More than Just Statistical Recurrence: Human and Machine Unsupervised
Learning of Maori Word Segmentation across Morphological Processes

Ashvini Varatharaj
Department of Linguistics,
University of California Santa Barbara
ashvinivaratharaj@ucsb.edu

Abstract

Non-Maori-speaking New Zealanders (NMS)
are able to segment Maori words in a highly
similar way to fluent speakers (Panther et al.,
2024). This ability is assumed to derive through
the identification and extraction of statistically
recurrent forms. We examine this assumption
by asking how NMS segmentations compare to
those produced by Morfessor, an unsupervised
machine learning model that operates based
on statistical recurrence, across words formed
by a variety of morphological processes. Both
NMS and Morfessor succeed in segmenting
words formed by concatenative processes (com-
pounding and affixation without allomorphy),
but NMS also succeed for words that invoke
templates (reduplication and allomorphy) and
other cues to morphological structure, implying
that their learning process is sensitive to more
than just statistical recurrence.

1 Introduction

Humans have a powerful ability to build implicit
linguistic knowledge incidentally, based on passive
processes that identify and extract statistically re-
current patterns (Saffran et al., 1996; Frank et al.,
2013; Aslin, 2017). For example, New Zealanders
who are regularly ambiently exposed to Maori, but
do not speak it, nevertheless have Maori lexical
and phonotactic knowledge (Oh et al., 2020; Pan-
ther et al., 2023) and can morphologically segment
Maori words at above-chance levels (Panther et al.,
2024). These findings imply that regular exposure
to a language yields a proto-lexicon: an implicit
memory-store of forms that recur with statistical
regularity in the language, including both words
and word-parts (Ngon et al., 2013; Johnson, 2016).

In this paper, we are concerned with the way
that the proto-lexicon is constructed, and the way
that its construction interacts with language struc-
ture. We examine the extent to which the ability
of non-Maori-speaking New Zealanders (NMS) to
morphologically segment Maori words is explained
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by naive statistical learning, in which their proto-
lexicon is assumed to be formed purely through the
identification and extraction of statistically recur-
rent forms in ambient Maori. To do so, we generate
expectations for what morphological segmentation
would look like through naive statistical learning
processes from Morfessor (Creutz and Lagus, 2007
Virpioja et al., 2013), an unsupervised Bayesian
segmentation model. We compare the segmenta-
tions produced by Morfessor to those produced by
NMS and examine how they vary across words
formed by different morphological processes.

Through two analyses, we argue that NMS do
more than a naive statistical learning model would
suggest. First, we compare the segmentations of
Morfessor and NMS across Maori words formed
by affixation and compounding, both concatenative
processes, and words formed by reduplication, a
templatic process. We find that both are accurate on
words formed by affixation and compounding, but
NMS are more accurate on words formed by redu-
plication, suggesting that NMS identify and extract
both statistically recurrent forms and higher-level
abstract templates. Then, zooming in on words
formed by concatenative processes, we ask whether
there are other cues to morphological structure that
NMS may be picking up on, such as vowel length.
We compare the performance of Morfessor across
real Maori words that may contain such cues and
constructed words that have the same statistical
properties but lack any reliable alternative cues to
morphological structure. We find that Morfessor
is worse at segmenting real words, suggesting that
successful learning by NMS requires sensitivity to
more cues than just statistical recurrence.

2 Background

2.1 Statistical learning of language

How humans learn to extract knowledge from their
environment is one of the fundamental questions in
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cognitive science. Implicit learning — the process
of learning without intention, and even without
the awareness of what has been learned (Williams,
2020) — is one of the main ways we learn from our
surroundings. Implicit learning underlies various
essential skills such as language comprehension
and production, intuitive decision making, and so-
cial interaction (Rebuschat, 2015). A particularly
prominent form of implicit learning is statistical
learning'. Statistical learning refers to the process
of extracting statistical regularities from input and
adapting to them, based on considerations of fre-
quency, variability, distribution, and co-occurrence
(Saffran et al., 1996). Humans are highly sensitive
to such statistical regularities and implicitly learn
them from birth (Bulf et al., 2011; Gervain et al.,
2008; Teinonen et al., 2009).

While most work on statistical learning has fo-
cused on studying infants (Saffran, 2001; Pelucchi
et al., 2009) in lab-based setups, recent works have
shown that adults are also capable of statistical
learning of implicit linguistic knowledge through
everyday exposure to a language they don’t speak.
Non-speakers of Maori in New Zealand (Oh et al.,
2020; Panther et al., 2023) and Spanish in Califor-
nia and Texas (Todd et al., 2023) show evidence
of implicit phonotactic and lexical knowledge of
their respective ambient languages. However, this
knowledge appears to be weaker in the case of
Spanish than in Maori, and it has been argued that
this difference may partly derive from differences
in morphological structure (Todd et al., 2023).

