessSIGN, was developed that acquires
both video and radar data as a user articulates
ASL to move the pieces of the chess game. When
the user clicks on a piece, different ASL words cor-
responding to valid chess moves appear on the
screen. The piece moves its position based on
recognition of the user’s articulation of the sign. We
have shown that for both video and radar data, ma-
chine learning models trained under data collected
via controlled experiments is not effective in rec-
ognizing signing in such an unconstrained, natural
setting. However, as the system acquires more and
more natural signing data during the course of the
game, recognition accuracy increases. Moreover,
the signs recorded are natural language recordings,
which more accurately reflect 1) variations in ASL
due to person-specific traits, regional dialects, and
fluency; and 2) natural effects such as coarticula-
tion, which occur due to the variation in the position
with which a sign can begin or end, as typical of
daily life. ChessSIGN thus provides an entertaining
way to minimize the burden on the Deaf community
to acquire ASL data, while also continually building
improved models. Also, because the system cap-
tures simultaneous recordings of video with radar,
this unique dataset can enable the exploration of
new ASL recognition algorithms that jointly exploit
the strengths of radar and video together.

Ultimately, our work has shown that RF sensing
can capture the kinematics of the rapid progres-
sion of dynamic sign sequences that is character-
istic of ASL usage. We not only bring to bear, for
the first time, a linguistic perspective to RF-based
motion recognition, but also a physics-based ma-
chine learning approach achieved through the in-
tegration of kinematics with deep learning. These
advances have enabled the development of RF-
sensing based ASL-sensitive human computer in-
teraction (HCI) and as a tool for linguistic analysis
of ASL.
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4. Ethical Consideration for Sign
Language Corpora

Collecting sign language data with radar sensors
also offers important privacy advantages over video
recording. Video cameras capture detailed visual
information about a person’s appearance, clothing,
surroundings, and any visible actions. This raises
significant personal privacy concerns, especially
when recording in homes or private spaces. In
contrast, radar does not actually record images or
videos. Radar sensors operate by transmitting elec-
tromagnetic waves and analyzing the reflected sig-
nals. The sensors only measure the time-varying
position and velocity of body parts as they move
through space. No identifying visual features are
recorded. The raw radar data itself reveals nothing
about a person’s identity, gender, attire, or environ-
ment. While video provides full visual details, this
level of information is unnecessary for analyzing
sign language gestures. The intricate motions of
signing are characterized by the changing spatial
relationships and dynamics of the hands, arms, and
face over time. Radar captures exactly these artic-
ulatory parameters relevant to sign language, with-
out any personal identifying visuals. Participants
are also more comfortable being recorded by radar
since their privacy is protected. No video footage
exists that could be leaked or exploited. Radar
enables collecting natural, unrestrained sign lan-
guage data even in private real-world environments.
Radar recordings capture information-bearing mo-
tion from sign language signal with fidelity suffi-
cient for both linguistic or ML-based analysis, while
upholding signers’ privacy. The ability to gather
realistic sign language data in a completely pri-
vate manner makes radar systems uniquely suited
for building sign language corpora and recognition
datasets in an ethical, non-invasive way.
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