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Introduction

We are excited to welcome you to SIGHAN-10, the 10th SIGHAN workshop on Chinese language pro-
cessing. This year, the 10th SIGHAN workshop returned and co-located with the 62nd Annual Meeting
of the Association for Computational Linguistics (ACL-2024) in Bangkok, Thailand on August 11–16,
2024. Furthermore, SIGHAN 10 provides a shared task, namely Chinese Dimensional Aspect-Based
Sentiment Analysis, dimABSA.
In an increasingly interconnected world, the importance of Chinese language processing cannot be over-
stated. As one of the most widely spoken languages, Chinese presents unique challenges and opportuni-
ties in the current research of artificial intelligence. Effective processing of the Chinese language opens
doors to vast markets and cultural exchanges, fostering global collaboration and understanding. It serves
as a critical tool in bridging linguistic divides and unlocking the rich textual heritage and contemporary
content in Chinese. The focus of this workshop delves into the challenges in processing of the Chine-
se language, especially within the technology explosion of large language model, to explore how the
Chinese specific tasks can be optimised to effectively understand as well as generating Chinese text.
We received 29 submissions this year, comprising 21 papers from the main workshop, and 8 papers from
the shared task (dimABSA). We had two Area Chair (AC) members for the main workshop and one AC
for the shared task, guiding the discussion process and writing a meta-review. For the main workshop,
we accepted 10 papers. The acceptance rate for main workshop papers is 47.6%.
This year, SIGHAN-10 held in a hybrid format. Kang Liu from Institute of Automation, Chinese Aca-
demy of Sciences presents a keynote on “Beyond Facts: Understanding and Inducing Rule-based Know-
ledge in LLMs”. Further, there are also several oral sessions, including five oral papers from the main
workshop and three oral papers from the shared task.
We thank our Program Committee members and all reviewers. We specially thank our three Area Chairs:
Runcong Zhao (King’s College London), Bin Liang (The Chinese University of Hong Kong), and Lung-
Hao Lee (National Yang Ming Chiao Tung University). They did an excellent job in reviewing the
submitted papers, and we thank them for their essential role in selecting the accepted papers and helping
produce a high-quality program for the conference.
We extend special thanks to all authors who have submitted papers this year and those who have shown
interest in SIGHAN-10. We also thank all attendees for their participation and support.
Kam-Fai Wong and Min Zhang
General Chairs
Ruifeng Xu and Lin Gui
Program Co-Chairs
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Keynote Talk
Beyond Facts: Understanding and Inducing Rule-based

Knowledge in LLMs
Kang Liu

Institute of Automation, Chinese Academy of Sciences
2024-08-16 09:30:00 – Room: TBD

Abstract: Large language models (LLM) have been proven to be able to learn knowledge from massive
data. Most research currently discusses the relationship between implicit knowledge in LLMs and sym-
bolic factual knowledge in Knowledge Graphs. Besides facts, human knowledge contains more types,
such as rules. How does a LLM understand a rule and promote reasoning ability? Whether a LLM indu-
ce new rules from the given data? This talk will introduce our latest research work on these questions.

Bio: Kang Liu is a full professor at Institute of Automation, Chinese Academy of Sciences. He is also
a youth scientist of Beijing Academy of Artificial Intelligence and a professor of University of Chi-
nese Academy of Sciences. His research interests include Knowledge Graphs, Information Extraction,
Question Answering and Large Language Models. He has published over 80 research papers in AI con-
ferences and journals, like ACL, EMNLP, NAACL, COLING, et al. His work has over 20,000 citations
on Google Scholar. He received the Best Paper Award at COLING-2014, Best PosterDemo Award at
ISWC-2023, and the Google Focused Research Award in 2015 and 2016.
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Abstract

In fiction, quote attribution pertains to the pro-
cess of extracting dialogues and identifying the
speakers involved. This encompasses quota-
tion and speaker annotation. To accomplish
this, we have developed a pipeline for quote
attribution that incorporates classification, ex-
tractive question answering (QA), multi-choice
QA, and coreference resolution. Additionally,
we evaluated our model’s performance by em-
ploying various models to predict both explicit
and implicit speakers.

1 Introduction

Quote attribution, within the realm of literature
and textual analysis, plays a pivotal role in enhanc-
ing the clarity and understanding of dialogues. It
involves the extraction of dialogues from a text
and the subsequent identification of the speakers
involved. By assigning the appropriate speakers
to their respective utterances, quote attribution en-
ables readers to follow the flow of conversation
and comprehend the nuances of a narrative. While
manual quote attribution has been the traditional
approach, advancements in natural language pro-
cessing and machine learning have opened up ex-
citing possibilities for automating this process. In
this article, we explore the challenges and tech-
niques associated with quote attribution, as well as
the significance of automated methods in facilitat-
ing efficient and accurate analysis of dialogues in
various literary contexts.

We leverage an annotated dataset consisting of
1991 modern Chinese novels as the foundation of
our research. While our primary focus is on mod-
ern Chinese literature, our methodology can be
seamlessly applied to other languages as well, de-
spite potential language differences. Initially, our
approach revolves around treating quote attribu-
tion as an extractive question-answering (QA) prob-
lem. To accomplish this, we fine-tune a pre-trained

BERT model specifically for dialogues within fic-
tional texts.

As we delve deeper into the complexities of
quote attribution, we address more intricate sce-
narios, such as anaphora and the continuity of
conversational threads(Muzny et al., 2017). To
effectively handle the resolution of conversational
threads, we employ a pre-trained BERT model de-
signed for multi-choice QA. Furthermore, we uti-
lize co-reference resolution techniques to tackle
anaphoric references within the dialogues.

In order to distinguish between crowds, solilo-
quies, and dialogues, we employ a combination
of rule-based filtering and a BERT-based classifier.
This hybrid approach enables us to accurately iden-
tify and categorize different speech patterns and
formats within the text.

Our research encompasses several contributions,
which can be summarized as follows:

1. We conduct a thorough analysis of the intri-
cate complexities and nuances associated with
accurately attributing quotes.

2. We introduce a comprehensive pipeline for
quote attribution, comprising multiple stages
including classification, extractive question
answering (QA), multi-choice QA, and coref-
erence resolution. This pipeline serves as a
systematic framework for effectively and effi-
ciently handling quote attribution tasks.

2 Background/Related Work

To perform quote attribution, a dataset containing
quoted speech from literary texts is essential for
training, evaluation, and testing models. Several
studies have focused primarily on creating datasets
specifically for quote attribution. There are some
open-source datasets available in this field, most of
which are English literature works. Muzny, et al.
developed an annotation tool for quotation annota-
tion and created the QuoteLi3 dataset with speaker
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and quotation annotations in 3 novels (Muzny et al.,
2017). Similarly, Sims, Matthew, et al. presented
datasets for speaker attribution, comprised of 1,765
quotations linked to their speakers in 100 different
literary texts (Sims et al., 2019), which is now part
of the LitBank corpus. The PNDC project has un-
dertaken similar work (Vishnubhotla et al., 2022).
Notably, in these datasets, coreference information
is also annotated.