In addition to having implicit phonotactic and
lexical knowledge of Maori, non-Maori-speaking
New Zealanders (NMS) can morphologically seg-
ment Maori words in a highly similar way to flu-
ent speakers (Panther et al., 2024). This ability is
facilitated by their possession of a profo-lexicon
(Johnson, 2016; Ngon et al., 2013), a large implicit
memory-store of the forms of words and word-parts
that recur with statistical regularity in the language,
called morphs. These morphs are defined by form,
without consideration of meaning; thus, they may
or may not correspond to underlying morphemes,
and may even include phonological sequences that
span word boundaries as long as they are statisti-
cally recurrent in the language (Ngon et al., 2013).

'While early literature on statistical learning focused nar-
rowly on phonotactic transition probabilities, in this work
we use the term more broadly to refer to the learning of any
statistical properties of language.
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2.2 Morphological segmentation

Many modern approaches to morphological seg-
mentation use supervised learning, independently
or in combination with unsupervised learning (e.g.,
Rouhe et al., 2022). In this work, we are attempting
to model human learning of morphological segmen-
tation that occurs without explicit instruction. For
this reason, we use unsupervised learning.

Unsupervised morphological segmentation pro-
vides us an avenue to simulate implicit statistical
learning processes. In this work, we use Morfessor
Baseline (Creutz and Lagus, 2007; Virpioja et al.,
2013), a popular unsupervised morphological seg-
mentation model with an underlying generative
process that is very simple and highly compatible
with a naive model of statistical learning of mor-
phological structure. Morfessor identifies a set of
statistically recurrent morphs under the assumption
that words are formed through the concatenation
of these morphs, without phonological alternations,
and without constraints applied to positioning, se-
quencing or morphosyntactic category.

Morfessor identifies the set of statistically recur-
rent morphs, which it calls a lexicon (and which is
analogous to a human proto-lexicon), using a Min-
imum Description Length framework (Rissanen,
1978). This lexicon is therefore the smallest set
of simplest morphs that can be combined to gener-
ate the training data with highest probability. The
lexicon is constructed dynamically through several
passes over the training data, where the cost of
adding a morph to the lexicon at any point is based
on the morph’s complexity and its frequency of
recurrence across the words segmented so far.

While Morfessor’s assumptions are simple, there
are simpler models that have gained currency re-
cently as tokenizers in Natural Language Process-
ing (e.g., Sennrich et al., 2015; Kudo, 2018; Wu
et al., 2016). Like Morfessor, these models iden-
tify a set of morphs (which they call subwords)
that generate the training data with highest proba-
bility, assuming only simple concatenation. How-
ever, unlike Morfessor, they require the number of
morphs to be predetermined, and they do not si-
multaneously consider the complexity of proposed
morphs, which we consider to be important for our
modeling of human learning. There are also many
morphological segmentation models that are more
complex than Morfessor, such as Adaptor Gram-
mars (Johnson and Griffiths, 2007; Eskander et al.,
2016; Godard et al., 2018). These models offer fine-



grained assumptions about precisely how morphs
may be combined, in contrast to Morfessor’s as-
sumption of simple concatenation. It is the relative
simplicity of Morfessor that makes it a suitable
baseline model of idealized statistical learning of
a proto-lexicon, especially in a language that uses
primarily concatenative morphological processes.

Morfessor’s statistical learning approach mirrors
that which has been assumed for NMS (Oh et al.,
2020). Both are learning to segment based on sta-
tistical patterns in the language they are exposed to,
without getting feedback. In both cases, the learn-
ers are identifying recurring forms and extracting
them as morphs in a (proto-)lexicon. By using Mor-
fessor as a baseline of comparison for NMS, we
can understand how much of NMS’ implicit knowl-
edge is due to simple statistical learning processes.
We expect Morfessor to perform best with words
formed by concatenative morphological processes
and to struggle with words formed by other mor-
phological processes that are beyond the scope of
its simple assumptions; if NMS do not struggle
in the same way, then we may infer that they are
doing more than just tracking statistical recurrence
as Morfessor would assume.

2.3 The Maori Language

The Maori language consists of ten consonants
<p, t, k, m, n, ng, w, r, wh, h>, five short vow-
els <a, e, i, 0, u>, and five long vowels <a, €, 1, 0,
0>. The orthographic system is highly transparent:
each grapheme or digraph corresponds to a unique
phoneme. The basic timing unit is the mora, where
short vowels count as one mora each and long
vowels count as two (Harlow, 2007). The syllable
structure is (C)V(V), but is often treated as (C)V
for modeling purposes because of the complex-
ity of distinguishing diphthongs from sequences of
monopthongs (Bauer, 1993; Oh et al., 2020). There
is a general minimality constraint which states that
(content) words and morphs consist of at least two
moras (Bauer, 1993, p. 544), and it has been ar-
gued that words consisting of four or more moras
are highly likely to be morphologically complex
(Krupa, 1968; de Lacy, 2003).

There are three main morphological processes
in Maori: reduplication, affixation, and compound-
ing (Bauer, 1993; Harlow, 2007). Reduplication
consists of the repetition of part of a base, follow-
ing one of many templates (see e.g. Keegan, 1996;
Todd et al., 2022). Because of this reliance on a
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template, we refer to reduplication as a templatic
process.” Affixation and compounding both con-
sist of the concatenation of morphs that need not
have any relation to each other in form, and thus
we refer to them as concatenative processes. At
a distributional level, affixation and compounding
are distinguished by the fact that affixation causes
a small set of four (Bauer and Bauer, 2012) or five
(Harlow, 2007) productive morphs> to recur across
many words, whereas compounding causes a large
set of morphs to each recur across relatively fewer
words (Bauer, 1993, p. 519).

Maori morphophonology may be described as
strictly local: there are no morphophonological
alternations, no phonologically discontiguous mor-
phemes, and no long-distance phonological depen-
dencies. However, there is affix allomorphy, in
which affixes follow phonological templates, with
different thematic consonants that are to some ex-
tent predictable (Parker Jones, 2008). This allomor-
phy is restricted to the passive and nominalizing
suffixes, each of which has default and non-default
allomorphs that are or are not consistent with ma-
jor phonological templates (passive: -Cia; nominal:
-Canga; both for thematic consonant C).

At a high level, the strictly local nature of Maori
morphophonology accords exactly with the as-
sumptions of Morfessor. However, the templates
that underpin reduplication and affix allomorphy
are not accounted for by Morfessor’s underlying
generative model. This means that the three mor-
phological processes in Maori are consistent with
Morfessor’s assumptions to different extents, which
allows us to examine how the degree to which Mor-
fessor reflects NMS morphological segmentations
is affected by morphological structure.

3 Analysis 1: Sensitivity to templates

Our first analysis examines Morfessor and NMS
segmentations of Maori words formed through dif-
ferent morphological processes. For each learner,
we identify the sensitivity to general templates and
the importance of morphological concatenativity by
comparing segmentation performance across words
formed by reduplication and words formed by affix-

“We avoid the label templatic morphology so as to avoid
confusion with root-and-pattern morphology such as is found
in Semitic languages.

3Whether there are held to be four or five productive affixes
depends on where the analyst draws the line between affixation
and phrasal constructions. It is not entirely straightforward
to designate these affixes as clearly inflectional or clearly
derivational (Bauer and Bauer, 2012).



ation or compounding (Section 3.2), as well across
cases of affixation that follow salient allomorphic
templates to different extents (Section 3.3). This
analysis reveals how unsupervised learning of mor-
phological segmentation is sensitive to linguistic
structure, and the extent to which the underlying as-
sumptions of Morfessor make it a plausible model
of naive statistical learning of morphological seg-
mentation in humans.

3.1 Data

The analysis is conducted over a subset of words
from the stimuli of Panther et al. (2024), which we
aggregated into categories based on the morpho-
logical processes they likely represent (described
below). We used the segmentations provided by a
fluent Maori speaker (MS), collected by Oh et al.
(2020), as a gold standard. To ensure that the mor-
phological processes assumed by our categoriza-
tions adequately reflect those revealed by the MS
segmentations, we filtered each category to only
include words in which the MS segmentation is
consistent with the assumed morphological pro-
cess. After this filtering, the analysis is based on
3,919 words, categorized as follows:

Monomorphemic: Words consisting of 2 or 3
moras ([N = 622/ 295, respectively) that did not
receive any boundaries in the MS segmentation.

Reduplication: Words that were segmented by
the MS in a manner consistent with one of four
reduplication templates*: total (e.g., paki+paki;
N = 439), right (e.g., takai+kai; N = 276), left
(e.g., nu+nui; N = 111), or left with lengthen-
ing (e.g., ka+kahu; N = 36). Total reduplica-
tion is the most salient of these templates.

Affixation: Words in which the MS recognized
either the causative prefix whaka- (N = 296),

a passive suffix (N = 437), or a nominaliz-
ing suffix (N = 203). The suffixes have many
allomorphs which differ in terms of frequency
and consistency with a major phonological tem-
plate (passive: -Cia; nominal: -Canga; both for
thematic consonant C), including, in descend-
ing order of frequency: template-consistent de-
faults (passive: -tia, -hia, ngia; nominal: -tanga,
-hanga)®; non-template-consistent defaults (pas-
“The reduplication category includes some cases where
there is both reduplication and compounding. We assess
the placement of all boundaries in such cases, regardless of
whether they separate the reduplicant from the base or one

compound component from another.
SDialects differ in terms of whether the default thematic

23

sive: -a; nominal: -nga6); template-consistent
non-defaults (passive: -kia, -mia, -ria, -whia;
nominal: -kanga, -manga, -ranga, -whanga);
and non-template-consistent non-defaults (pas-
sive: -ia, -na, —ngaé, -ina, -hina, -kina, -whina,
nominal: -anga).

Compounding: Words that consist of four or
more moras, without reduplication or affixation,
and for which the MS identified at least one
boundary (N = 1204; a subset of the ‘poly-
moraics’ explored by Panther et al., 2024).