As a crucial first step for quote attribution,
quotes need to be extracted from the main text.
According to the findings by O’Keefe et al., uti-
lizing regular expressions for quote detection can
achieve an accuracy exceeding 99% on clean En-
glish language data (O’Keefe et al., 2012).

Concerning quote attribution, multiple ap-
proaches have been explored in the existing litera-
ture. Earlier works typically employed rule-based
methods with grammatical rules, complemented by
some machine learning techniques, which could
be complex due to the need for defining extensive
rules (Elson and McKeown, 2010; Krug, 2020). In
Pan et al.’s novel understanding system in 2021,
they treated speaker identification of dialogues
(SID) as a GBDT-based ranking task. It involved
first identifying characters using NER, then feeding
input features of the candidate speaker and the tar-
get dialogue, such as position, distance, etc., into
a model for classification to determine the final
speaker from the candidates (Pan et al., 2021). To
resolve coreferences, they split names into name
clusters with primary and candidate names, ex-
tracted features like gender, overlapping, personal
pronouns, etc., and used a GBDT-based model with
name candidates for coreference resolution. LG
Pang employed BERT and CRF (Conditional Ran-
dom Field), framing the task as question answer-
ing, for speaker extraction of quotations1. Yoder,
Michael Miller, et al. and Vishnubhotla, Krish-
napriya, et al. approached quotation attribution as
a set of sequential sub-tasks: character identifica-
tion, coreference resolution, quotation identifica-
tion, and speaker attribution (Vishnubhotla et al.,
2023; Yoder et al., 2021).

In contrast to the recent work by Vishnubhotla,
Krishnapriya, et al., we propose an additional mod-
ule for classifying crowds, soliloquies, and dia-
logues. We omit the character identification mod-
ule. Instead, we employ a question-answering (QA)
approach for quote attribution, which directly pre-

1https://gitlab.com/snowhitiger/speakerextraction

dicts the name of the character speaking the quote.

3 Dataset

We utilize a dataset that we refer to as CLD, com-
prising 1,991 modern Chinese novels annotated by
literature practitioners from the audiobook industry,
ensuring high accuracy and validation. The original
dataset includes information about the main char-
acters and annotated novel texts, with each quote
attributed to a specific character. For every charac-
ter, we have access to their gender information and
a brief description.

4 Quote Attribution

Our primary objective is to correctly attribute each
quote to the appropriate speaker within the novel.
The process begins with quote extraction, where
quotes are identified and extracted from the text.
Subsequently, we aim to assign the extracted quotes
to their corresponding speakers accurately.

We identify several key challenges in this task:
1. Coreference: Characters in literary texts usu-

ally appear in three formats: proper names (e.g.,
"夏洛克·荷马(Sherlock Holmes)"), pronouns (e.g.,
"他(He)"), and nominal anaphoric noun phrases
referring to characters (e.g., "侦探(The consult-
ing detective)") (Labatut and Bost, 2019). The
first-person pronoun "我" (I/My) also frequently
appears in some first-person novels.

2. Crowds/System/Sound Effects: There are
occasions when the quotes are not spoken by a
specific individual but rather by crowds, a "system"
(which frequently occurs in certain Chinese time-
travel novels), or represent audio effects rather than
human speech.

3. Following Conversational Threads: Dia-
logues often follow an "ABAB" pattern, where A
denotes one speaker and B denotes another. Many
times, there may be no explicit names or references
to the speakers within the paragraph, with only the
utterances themselves present.

4. Long Soliloquies: Multiple continuous utter-
ances may be given by a single speaker.

We list examples of different cases in quote attri-
bution in Table 1.

To address the above-mentioned challenges, we
employ multiple methods within our proposed
pipeline, which can be outlined as follows:

2



Table 1: Different cases in quote attribution

Regular “好好，还需要什么？”杨建国连忙问。
"Alright, what else do you need?" Yang Jianguo asked quickly.

Co-reference 大家都幸灾乐祸地望着叶君临，等待他的回复。
他只得笑笑，断然拒绝：“假酒伤身，我喝不了！”
Everyone looked at Ye Junlin with schadenfreude and waited for his response.
He could only smile and firmly refuse: "Fake alcohol is harmful to the body, I can’t drink it!"

Sound effects “咚咚咚. . . . . . ”
就在这时，门外传来一阵清脆的敲门声。
"Dong dong dong..."
Just then, a crisp knocking sound came from outside the door.

Following conversa-
tional threads

“活啥呀，都死九年了，我看咱们是活见鬼！”杨建国哆嗦着说。
“别瞎说，今晚那个玉瑶，不还施法救咱儿子呢吗，谁听说过鬼还捉鬼哩？”
杨妻白了杨建国一眼。
“怪呀，怪呀。不过不管她是啥，咱们都该感谢人家。”
“是呀，我还听那小姑娘，管咱家儿子叫小老公. . . . . . ”
“要是能再见到这个玉瑶就好了，一定要问问清楚。”
夫妻二人没想到，迷一样的玉瑶，第二天竟然又出现了。
"What kind of life is this? He’s been dead for nine years. I think we’re seeing ghosts!" Yang Jianguo
shuddered.
"Don’t talk nonsense. Didn’t that Yu Yao use magic to save our son tonight? Who’s ever heard of
ghosts catching ghosts?" Yang’s wife gave Yang Jianguo a glare.
"It’s strange, it’s strange. But no matter who she is, we should be grateful to her."
"Yes, and I heard that little girl calling our son ‘little husband’..."
"If we could see this Yu Yao again, it would be great. We have to ask her some questions."
The couple didn’t expect that the mysterious Yu Yao would appear again the next day.

Crowds 一掌镇压！而对此，凌风微微抬头，神色风轻云淡，在所有人不可思议的注视下，一根手
指缓缓的点出，看上去轻柔而无力。
“这小子在干吗，等死吗？”
“我估计是傻了，孟超然师兄可是施展了一品神通，镇山掌。”
“狂徒而已，这样轻柔的手指，我上去都可随意灭他，何况孟师兄。”
议论澎湃，只当凌风为小丑。只是，在所有人声音落下的瞬间，前方的一幕，却是让得他
们立刻紧闭上了嘴巴，身体剧烈的颤抖起来。
With a single palm strike, Ling Feng suppressed his opponent. However, he lifted his head slightly,
his expression calm and relaxed. In the midst of everyone’s incredulous gaze, he slowly pointed a
finger, appearing gentle and powerless.
"What is the buddy doing, waiting to die?"
"I think he’s gone crazy. Senior Meng Chaoran used a first-grade divine technique, the Mountain
Suppression Palm."
"He’s just a madman. I could easily kill him with a gentle finger like that, let alone Senior Meng."
There was a heated discussion, and they all thought Ling Feng was a clown. However, in the instant
when everyone’s voices fell, the scene in front of them caused them to immediately shut their mouths
and their bodies trembled violently.

Long Soliloquy 病床很快推到了病房，这层是高级vip病房区，院长亲自过问，整个楼层都被清空，就安
排了颜汐、颜清和还有已经能下地行走的顾念风住。祁愿没有跟进去，而是放手站在了门
外，他凝眸看着病房许久，才缓缓道：
“祁承，走吧。”
“调动人手来守住这里，没有我的同意，连只苍蝇也不准放进来！”
“联系国外势力，给他们一天时间，我要颜允之毫发无伤地回到华国！”
“放弃攻击颜氏集团，控制舆论消除对颜家的负面影响。傅家霍家那些人谁有意见让他们直
接来见我。”. . . . . .
The hospital bed was quickly pushed into the ward. This floor was the high-level VIP ward area, and
the hospital dean personally inquired about the situation. The entire floor was cleared, and Yan Xi,
Yan Qing, and Gu Nianfeng, who was already able to walk, were accommodated. Qi Yuan did not
follow them in, but let go and stood outside the door. He stared at the ward for a long time before
slowly saying:
"Qi Cheng, let’s go."
"Arrange manpower to guard this place. Without my permission, not even a fly is allowed in!"
"Contact foreign forces and give them one day to ensure that Yan Yunzhi returns to Hualand
unharmed!"
"Give up attacking the Yan family’s group, control public opinion, and eliminate the negative impact
on the Yan family. If anyone from the Fu family or the Huo family has any opinions, let them come
see me directly."...

3



4.1 Quote Extraction
As an initial approach, we employ regular expres-
sions, as described by (O’Keefe et al., 2012), for
quote extraction. It’s important to note that not all
authors follow the conventional practice of enclos-
ing speech within quotation marks. However, this
method proves effective for the majority of novels
in our dataset, and we currently exclude edge cases
from our research scope. Consequently, we uti-
lize regular expressions to extract quotes enclosed
within symbols such as "", “”, and ‘’, which are
commonly used in Chinese fiction.

In some cases, quotes in Chinese novels may
represent sound effects, such as "呼呼" (Huhu),
which signifies the sound of wind blowing. These
sound effect quotes often occur within the same
sentence and are typically followed by the word
"声" (sound). To identify and filter out these sound
effect quotes, we have developed a specific rule.
According to this rule, if a quote is less than 10
characters long and has "声" as a suffix, or if it is
less than 10 characters and contains no punctuation
marks within the quote itself or before and after
the quotation marks, it is considered a sound effect
quote. However, it’s important to note that while
this rule successfully handles most cases, it may
not cover all possible scenarios.

4.2 QA-based Quote Attribution
For the task of quote attribution, we employ an
extractive question-answering (QA) approach. The
method is relatively simple yet effective. We con-
struct each data entry in our dataset following the
format outlined in Table 2.

When constructing our extractive QA dataset for
fine-tuning, we first extract context and speaker
pairs with labeled names that have appeared in the
given context. This allows the extractive QA model
to identify and extract the explicit names along with

their start and end indices within the context.
For first-person novels, we treat them as a special

case during our dataset preprocessing. Specifically,
we consider the pronoun "我" (I) as a character
name. This approach is taken because "我" (I)
typically refers to the same person throughout the
entire novel, even if a specific name is assigned to
the character. Resolving the coreference of "我" (I)
using name-based resolution can be challenging, as
the assigned name often appears only in the initial
chapters of the novel.

Moreover, we have observed a performance de-
crease when the context contains pronouns such
as "他" (he) or "她" (she). It is common for these
pronouns to be prevalent in certain novels, with the
actual character name being distant from the quoted
text. To mitigate this issue, we randomly replace
character names with "他" (he) or "她" (she) during
dataset preprocessing. This approach makes it eas-
ier for the model to identify and resolve instances
of "他" (he) or "她" (she). Consequently, when han-
dling contexts containing numerous occurrences of
these pronouns, we first extract them as names and
subsequently apply coreference resolution.

After completing all the previous steps, we pro-
ceed to fine-tune a pre-trained RoBERTa model
using our prepared dataset.

4.3 MC-based Quote Attribution

The model exhibits performance degradation on ex-
tended conversational threads following an ABAB
pattern. This is attributed to limitations of the un-
derlying base model in handling longer text se-
quences. To mitigate this issue, we introduce a sup-
plementary multi-choice model. The underlying
assumption is that by restricting the response space
to a predefined set of options, we can enhance the
accuracy of answer selection.

To improve the model’s ability to handle conver-
sational threads, we built a specific training dataset.
We prioritized quotes lacking context, focusing on
those within a single paragraph. We then expanded
by including nearby paragraphs until the speaker
was identified. This ensures the dataset captures
complete conversational exchanges, empowering
the new multi-choice BERT model to handle them
effectively.

After constructing each data pair in the format
shown in Table 3, we fine-tune the multi-choice
BERT model for improved performance.
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Table 2: QA-based quote attribution

Context: 见许念念一脸呆滞，杨翠花哭得更伤心，一把鼻涕一把眼泪的抱着她，肥胖的身体哭
得不停颤抖。
“孩子她爹，我们念念要是不行，我也不活了. . . . . .我苦命的儿啊. . . . . . ”
许念念是被这最后的尖锐声音给刺激回神的。
Seeing Xu Nian Nian’s dull face, Yang Cuihua cried even more sadly, hugging Niannian with
snot, with tears streaming down her plump body that were trembling with non-stop sobs.
"Child’s dad, if Nian Nian dies, I won’t be able to live either... my poor child..."
Xu Nian Nian was brought back to reality by the sharp last sentence.

Question: “孩子她爹，我们念念要是不行，我也不活了. . . . . .我苦命的儿啊. . . . . . ”是谁说的？
Who said "Child’s dad, if Nian Nian dies, I won’t be able to live either... my poor child..."?

Answer: 杨翠花
Yang Cuihua

Table 3: MC-based quote attribution

Context: 说着，杨天明就把骨头扔了出去。
铁柱打了个激灵：“你不说这是龙坟吗？”
“猜的. . . . . . ”
铁柱无语：“现在咋整？”
“走吧，天也快黑了，最好赶在天黑之前下山，大人们都说潜山上闹鬼的。”
铁柱快哭了：“来之前你可没这么说。”
“我也是才想起来的嘛。”杨天明无辜地摊了摊手。
After speaking, Yang Tianming threw the bone out.
Tie Zhu shuddered: "Don’t you say this is the Dragon Tomb?"
"Guess..."
Tie Zhu didn’t know what to say: "What’s going on now?"
"Let’s go, it’s getting dark soon Now, it’s best to go down the mountain before dark, the
adults said that the hidden mountain was haunted.”
Tie Zhu was about to cry: “You didn’t say that before we came here.”
“I just remembered it too. "Yang Tianming spread his hands innocently.

Question: “走吧，天也快黑了，最好赶在天黑之前下山，大人们都说潜山上闹鬼的。”是谁说的？
Who said "Let’s go. It’s getting dark. It’s best to get down the mountain before it gets too dark.
The adults all say that there are ghosts on the mountain,"?

Choices: [杨天明，铁柱]
[Yang Tianming, Tiezhu]

Answer: 杨天明
Yang Tianming

4.4 Co-reference Resolution

Novels use many references to connect ideas and
characters. In our case, as we’re focused on who
said what (quote attribution), we only care about
references that identify speakers within quotes.

Co-reference resolution in fiction faces unique
challenges. First, references can span long pas-
sages, making it difficult to keep track of who is be-
ing referred to. Second, pronouns can shift between
characters within a limited context, further confus-
ing the interpretation. These factors contribute to
the difficulty, even for humans, of identifying the
correct referent. Table 4 showcases some common
scenarios where co-reference becomes ambiguous.