For each word, we compare the gold standard
segmentation provided by the MS to the segmenta-
tions provided by Morfessor and NMS. The Mor-
fessor segmentations were obtained from a model
trained with default settings (using the implementa-
tion of Virpioja et al., 2013) on 19,595 word types
from the Te Aka dictionary (Moorfield, 2011). The
NMS segmentations are based on data collected by
Panther et al. (2024) in a word-splitting task, where
NMS participants split orthographically-presented
words into pieces by placing any number of bound-
aries at any site between two letters.” To aggregate
segmentations of a single word across participants,
we used a majority-vote approach: we coded each
site as containing a boundary if and only if the ma-
jority of participants who responded to that word
placed a boundary there.

3.2 Analysis 1A: Morphological processes

We first analyze the degree to which segmentations
by Morfessor and NMS match the gold standard
segmentations, across categories of words formed
by different morphological processes. We exam-
ine variation across categories, as well as how this
variation differs between learners.

3.2.1 Methods

There are many metrics that compare a learner’s
morphological segmentations to a gold standard
(Virpioja et al., 2011). We use the simple metric
of boundary precision and recall, which considers

consonant is <t>, <h>, or <ng>, though it is most commonly
<t> (Harlow, 2007).

®.nga is both a passive suffix and a nominalizing suffix.
As a passive suffix, it is not a default allomorph, but as a
nominalizing suffix, it is. Our analysis of -nga is restricted to
its occurrence as a nominalizing suffix.

"We analyze the same filtered subset of NMS participants
as Panther et al. (2024): 195 individuals who have lived in NZ
since the age of 7, have never taken any linguistics courses,
and have explicit knowledge of few Maori words and gram-
matical structures. For full details of the experiment design
and filtering criteria, see Panther et al. (2024).



Table 1: Macro-averaged precision and recall for Mor-
fessor and NMS across categories of words formed by
different morphological processes.

Morfessor NMS
Category Prec. Rec. Prec. Rec.
monomorphemic  0.66 0.66 0.79 0.79
reduplication 0.58 051 0.85 0.86
affixation 092 090 0.70 0.70
compounding 0.88 091 0.84 0.84

each potential boundary site independently. Pre-
cision in this context refers to the proportion of
the sites identified by the learner as containing a
boundary that also contain a boundary in the gold
standard segmentation. Recall refers to the pro-
portion of the sites containing a boundary in the
gold standard segmentation that are identified by
the learner as containing a boundary. We take a
macro-averaging approach: we calculate precision
and recall separately for each word, then average
each metric across all words in each category. If
precision and recall are both undefined for a word
(i.e., if the gold standard segmentation contains no
boundaries and the learner does not identify any),
we set them both to 1; if only one metric is unde-
fined, we set that metric to 0.

3.2.2 Results

The macro-averaged precision and recall for Mor-
fessor and NMS across the four categories of words
are shown in Table 1.

For monomorphemic words, both learners show
indications of oversegmentation, via low preci-
sion and recall that result from placing boundaries
where they shouldn’t exist. NMS appear to show
less oversegmentation than Morfessor, suggesting
that they may be more sensitive to word minimality
constraints based on moraic weight (Bauer, 1993,
p. 544). This tendency toward oversegmentation
does not stand out for either learner across other
categories: precision and recall are fairly balanced
for both learners across all categories, indicating
a general balance between oversegmentation and
undersegmentation.

For words formed by reduplication, a templatic
process, NMS show better performance than Mor-
fessor. This difference is made even clearer when
considering performance on reduplication in rela-
tion to affixation and compounding (concatenative
processes): for Morfessor, performance on redu-
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plication is notably worse than performance on
affixation and compounding, but for NMS, it is not.
This result suggests that NMS may be sensitive
to abstract reduplication templates that Morfessor
cannot capture (Todd et al., 2022), and thus that
their recognition of such templates may boost im-
plicit learning above and beyond that expected from
simple statistical learning of recurrent forms. In
support of this suggestion, we found that Morfes-
sor has worst performance on the subset of words
formed by total reduplication, the most salient redu-
plication template, whereas NMS has best perfor-
mance on this subset (precision/recall for Morfes-
sor: 0.35/0.36; for NMS: 0.95/0.97).

For words formed by affixation and compound-
ing, both concatenative processes, Morfessor per-
forms well, suggesting that such words facilitate
implicit learning of morphs via naive statistical
learning. Nevertheless, it is somewhat surprising
that Morfessor did not perform even better for these
words, given that they exactly match the assump-
tions of its underlying generative model. This sug-
gests that the morphological structure of Maori, as
captured by the gold standard segmentations, may
be cued by more than just the statistical recurrence
of forms (Todd et al., 2019; Panther et al., 2024);
we return to this point in Analysis 2 (Section 4).