We construct our gender pronoun resolution
dataset through a combination of automation and
human validation. We begin by automatically ex-

tracting quote paragraphs containing relevant pro-
nouns. We then enrich the context by including
surrounding paragraphs until the speaker is iden-
tified. Utilizing character information, we assign
the closest speaker of the same gender to the pro-
noun. However, to ensure accuracy, human valida-
tors meticulously review and refine the automati-
cally generated labels, guaranteeing a high-quality
dataset for our task.

Our goal is to link pronouns within quotes to the
speaker’s name, directly in the original text. To
achieve this, we fine-tune a co-reference resolu-
tion model. By improving this model’s accuracy,
we can precisely connect pronouns to speakers,
enabling a smoother integration with our existing
extractive question answering approach.

We specifically leverage the method in Fast-
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Table 4: Different Cases in Co-reference Resolution

Easily recognizable con-
text

但凌天并没有任何恐惧，毕竟，他小时候跟着吴中胤没少来了这个地方。
他不免叫了一声：“青青姐，你在这儿吗？”
But LingT ian1 didn’t have any fear. After all, he1 followed Wu Zhongyin to this place a lot of
times when he1 was a child.
He1 couldn’t help calling: "Sister Qingqing, are you here?"

Multiple referees for a
single pronoun

刚接过来，上官香放到了桌上，迫不及待地就吃了起来，小桃看着她狼吞虎咽的模
样，担心她会噎着，叮嘱她慢点吃。
“这是我应该做的，公主。”念念不忘慕容夫人对她的叮嘱，要照顾好上官香，千万不能
让她饿着。
Just as she1 received it, ShangguanXiang1 placed the pastry on the table and eagerly began
to eat. Xiaotao2 watched her1 wolfing it down and worried that she1 might choke, so she2
advised her1 to eat slowly.
"It’s what I should do, Your Highness," she2 said, remembering Lady Murong’s instructions to
take care of ShangguanXiang1 and not let her1 go hungry.

Unrecognizable context
by human

冥心大帝目光深邃，盯着不断轮动的画面，掌心里多出一件奇特的物件，开口道：“差
不多了。”
“什么？”司无涯生出一种不太好的感觉。
他语气一沉，继续道，“此物名为天道大璋，蕴含天地规则. . . . . .是勾连十大规则的关键
至宝。”
接着. . . . . .
EmperorMingxin1 gazed deeply at the constantly rotating screen, there was a strange object
in his palm, and said: "It’s almost there."
"What?" SiWuya2 had a bad feeling.
His? tone sank, and he? continued, "This thing is called Tiandao Dazhang, and it contains the
rules of heaven and earth... It is the key treasure that connects the ten rules."
Then. . . . . .

coref2(Toshniwal et al., 2020a), which employs
a bounded memory approach to prioritize the most
crucial parts of a document and disregard irrele-
vant information. It’s important to distinguish our
approach from prior work in other languages; we
replace the original pre-trained Longformer model
with its Chinese counterpart and incorporate Chi-
nese word segmentation for task compatibility.

4.5 Classifying the Crowds, Soliloquy, and
Dialogues

We’ve identified three common scenarios where
continuous utterances are likely to occur: crowds,
soliloquies (internal monologues), and dialogues
with multiple speakers. For the case of crowds,
these "group quotes" often appear as a series of
continuous utterances containing keywords like
"everyone," "several people," or "the whole class".

We first extract such cases using our annotated
data. In our annotated data, crowds are usually
labeled with "龙套"(others). It usually comes in
the format of at least 3 continuous utterances.

We compared the performance of rule-based
method and the BERT method for classification
of the crowds, soliloquy and dialogues.

2https://github.com/shtoshni/fast-coref

4.5.1 Rule-based Method for Classifying the
Crowds

To address such cases, we implement a rule-based
approach that involves maintaining a predefined
list of keywords for filtering out irrelevant content.
These keywords are derived through data analysis.
In our annotated dataset, utterances attributed to
crowds are typically labeled as "龙套" (others). For
analysis purposes, we extract data consisting of a
minimum of three consecutive utterances, each con-
taining only a quotation without any accompanying
context, and all labeled as "龙套" (others). This
dataset subset allows us to perform detailed analy-
sis and further refine our keyword list for effective
filtering.

Based on our analysis, we compile a list of key-
words that includes terms like "议论" (discussion),
"众人" (the crowds), and others. During the infer-
ence phase, we extract a minimum of three con-
secutive utterances with the closest context and
examine the surrounding context (excluding the
utterances themselves) for the presence of any of
the keywords. This approach helps us identify pas-
sages that are likely attributed to crowd dialogue.

4.5.2 BERT Classification
In addition to the rule-based method, we also incor-
porate a BERT-based approach for comparison. In
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this approach, we consider the identification of con-
tinuous utterances as a three-category classification
problem: crowds, soliloquies, and dialogues. Sim-
ilar to the rule-based method, we extract data for
these three cases. The construction of the dataset
follows a similar process, with the distinction that
we do not rely on predefined keywords for filtering
purposes. Instead, the BERT-based method lever-
ages the power of the model to learn and classify
utterances based on their contextual information.

Furthermore, we conduct a comparison between
the results of binary classification, where the fo-
cus is on distinguishing between the two-category
classification approach and the three-category one.

5 Experimental Setup

5.1 Text Preprocessing

We construct our data for QA-based quote attribu-
tion as shown in Table 2, for MC-based quote at-
tribution as shown in Table 3, and for co-reference
resolution as shown in Table 4.

5.2 Training

In all experiments, we use the same original dataset
which contains 1991 novels. For each separate task,
we correspondingly pre-process the dataset.

To perform QA-based quote attribution, we fine-
tune a Roberta-based QA model using the QA
pipeline in the UER (Universal Encoder Represen-
tations) toolkit3(Zhao et al., 2019). In this process,
we utilize approximately 16,000 records and struc-
ture our data according to the format presented
in Table 2. To ensure comprehensive evaluation,
we conduct separate experiments for both single-
paragraph and mixed-paragraph contexts. For the
mixed-paragraph context, we take care to ensure
diversity by including 60% single-paragraph in-
stances and 40% multi-paragraph instances in our
dataset. This approach allows us to assess the
model’s performance under different contextual
scenarios.

To facilitate MC-based quote attribution, we fine-
tune an MC model using the UniMC framework
using the fenshen framework4(Wang et al., 2022).
When constructing our dataset, we follow the for-
mat outlined in Table 3. This approach allows us
to train the model using multiple-choice questions

3https://huggingface.co/uer/
roberta-base-chinese-extractive-qa

4https://github.com/IDEA-CCNL/
Fengshenbang-LM

and corresponding answer options, enabling it to
effectively attribute quotes.

For co-reference resolution, we use fast-coref5

(Toshniwal et al., 2021, 2020b) and replace the
English base model with the Chinese pre-trained
Longformer model6 and used Jieba7 for Chinese
word segmentation. We use around 7000 records.

To perform classification tasks for crowds, solil-
oquies, and dialogues, we employ BERT (Bidirec-
tional Encoder Representations from Transform-
ers)8 (Devlin et al., 2018) as our classification
model. For each category, we utilize a dataset con-
sisting of 2000 records to train the model.

6 Results and Discussion

To evaluate the performance of these models, we
randomly extract 10% of the dataset for evaluation
for each model. Here are our results.

Table 5: Results of extractive QA for quote attribution

Case F-score EM
Single-paragraph 95.1794 93.1452
Mixed(Single- &
Multi-paragraph)

88.2331 86.3062

Table 6: Results of MC for quote attribution

Model Accuracy
UniMC 0.9259

Table 7: Results of co-reference resolution

Model F-score
Fast-coref 95.4

The results indicate that individual modules
achieve high performance, showcasing the promis-
ing accuracy for quote attribution. We didn’t con-
duct a full test on the whole novels in our dataset
because there might be cases of characters anno-
tated as 龙套(the crowds) even if there’s a char-
acter name in the paragraph or characters that are
only annotated with one name but has multiple

5https://github.com/shtoshni/
fast-coref

6https://huggingface.co/schen/
longformer-chinese-base-4096

7https://github.com/fxsjy/jieba
8https://huggingface.co/

bert-base-chinese
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Table 8: Results of classifying the crowds, soliloquy,
and dialogues

Method Accuracy
Rule-based Method (Only
for the crowds)

0.6308

BERT classification (Only
for the crowds)

0.8458

BERT classification 0.72

co-references, so it will take a large effort to re-
annotate the novels. But it can be inferred that by
using a combination of these models, we can do
quote attribution in literary works.

There are still certain challenges that need to
be addressed to improve accuracy and robustness
further. These challenges include:

1. Longer context for accuracy and co-reference:
The pipeline demonstrates a performance drop
when dealing with longer contexts, as highlighted
in Table 5. This drop is partly attributed to the base
model’s performance limitations. Additionally, re-
solving co-reference for names that span across
long paragraphs or even chapters, such as "李玉
瑶" (Li, Yuyao) and "小瑶" (Xiao Yao), remains
unexplored. Instances like these are prevalent in
many novels, presenting a complex challenge for
accurate co-reference resolution.

2. Eliminating a long chain of models: Due to
the diverse range of cases involved in quote attribu-
tion, including regular names, sound effects, and
crowds, our current approach relies on a long chain
of models. However, this has the drawback of previ-
ous incorrect predictions affecting subsequent ones.
For instance, if the initial BERT classification for
crowds and dialogues yields incorrect predictions,
subsequent extractive QA processes will also be
influenced by these erroneous predictions.

Efforts should be focused on resolving these is-
sues to achieve higher accuracy and enhance the
robustness of the quote attribution system.

Limitations

We neglect edge cases for irregular speech content
without quotes in Chinese novels in our research.
For audio effects, since they only occupy a small
portion of the whole novel, we only exclude them
by simply defining rules, while there are still a lot
of times the rules do not apply.

Our study is only done in modern Chinese lit-
erature works. Though the proposed method may

be applied to other languages, there might be some
language differences that should be taken into ac-
count.

7 Future Work

We recognize this work as a stepping stone towards
a more comprehensive solution. Here are some
promising avenues for further exploration within
the domain of automated quote attribution in liter-
ary works:

1. Building a Robust Annotated Dataset: A key
focus for future work will be the development of a
comprehensive and well-annotated dataset specifi-
cally designed for quote attribution tasks in fiction.
This dataset should encompass a diverse range of
writing styles, genres, and complexities to ensure
the model generalizes well to unseen data.

2. Unveiling the Potential of Large Language
Models (LLMs): LLMs, with their advanced capa-
bilities, including longer context handling and supe-
rior understanding, in natural language processing,
hold immense potential for quote attribution. Fu-
ture research will involve exploring the integration
of LLMs with quote attribution, potentially leading
to a more direct and more accurate result of speaker
identification without the combination of multiple
models as proposed in this paper. Additionally, the
ability of LLMs to parse results in user-defined for-
mats can be a valuable asset, allowing researchers
to tailor the output to their specific needs.

These future directions have the potential to sig-
nificantly improve the accuracy and efficiency of
quote attribution in literary analysis. By continu-
ously refining the methodology and exploring new
avenues, we can pave the way for a fully automated
quote attribution system that empowers researchers
and enriches our understanding of literary works.

8 Conclusion

This paper explored the application of machine
learning for quote attribution in literary works. By
leveraging AI-powered algorithms, we aim to em-
power literature annotators with faster and more
accurate identification of quoted speech sources,
ultimately enhancing analysis of fictional works.
While writing styles may vary across novels, a sig-
nificant portion of literary works can benefit from
this approach.
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Abstract
In this paper, we present TeleChat, a collection
of large language models (LLMs) with param-
eters of 7 billion and 12 billion. TeleChat is
initially pretrained on an extensive corpus con-
taining a diverse collection of texts from both
English and Chinese languages, encompassing
trillions of tokens. Subsequently, the model
undergoes fine-tuning to align with human pref-
erences, following a detailed methodology that
we describe. We evaluate the performance
of TeleChat on various tasks, including gen-
eral dialogue generation, language understand-
ing, mathematics, reasoning, code generation,
and knowledge-based question answering. Our
findings indicate that TeleChat achieves state-
of-the-art performance to other open-source
models of similar size across a wide range of
public benchmarks. To support future research
and applications utilizing LLMs, we release the
fine-tuned model checkpoints of TeleChat-7B
and TeleChat-12B, along with code and a por-
tion of our filtered high-quality pretraining data,
to the public community1.

1 Introduction

The research community has witnessed substan-
tial proliferation of open large language mod-
els (LLMs). Following the introduction of Chat-
GPT(OpenAI, 2022), there have been thrilling ad-
vancements and applications of LLMs, but the ma-
jority of prominent LLMs, such as GPT-4(OpenAI,
2023) and PaLM-2(Anil et al., 2023), are restrictive
in their technological sharing. In contrast, a steady
stream of openly accessible text-based LLMs
has emerged, including OPT(Zhang et al., 2022),
BLOOM(Scao et al., 2022), LLAMA(Touvron
et al., 2023a), LLAMA 2(Touvron et al., 2023b),
etc. Furthermore, there exist various other LLMs
that have been designed with a focus on Chinese-
English bilingual language generation, including

∗These authors contributed equally to this work.
†Corresponding Authors.

1https://github.com/Tele-AI/Telechat

models such as Baichuan-2(Yang et al., 2023),
Qwen(Bai et al., 2023), InternLM(InternLM_Team,
2023) and SkyWork(Wei et al., 2023). While these
models offer comprehensive details about their pre-
training strategies, they often lack transparency in
their instruction finetuning processes for chat mod-
els, including limited disclosure of the finetuning
data composition, methods for concatenating multi-
turn dialog data, and techniques employed to en-
hance conversational performance.