NMS perform slightly worse than Morfessor on
words formed by compounding, and notably worse
on words formed by affixation. One possible in-
terpretation of this result is that NMS are not as
good at tracking statistical recurrence as Morfessor
— hence the worse performance on both categories
— but make up for this shortcoming to some extent
in compounds by being sensitive to additional cues
to morphological structure (Panther et al., 2024).
The fact that NMS’ difficulties are concentrated
in words formed by affixation suggests that they
may struggle specifically with recognizing affixes
as independent of stems. A finer-grained inspec-
tion suggests that this may be related to issues of
affix position, allomorphy, and/or frequency: NMS
perform as well as Morfessor on words containing
the highly frequent causative prefix whaka- (pre-
cision/recall for Morfessor: 0.95/0.93; for NMS:
0.95/0.93), which has no allomorphs, but perform
worse on words containing passive or nominalizing
suffixes (precision/recall for Morfessor: 0.90/0.89;
for NMS: 0.59/0.59), which have many allomorphs,
including some that are quite infrequent.



3.3 Analysis 1B: Affix recovery

To dig further into potential sources of issues with
segmenting words formed by affixation, we ana-
lyze the ability of Morfessor and NMS to recover
different affixes by segmenting them off. This anal-
ysis separates the causative prefix from passive and
nominalizing suffixes, and subdivides passive and
nominalizing allomorphs into smaller groups.

3.3.1 Methods

The affixes we analyze are organized into groups
based on word position, status as default/non-
default allomorph, and consistency with a major
phonological template. The groups also vary in
frequency. We define the type frequency of an af-
fix group as the proportion of the 19,595 words
for which Oh et al.’s (2020) MS segmented off a
morph with the same form as some affix in the
group, at the appropriate word edge. We similarly
define the token frequency of an affix group as
the proportion of tokens in the MAONZE corpus
(King et al., 2011) and the Maori Broadcast Corpus
(Boyce, 20006) that correspond to words for which
the MS separated off some affix from the group.?
Type frequency is relevant for Morfessor, and both
type and token frequency may be relevant for NMS.

For each affix group, we measure the rate at
which Morfessor and NMS successfully recover
affixes in that group by segmenting them off words.
We assign each word in the affixation category to
one or more groups based on the affix(es) in its
gold standard segmentation. For a word in a given
group, a learner successfully recovers the affix per-
taining to that group if their segmentation contains
a boundary at the site between the affix and the rest
of the word, without also containing any bound-
aries at sites within the affix. The segmentation of
the stem is irrelevant: a learner can successfully
recover an affix from a word even if their segmen-
tation of the rest of the word does not match that
represented by the gold standard segmentation. We
measure the rate of affix recovery for a group as
the proportion of words in the group for which the
affix is successfully recovered.

3.3.2 Results

The affix recovery rates for each learner across the
various affix groups are shown in Table 2.

$We follow Oh et al. (2020) in using Simple Good-Turing
smoothing (Gale and Sampson, 1995) to ensure that words
from the dictionary that were not mentioned in the corpora
have a non-zero token frequency.
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Both Morfessor and NMS have extremely high
recovery rates for whaka-. This is not surprising, as
it is extremely frequent, in terms of both types and
tokens. For NMS, it is also highly salient due to its
position at the beginning of verbs that often appear
utterance-initially as imperatives (e.g., whakarongo
mai! ‘listen!”) and its appearance in place names
(e.g., Whakatane) and the well known and highly
culturally significant word whakapapa ‘genealogy’
(Oh et al., 2023). There is also reason to believe
that NMS may be particularly sensitive to prefixes
such as whaka- because they have been shown to
apply a bimoraic template when segmenting the
first morph in a word (Panther et al., 2024).

While Morfessor and NMS have near-identical
rates for the causative prefix whaka-, their recovery
rates for allomorphs of the passive and nominal-
izing suffixes diverge, with NMS being less suc-
cessful than Morfessor. One possible reason for
this divergence is that NMS may be less sensitive
to suffixes than prefixes, since the bimoraic tem-
plate that facilitates sensitivity to prefixes operates
from left to right and thus may not consistently
align with suffixes. Another possible reason may
stem from NMS being sensitive to token frequency
rather than just type frequency like Morfessor, as
the passive and nominalizing suffixes have much
lower token frequencies than type frequencies, both
in absolute terms and in relation to the correspond-
ing frequency of whaka-. From a statistical learn-
ing perspective, a morph needs to be experienced
sufficiently often in a range of environments be-
fore a learner can reliably identify and extract it, so
lower experiential frequency by NMS compared to
Morfessor would yield noisier segmentations. This
difference is magnified by the fact that Morfessor
has perfect memory of all types it has encountered
at each point of the learning process, which is not
the case for NMS.

Zooming into the allomorphs, for Morfessor
there is a clear separation between default and non-
default. This separation is driven by frequency:
allomorphs in a given affix group can be recov-
ered reliably if and only if they recur across suffi-
ciently many types. After adjusting for frequency,
there are no major differences between affix groups
based on consistency with a major phonological
template, nor phonological shape generally (e.g.,
passive CVV vs. nominalizing CVCV: recovery
rates 0.964 and 0.966, respectively). This is not
surprising: Morfessor’s naive statistical learning



Table 2: Affix recovery rates for Morfessor and NMS across different affix groups. Affix groups vary in terms of
position, status of allomorphs as default/non-default, consistency of allomorphs with major phonological templates,
and frequency of occurrence (proportion of types / tokens affixed by that form).