To encourage reproducibility of fine-tuned
LLMs and foster responsible development of
LLMs, we release TeleChat, a collection of pre-
trained language models and chat models that have
been fine-tuned using human alignment techniques
including supervised fine-tuning and reinforcement
learning. In particular, we provide a comprehen-
sive explanation of our model architecture and the
approach we used to extend TeleChat’s context win-
dow to 96k in Section 2. Furthermore, in Section 3,
we delve into the specifics of our pretraining dataset
and cleaning techniques. We then discuss align-
ment with human preferences in Section 4 and 5.
Additionally, in Section 6, we conduct a thorough
analysis of the model’s performance on standard
benchmark tasks and general dialogue generation.
Throughout the development of TeleChat, we gain
insights regarding mitigating hallucination with a
knowledge graph, which is discussed in Section 7.
Furthermore, we describe our parallel computing
method in Section 8. Our contribution are listed as
follows:

• We release TeleChat, a suite of pretrained and
fine-tuned large language models with param-
eter sizes of 7 billion and 12 billion. We re-
lease model checkpoints and code to the pub-
lic community.

• We present our comprehensive data cleaning
workflow, and release a portion of our high-
quality training corpus, comprising more than
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1TB of text data and exceeding 160 billion to-
kens. To the best of our knowledge, this marks
the largest open Chinese corpus for language
model pre-training to the date.

• We disclose a comprehensive description of
our supervised fine-tuning methodology, an
aspect that is frequently overlooked in reports
of other publicly available models. Further-
more, TeleChat stands out with its longest con-
text length among open-source large language
models.

2 Model Design

2.1 Model Architecture

TeleChat is an autoregressive transformer model
that employs a stack of transformer-decoder layers,
whose architecture largely follows that of GPT-
3(Brown et al., 2020). However, TeleChat deviates
from the original transformer model in several no-
table ways, drawing inspiration from influential
language models such as LLaMA(Touvron et al.,
2023a) and BLOOM(Scao et al., 2022). The key
parameters of the architecture are summarized in
Table 1.

Rotary Position Embedding. We use Rotary
Positional Embedding (RoPE(Su et al., 2022)) to
encode absolute positions with explicit integration
of relative position dependencies. To further opti-
mize computational efficiency and minimize mem-
ory usage, we implement Flash Attention v2 in the
attention modules(Dao, 2023).

Normalizations. To ensure robust training, we
incorporate an additional layer normalization step
after the initial embedding layer for TeleChat, draw-
ing inspiration from the methodology employed in
BLOOM(Scao et al., 2022). However, we diverge
from BLOOM by replacing conventional layer nor-
malization with RMSNorm(Zhang and Sennrich,
2019), which has been shown to enhance the stabil-
ity and performance of transformer models. Addi-
tionally, we adopt pre-normalization in each layer
instead of post-normalization, a design choice that
has been found to improve the training stability of
transformer models.

Activations We utilize the SwiGLU activation
function(Shazeer, 2020) in the feed forward net-
work (FFN) of TeleChat, and diminish the FFN
feed-forward dimension to less than four times the
hidden size, adhering to established conventions
in prior research(Touvron et al., 2023a)(Wei et al.,

2023).

2.2 Extending Context Window

Large language models (LLMs) often encounter in-
put contexts with a significant number of tokens in
different scenarios. Hence, it is crucial for LLMs to
have long-range capabilities and efficiently handle
context lengths that exceed their initial pre-training
limitations.

In our approach, we utilize NTK-aware interpo-
lation techniques (bloc97, 2023) to redistribute the
interpolation pressure across multiple dimensions.
Additionally, we address performance degradation
caused by fluctuations in context length during
multiple forward-passes by employing a Dynamic
NTK-aware interpolation mechanism, in which the
interpolation scaling factor is designed as a contin-
uous variable and is updated according to real-time
context length.

To enhance TeleChat’s long-context capabili-
ties, we employ Multi-stage Long-context Training
during supervised finetuning and attention-Scaling
techniques(Peng et al., 2023) during the inference
stage. Multi-stage Long-context Training peri-
odically extends the context length during train-
ing, while attention-Scaling adjusts the attention
mechanism by rescaling the dot product relative
to the context-to-training length ratio. This en-
sures stable attention entropy as the context length
increases. For a detailed description of Multi-
stage Long-context Training, please refer to sec-
tion 4.2.3. Experimental results demonstrate that
these techniques enable TeleChat to extend its con-
text window to over 96k tokens successfully, which
achieves longest context length among open-source
large language models.

3 Pretraining Stage

During pretraining stage, we train the model from
scratch using a substantial amount of data. In this
section, we introduce our data collection and clean-
ing method (Section 3.1 and 3.2), training details
(Section 3.3), and tokenizer (Section 3.4).

3.1 Data Collection

TeleChat’s pretraining corpus is curated from a
wide range of data sources, including both general-
purpose and domain-specific data. The general-
purpose data comprises a vast range of sources,
such as web pages, social platforms, encyclopedias,
books, academic papers, code repositories, and
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Models layer num attention heads hidden size FFN hidden size vocab size
TeleChat-7B 30 32 4096 12288 160256
TeleChat-12B 38 32 5120 12288 160256

Table 1: Detailed model architecture parameters for TeleChat’s 7B and 12B models.

Datasets Percentage%
web page 22
books 11
community QA 7
social sharing 8
documents and reports 13
paper 2
code repository 12
chat data 13
others 12
Chinese 45
English 35
Code 11
Math 9

Table 2: The distribution of various categories of
TeleChat’s pretraining data.

more. In terms of domain-specific data, we gather
corpus from twenty distinct sectors, including fi-
nance, construction, health and social work, align-
ing with national industry classifications2. Fur-
thermore, we consistently gather and accumulate
real-time data to ensure comprehensive coverage
of the most up-to-date information. During the
data collection stage, we acquire diverse and ex-
tensive pre-training data on a petabyte scale. The
distribution of our pretraining data is displayed in
Table 2.

3.2 Data Preprocessing

We devise a comprehensive data cleaning proce-
dure to ensure the quality of our pretraining data.
Our data clean procedure consists of rule-based
filtering, deduplication, high-quality data selection,
and data security filtering.

Rule-based Filtering. Heuristic rules are ap-
plied to clean the text efficiently and effectively.
For instance, we filter out extremely short or low-
information texts, discard texts with excessive or
minimal punctuation, and replace HTML tags with
natural language. Additionally, we exclude data in
languages other than Chinese and English, as well

2https://www.stats.gov.cn/english/NewsEvents/
200306/t20030619_25521.html

as non-text multimodal data.
Deduplication. Performing global deduplica-

tion on a large amount of data is unacceptably slow,
therefore we perform a hierarchical deduplication
method. First, we eliminate duplicate data from
similar sources within groups using URL dedupli-
cation, which removes approximately half of the
duplicate data. Next, we utilize a 128-bit SimHash
algorithm for Document-level Deduplication that
removes duplicate articles. Finally, we employ
Minhash and Jaccard similarity methods to per-
form Paragraph-level Deduplication, filtering out a
large number of homogeneous advertisements and
other heavily redundant texts.

High-quality Selection We utilize a 5-gram
Kneser-Ney model, as implemented in the KenLM
library(Heafield, 2011), to train on existing high-
quality corpora and subsequently compute the per-
plexity of each paragraph. Instead of simply dis-
card texts with high perplexity, we split the data
into three even parts: head, middle, and tail based
on the perplexity score. The head part will be sam-
pled more frequently, while the tail part will be
sampled less.

Security Filtering. To ensure the security of our
dataset, we employ a multi-model classification
approach that identifies and removes pornography,
advertising, violent, and politically sensitive con-
tent. Moreover, we utilize obfuscation techniques
to protect personal privacy data.

3.3 Training Details

Batch Generation. To generate data batches, we
employ a process of shuffling and concatenating
the corpus obtained from the same source, ensur-
ing consistency in the data. Furthermore, to align
with the specified context lengths (e.g., 4096), the
data is truncated and concatenated with other data
samples.

Training Objectives. The method utilized in
the pretraining stage is known as autoregressive
language modeling, which involves iteratively pre-
dicting the probability of the subsequent token in
the sequence. We represent the joint probability of
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tokens in a text as:

p(x) = p(x1, · · ·, xT ) =
T∑

t=1

p(xt|x<t) (1)

Where x is a sequence of tokens, and we calculate
the probability of each token xt based on the tokens
that come before it, denoted as x<t. The model is
trained to optimize this probability across the entire
training corpus.

Optimizer. We utilize the widely used
Adam(Kingma and Ba, 2017) optimizer for pre-
training optimization. We employ a cosine learning
rate schedule, where the peak learning rate is spec-
ified for each model size. The learning rate grad-
ually decays until it reaches a minimum learning
rate of 10% of the peak value. The hyperparame-
ters are set as follows: β1 = 0.9, β2 = 0.95, and
ϵ = 10−5. A weight decay of 10−4 is applied to all
model parameters except for bias.

Ramp-up Batch. In order to enable the model to
converge faster at the very beginning of pretraining,
we employ a technique called ramp-up batch size,
which involves starting with a small batch size and
gradually increasing it linearly to the maximum
batch size over a certain number of steps.

Precision.The use of the float16 data type has
been recognized as a potential contributing factor
to training divergences in LLMs. To address this,
we pretrain all models using bfloat16(Wang and
Kanwar, 2019), a data type that shares the same
dynamic range as float32. Additionally, we em-
ploy mixed-precision training, wherein precision-
sensitive operations like gradient accumulation,
softmax, and weight updating are performed with
float32 precision, while the remaining operations
are carried out with bfloat16 precision.

The specific hyperparameters are presented in
Table 3.

3.4 Tokenizer

We utilize Hugging Face’s tokenizers to implement
the BBPE algorithm, training the tokenizer on a
diverse dataset comprising Chinese, English, code,
and mathematical data. This process results in a
tokenizer with a vocabulary size of 160,130, which
is subsequently padded to 160,256. Additionally,
we use special tokens to differentiate dialogue roles
and turns, and also incorporate specific designs to
mitigate potential injection attacks.

HyperParams TeleChat-7B TeleChat-12B
Peak lr 3e-4 1.5e-4
ramp-up batch size 288/72/1,500,000 240/80/2,000,000
batch size 16M 16M
warm up fraction 0.01 0.01
# training tokens 1.0T 1.2T

Table 3: The hyperparameter details utilized during the
pretraining stage of TeleChat’s 7B and 12B variants.
The ramp-up batch size is expressed in the format of
<start batch size >/<batch size increment>/<ramp-up
samples>. For example, 240/80/2,000,000 indicates
that the training begins with a batch size of 240 and
increments by 80 for each time. The total ramp-up
phase encompasses 2,000,000 samples.

4 Supervised Fine-Tuning Stage

We employ supervised fine-tuning (SFT) stage af-
ter the pretraining stage to effectively accomplish
various real-world tasks. In this section, we pro-
vide detailed information about our data collection
and annotation method in Section 4.1, followed
by an in-depth discussion of our methodology and
experimental details in Section 4.2 and Section
4.3.

4.1 Human Data Collection

We brought together a team of annotators to carry
out the manual data annotation process. Our an-
notators are all native Chinese speakers, boasting
a range of academic backgrounds including Com-
puter Science, Law, Chinese language and litera-
ture, and other related fields. We ask the human
annotators to label varied prompts and organize
them into conversations, harnessing our annotation
platform for efficient and high-quality annotations.
We work closely with the labelers, providing them
with clear instructions for each task and addressing
their questions promptly.

We collect over 100,000 supervised fine-tuning
samples using the aforementioned annotation strate-
gies and train our model accordingly. The statis-
tics of the top 30 categories in our supervised-
finetuning data is displayed in Supplement Material
Section A.

4.2 Training Methodology

In this section, we present a comprehensive expla-
nation of our training approach during the super-
vised fine-tuning stage, an aspect that is frequently
overlooked in reports of other open-sourced mod-
els.
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4.2.1 Data Organization

Our dataset spans various domains, such as General
Q&A, creative writing, machine translation, code
generation, math & reasoning, and more. To en-
sure that each domain is represented appropriately,
we assign respective resampling weights to each
dataset based on their importance. Then, we sample
single-round and multi-round conversations from
each dataset using their corresponding resampling
weights. The sampled conversations are then shuf-
fled and concatenated, followed by pre-padding
them to a predetermined length (e.g., 4096 or 8192)
to ensure consistent input length. We use special
tokens <_user>, <_bot>, and <_end> to denote the
beginning of a question, the start of an answer, and
the end of an answer respectively. To ensure di-
versity in the combination of data, the datasets are
resampled and re-shuffled for each training epoch.
We fine-tuned the model in a supervised manner
based on this carefully curated instruction dataset.

4.2.2 Noisy Embedding Fine Tuning

In this section, we introduce our method for en-
hancing the answer quality of large language mod-
els (LLMs) through noisy embedding fine-tuning
(NEFTUNE), inspired by the work of(Jain et al.,
2023). Specifically, NEFTune modifies the input
embeddings by adding a random noise vector to
them. The noise is generated by sampling inde-
pendent and identically distributed (i.i.d) uniform
entries, each in the range [−1, 1], and then scal-
ing the entire noise vector by a factor of α/

√
Ld,

where L is the sequence length, d is the embedding
dimension, and α is a tunable hyperparameter.

We observe that while NEFTune enhance the
model’s performance in scenarios with limited
training data, its benefits diminish as the size of
the training dataset increases. This is likely due to
the model’s reduced tendency to overfit on larger
datasets. To investigate this further, we conduct
experiments using TeleChat-7B fine-tuned models
with and without the implementation of NEFTune.
Our findings reveal that when the model is trained
on the 10,000 samples, NEFTune achieves a 55%
win rate against its counterpart without NEFTune,
as determined by human evaluators. Some exam-
ples are shown in Supplement Material Section
B. However, when the model is trained on the en-
tire dataset consisting of 40,000 samples, NEFTune
loses its advantage, resulting in only a 48% win
rate against its counterpart without NEFTune.

4.2.3 Multi-stage Long-context Training.
During the supervised fine-tuning stage, we gradu-
ally increase the training length, enabling the model
to activate and strengthen its ability to understand
extensive dependencies while preserving its foun-
dational skills. Specifically, we initiate the training
with a sequence length of 8,192, building upon the
foundation model trained on a sequence length of
4,096. At the 3/4 mark of the training procedure,
we transit to a training sequence length of 16,384.
Note that we employ the ntk-aware extrapolation
method when working with sequence lengths of
8,192 and 16,384. This approach helps us mitigate
the difficulties encountered during the transition,
allowing for a smooth adjustment in the training
sequence length for the model. Training details
for TeleChat-7B’s multi-stage long-context train-
ing is shown in Table 4, and experiment results is
displayed in Table 5

4.3 Training Details

Similar to the pretraining phase, we employ next-
token prediction as the training task. However,
we introduce loss masks for system information
and user input questions to ensure that the loss is
exclusively calculated for the output answer.