Frequency Affix recovery
Affix(es) Allomorph group type token Morf. NMS
whaka- - 0.142 0.017 0.983 0.976
-tia, -tanga default, template’ 0.128 0.006 0.995 0.783
-hia, -ngia, -hanga default, template’ 0.064 0.005 0.995 0.688
-a, -nga® default, non-template 0.034 0.011 0.907 0.293
-kia, -mia, -ria, -whia, -kanga, -manga, -ranga non-default, template 0.017 0.003 0.702 0.553
-ia, -na, -ina, -hina, -kina, -whina, -anga non-default, non-template  0.016 0.002 0.739 0.370

algorithm has no access to phonological templates,
and is based primarily on frequency.

For NMS on the allomorphs, there is also a rela-
tionship between affix recovery rate and frequency,
but it is more gradient, reflecting differences in
the experiential frequency and memory of NMS
compared to Morfessor. The correlation is not per-
fect, however. The affix recovery rate is extremely
low for the default allomorphs that are not con-
sistent with a template, in spite of their high to-
ken frequency. It is also higher than expected for
the non-default allomorphs that are consistent with
a major phonological template, in comparison to
those that have almost identical frequency but are
not consistent with a template. These results sug-
gest that NMS are sensitive to major phonological
templates, giving them an advantage in recognizing
allomorphs that are consistent with them.

Furthermore, since the default allomorphs that
are not consistent with a template are also short —
with one simply having the shape V — the fact that
NMS recover them less successfully suggests a sen-
sitivity to phonological shape generally. That is,
NMS may find morphs less salient the less phono-
logical content they have and/or the less their sylla-
bles resemble the canonical CV shape. This sugges-
tion is further supported by the fact that NMS are
less successful at recovering passive suffixes with
a CVV shape than nominalizing suffixes with a
CVCV shape (rates 0.669 and 0.866, respectively).

4 Analysis 2: Other cues

Analysis 1 showed that NMS are sensitive to tem-
plates, both at the word level (reduplication) and
at the morph level (minimality constraints; allo-
morphs that follow a phonological template or fea-
ture syllables with canonical CV shape). Morfessor
shows no such sensitivity, as its underlying genera-
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tive model does not incorporate templates, and thus
underperforms when segmenting words that invoke
templates in some way.

However, templates appear not to be the only rea-
son that Morfessor underperforms. In Section 3.2.2,
we observed that Morfessor’s performance on com-
pounds was lower than might be expected, given
that they follow its underlying assumption of mor-
phological concatenativity. Based on this observa-
tion, we suggested that the morphological structure
of Maori may be cued by more than the statisti-
cal recurrence of forms, consistent with previous
results showing that MS segmentations are sensi-
tive to aspects such as the presence of long vowels
(Todd et al., 2019; Panther et al., 2024).

Here, we explore this suggestion further by com-
paring Morfessor’s performance on real Maori
words, which may contain such additional cues
to morphological structure, to its performance on
artificially constructed pseudo-Maori words, which
are governed by the same patterns of statistical re-
currence of morphs but lack any additional cues
to morphological structure. This analysis reveals
the extent to which such additional cues exist in
real Maori and the extent to which they present
issues for Morfessor. In doing so, it generalizes
conclusions from Section 3 that the suitability of
Morfessor to a particular language — and, by ex-
tension, the extent to which statistical learning by
non-speakers of that language may be based purely
on tracking of statistical recurrence — is dependent
upon the morphological structure of the language.

4.1 Data

In this analysis, we focus entirely on words that fol-
low Morfessor’s underlying assumption of concate-
nativity. We do not include words that invoke tem-
plates at the word or morph level, since the analysis



in Section 3.2 already established that Morfessor
underperforms in the presence of such templates.

The analysis is based on the ‘polymoraic’ group
of Panther et al. (2024), excluding words with
morphs containing more than 3 syllables. This
includes a total of 1,292 words, comprising 1,199
of the 1,204 compounds that we analyzed in Sec-
tion 3, as well as an additional 93 words that Oh
et al.’s (2020) MS analyzed as simplex.

For the analysis of pseudo-Maori, we generated
1,000 different sets of 1,292 words each through
concatenating morphs, based on the statistical prop-
erties of the 1,292 real Maori words (see Sec-
tion 4.2). For each set, the generative process pro-
vided us with ground-truth segmentations, which
we compare to those provided by a Morfessor
model trained over the set. For the analysis of
real Maori, we similarly compare the gold standard
MS segmentations of the 1,292 words to those pro-
vided by a Morfessor model trained on those words
(as opposed to the full lexicon from Section 3.1).

4.2 Methods

To generate each set of pseudo-Maori words, we
used the same probabilistic process as is assumed
by Morfessor’s underlying generative model. This
process works in a bottom-up fashion across sev-
eral structural levels, first concatenating phonemes
into syllables, then concatenating syllables into
morphs, and finally concatenating morphs into
words. Types of one level are drawn with replace-
ment from an inventory, according to an inverse
power law (Zipfian) probability distribution, and
concatenated to form a type of the next level. The
types at each level are unique: if a proposed type
already exists, a new one is generated instead.

We generated each set of pseudo-Maori words
with constraints based on real Maori, in two main
ways. First, we constrained the pseudo-Maori
words to have the same statistical recurrence prop-
erties as real Maori, by using an inventory prob-
ability distribution at each level that was inferred
from the set of real Maori words (see Appendix A
for details). Second, we constrained the types at
each level to have the same form properties as real
Maori. Specifically: at the phoneme level, we
used the same 10 consonants and 10 vowels as
real Maori (Section 2.3); at the syllable level, we
only generated syllables of shape CV and V; at
the morph level, we generated the same number
of monosyllabic, disyllabic, and trisyllabic morph
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Figure 1: Distributions of macro-averaged precision
and recall for Morfessor’s segmentations of 1000 sets of
pseudo-Maori words, in comparison to its performance
on corresponding words from real Maori (blue lines).
Red points show mean performance on pseudo-Maori
and red lines show 95% percentile intervals.

types (respectively) as there are in the real Maori
set of words; and at the word level, we used each
real Maori word as a template for a pseudo-Maori
word, ensuring that they matched in terms of the
number of morphs and the number of syllables in
correspondingly-ordered morphs.

As in Section 3.2.1, our analysis is based on com-
paring Morfessor segmentations to a gold standard.
We again use macro-averaged boundary precision
and recall as the metric for this comparison.

4.3 Results

Figure 1 shows the distributions of macro-averaged
precision and recall for Morfessor’s segmentations
on the 1000 sets of pseudo-Maori words, together
with the precision and recall for its segmentations
of the corresponding real Maori words (when train-
ing is restricted just to those words). It is immedi-
ately apparent that recall is higher than precision,
indicating occurrences of oversegmentation that
are not balanced by undersegmentation as was the
case in Section 3.2.2. This is likely a consequence
of the training set being much smaller (1,292 words
as opposed to 19,595); since the same pattern is
seen across real Maori and psuedo-Maori, it does
not appear to reflect influences of non-statistical
cues to morphological structure.

Morfessor is better able to accurately segment
pseudo-Maori than real Maori. Numerically, both
precision and recall are higher for pseudo-Maori
(mean precision: 0.84; recall: 0.96) than for real
Maori (precision: 0.80; recall: 0.87). The advan-
tage for pseudo-Maori is especially strong for re-
call, where performance on all 1,000 sets of words
far exceeds that on real Maori. This strong advan-
tage in recall is not driven by increased overseg-
mentation of pseudo-Maori relative to real Maori,
because it is not accompanied by a concomitant
disadvantage in precision; rather, it reflects the fact



that boundaries in pseudo-Maori are cued by recur-
rence statistics, which Morfessor tracks. That is,
Morfessor is best able to segment words when they
come from a language that closely adheres to the
statistical principles of structure that it assumes.

It follows that Morfessor’s worse performance
on real Maori is likely due to failure to identify
boundaries that are cued by something other than
morph recurrence statistics. This result therefore
confirms the suggestion from Section 3.2.2 that the
morphological structure of Maori may have alterna-
tive cues, though it does not indicate precisely what
they may be. Past research has shown that NMS are
sensitive to cues such as bimoraic templates and
the presence of long vowels in the segmentation of
compounds (Panther et al., 2024), and it is likely
that this sensitivity explains why they were more
successful at segmenting compounds than affixed
words in Analysis 1A.

5 Discussion & conclusions

We have examined morphological segmentations of
Maori by Morfessor and non-Maori-speaking New
Zealanders (NMS), across words formed through
a variety of morphological processes, to assess the
ways in which they are affected by structural fac-
tors and the extent to which they have such effects
in common. Our results show that both learners are
affected by linguistic structure. In some circum-
stances, they are affected similarly; for example,
both are successful in segmenting words formed by
concatenative morphological processes (Analysis
1A), especially when highly frequent morphs are in-
volved (Analysis 1B). In other circumstances, they
are affected in opposite ways; for example, Mor-
fessor suffers decreased segmentation performance
on words that are formed via templatic processes
(Analysis 1A) or that cue morphological structure
by means other that statistical recurrence of forms
(Analysis 2), whereas NMS see increased perfor-
mance in such cases.

These similarities and differences are important
when considering the nature of human statistical
learning of morphological segmentation. Since
Morfessor’s learning is underpinned by a set of well
defined assumptions and principles (Section 2.2),
the extent to which its performance aligns with that
of NMS may be taken to reflect the extent to which
NMS’ learning is underpinned by those same as-
sumptions and principles. The similarities affirm
that NMS undergo statistical learning, identifying
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and extracting statistically recurrent forms to build
a memory-store of morphs. At the same time, the
differences show that learning for NMS does not
just involve tracking statistical recurrence, but also
involves inducing abstract templates about the for-
mation of words and the shapes of (allo)morphs, as
well as developing sensitivities to prominent fea-
tures such as the presence of long vowels (Panther
et al., 2024). These findings echo results show-
ing that adults and infants attend to phonological
templates when learning to segment artificial lan-
guages through incidental exposure (Peiia et al.,
2002; Marchetto and Bonatti, 2013).

On a practical front, the similarities and differ-
ences in the segmentation performances of Morfes-
sor and NMS suggest that human statistical learn-
ing of morphological structure can be appropriately
modeled by unsupervised machine learning, but
perhaps only to a first approximation, depending
on the underlying assumptions of the model. When
the morphological structures closely follow those
assumed by the model, the morphs that the model
learns can reflect the cognitive units that humans
seem to operate over (e.g., Virpioja et al., 2018;
Lehtonen et al., 2019). But when morphological
structures vary too widely from those assumed by
the model — either within a language, based on
words formed by different processes, or across lan-
guages — there is the potential for the model to miss
factors that are salient to humans but that it is not
equipped to handle. This is especially important as
different models have different underlying assump-
tions, which can respond differently to variation in
morphological structure (Loukatou et al., 2022).

The differences in the segmentation perfor-
mances of Morfessor and NMS across words of
different morphological structures not only inform
the use of unsupervised morphological segmenta-
tion models as cognitive models, but also highlight
potential factors that could be incorporated into
segmentation models to improve their results. For
example, inspired by the observation that redupli-
cation templates are salient to humans but not to
Morfessor, Todd et al. (2022) show that adding
reduplication templates to Morfessor improves its
ability to find reduplication in Maori words. Simi-
larly, future research that dissects NMS’ underly-
ing learning mechanisms could reveal additional
generalizable factors that help improve the cross-
linguistic applicability of unsupervised models.



Limitations

While we believe our results to be informative
about the effect of language structure on the con-
struction of the NMS proto-lexicon, there are sev-
eral limitations that could be addressed in future
work to clarify and extend them.

First, the gold standard data may not strictly re-
flect morphological segmentations. One reason for
this is that the word-segmentation task through it
was obtained taps a form a meta-linguistic knowl-
edge that may not be directly accessible in a con-
sistent manner. However, we do not think this to
be a major concern, given that past work using
the same task in English (Needle and Pierrehum-
bert, 2018) found that participants’ segmentations
matched the underlying morphological structure
88% of the time, and given that we filtered the
words used in the analysis to only include those
where the gold-standard segmentation is consis-
tent with the assumed morphological structure. We
also do not see a better option than eliciting meta-
linguistic judgments in this case: the largest group
of morphologically complex words in Maori is
compounds (Bauer, 1993; Todd et al., 2019), which
are not decomposed in any dictionary or large word
list of which we are aware.

Second, and relatedly, the gold standard data
may contain idiosyncracies, since it was provided
by a single MS. While the MS was instructed to
split words into parts in a way that they think most
Maori speakers would agree with, it is extremely
unlikely that their segmentations would all be uni-
versally shared. To address this limitation, it would
be necessary to repeat the word-segmentation task
with many more MS, like we did for NMS.

Third, our comparison of Morfessor and NMS
may be complicated by differences between them.
For example, Morfessor has perfect memory about
all forms of the language and its segmentations
of them, but NMS are unlikely to have encoun-
tered all words of the language, let alone remember
those encounters. Similarly, Morfessor is trained
on isolated unique types, whereas NMS experience
connected tokens. Morfessor’s knowledge is also
limited to its Maori training data, whereas NMS
also have knowledge of at least one other language
(English). It remains to be seen how well Morfes-
sor does when trained on data that resembles what
NMS are exposed to, including connected tokens of
both Maori and English, and how it may be affected
by memory constraints.
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A Generating pseudo-Maori: Details

This appendix describes the process through which
we inferred statistical recurrence properties of
Maori, to use in the generation of pseudo-Maori.
We derived inventories at each level — unique
phonemes, syllables, morphs, and words — from
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the segmentations provided by Oh et al.’s (2020)
fluent Maori speaker. To get the frequency distri-
bution over types at one level, we counted occur-
rences within unique types at the next level. That
is, we counted the number of unique syllables that
each phoneme occurred in; the number of unique
morphs that each syllable occurred in; and the num-
ber of unique words that each morph occurred in.
We sorted each distribution by count, to obtain
rank and frequency for each type, and fit an inverse
power law f(x) = ab™7 to predict frequency from
rank, using nonlinear least squares.

To sample in the generative process, we sorted
the types in random order and treated those orders
as ranks, overlaying the frequency from the inverse
power law and then normalizing to obtain a proba-
bility distribution.
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