The model undergoes a total of 40,000 steps,
with the first 30,000 steps involving training with a
sequence length of 8,192, and the remaining 10,000
steps involving training with a sequence length
of 16,384, as illustrated in section 4.2.3. In the
training process, we utilize the same optimizer as
in the pretraining stage, as described in section 3.3.

5 Reinforcement Learning

In this section, we introduce reinforcement learning
to align chat models with human preference, aim-
ing to make model outputs consistent with safety
and norms.

5.1 Reward Model

When collecting prompts of reward dataset, a con-
sensus is that high-quality and diverse prompts are
conducive to the training stage of reinforcement
learning.

We collect a large number of prompts, includ-
ing data from both human annotation and internal
user testing phases. The final prompt dataset con-
sists of a total of 300 categories. To further get
the high quality prompts, we use clustering and
centroid selection to select representative prompts.
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sequence length training steps peak lr batch size tensor parallel pipeline parallel
8,192 30,000 3e-5 8M 2 4
16,384 10,000 4e-5 8M 2 8

Table 4: Training details for TeleChat-7B’s multi-stage long-context training. Note that training with a sequence
length of 16,384 demands significantly more GPU memory compared to training with 8,192. As a result, it is
necessary to increase the pipeline parallel size to 8, and requires 2 nodes to train.

Method sequence length
2048 4096 8192 16384 32768 65536 98304

baseline 4.8122 4.6562 39.3099 98.3102 155.2708 487.3398 447.6295
NTK-aware (8k) 4.8122 4.6562 5.1904 4.7155 8.6351 77.7478 79.9256

NTK-aware+logN (8k) 4.8122 4.6562 5.1904 4.0353 4.1408 9.4080 7.9711
NTK-aware (16k) 7.6916 7.9900 7.9580 5.1217 4.7932 10.5444 10.3614

NTK-aware+logN (16k) 7.6916 7.9900 7.9580 5.1217 4.7195 8.9751 7.6822

Table 5: Our experiments with TeleChat-7B’s long-context inferences illustrate the effectiveness of employing
techniques such as NTK-aware extrapolation, attention scaling, and multi-stage long-context training. These
approaches result in a significant reduction in perplexity as the context length increases and enable our model to
achieve a low perplexity when extrapolating to 96K tokens.

All prompts are firstly convert to embeddings using
bge-large-zh 3. Then we employ elbow clustering
algorithms within each categories that aims to find
the ideal number of clusters. The closest prompt to
each cluster centroid will be selected. In addition,
we randomly sampled the prompts in the cluster
(except the closest prompt) to ensure the diversity
of reward dataset, while the remain is used for re-
inforcement learning. The responses are collected
from TeleChat models of different training stages
and reasoning strategies, allowing sampling rich
responses for annotation.

Moreover, for improving the accuracy and reduc-
ing the difficulty of annotations, we simplify the
task of ranking responses with human annotation.
A straightforward classification task is introduced,
where responses can be categorized under three
distinct labels: good, medium, and bad. The ba-
sic criteria of this assessment includes but is not
limited to safety, factuality, fluency, normality, etc.
By evaluating the responses through these aspects,
annotators can rank responses consistently. The re-
sponses between each pair of distinct labels under
the same prompt can be combined with each other
to form ranked pairs for subsequent training.

During the training stage, we use the same train-
ing objectives as LLaMA2, adding margin in the
loss function to teach the reward model to assign
more difference scores to response pairs with more

3https://huggingface.co/BAAI/bge-large-zh-v1.
5

difference. The training data distribution, adding
margin size and test accuracy of Reward Model on
three types of data pairs are shown in Table 6.

5.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is widely used for LLM alignment and
its mechanism is collaboratively working including
four models: actor model, critic model, reference
model and reward model. From the experience of
(Yang et al., 2023) and (Bai et al., 2023), the critic
model updates 50 steps firstly before actor model.
The KL divergence coefficient is setting to 0.1 and
apply a normalization process to the rewards, which
accounts for the moving average. The learning
rates for our actor and critic models are configured
at 5× 10− 6 and 3× 10− 6 respectively through
experiments. We get the chat model eventually
after training for 400 steps.

6 Experiment

6.1 Evaluation on Standard Benchmarks

In this chapter, we evaluate the zero-shot and few-
shot capabilities of TeleChat from various perspec-
tives using standard benchmarks. We select a
list of open source models as baselines, including
LLaMA 2-Chat (7B, 13B), InternLM-Chat (7B),
Belle-LLaMA-2 (13B), Baichuan 2 (7B, 13B),
ChatGLM 2-6B, ChatGLM 3-6B, Qwen-Chat (7B,
14B).
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Type of data good & bad medium & bad good & medium
Distribution 18.2% 21.1% 65.7%
Margin 1 2/3 1/3
Test Accuracy 70.1% 66.0% 86.4%

Table 6: Training data distribution, adding margin and test accuracy of Reward Model on different type of data pairs.

Model
MMLU C-Eval CMMLU AGIEval GAOKAO CSL CHID EPRSTMT GSM8K MATH HumanEval
(5-shot) (5-shot) (5-shot) (zero-shot) (zero-shot) (zero-shot) (zero-shot) (zero-shot) (4-shot) (4-shot) (zero-shot)

LLaMA2-7B-chat 46.2 31.9 31.5 28.5 16.1 58.8 44.1 57.5 26.3 3.9 12.2
LLaMA2-13B-chat 54.6 36.2 38.7 32.3 18.6 61.2 48 59.4 29.6 5.0 18.9
ChatGLM2-6B-chat 45.9 52.6 49.3 39 46.4 61.2 57.9 71.2 28.8 6.5 11
ChatGLM3-6B-chat 51.9 53.8 54 38.9 49.3 65.6 63.4 85 56.7 18.7 61
InternLM-7B-chat 52 54.1 52.6 43.7 45.8 70 79.7 88.8 34.6 5.6 12.8
Baichuan2-7B-chat 52.8 55.6 54 35.3 39.7 60 75.2 87.5 32.8 6 13.4
Baichuan2-13B-chat 57 56.7 58.4 40 51.4 63.1 78.2 87.5 55.3 8.6 17.7

Qwen-7B-chat 56.6 59.3 59.5 41.3 63.3 63.1 72.3 88.8 52.5 10.3 26.2
Qwen-14B-chat 66.4 71.7 70.0 47.3 76.5 55.6 72.3 91.2 61.0 26.8 36.6

TeleChat-7B-chat 54.4 63.1 64.3 46.8 57.7 66.8 88.0 87.5 36.7 10.3 14.6
TeleChat-12B-chat 73.3 66.6 74.2 51.7 53.1 60.6 83.2 86.3 57.2 16.0 22.0

Table 7: Results of TeleChat compared with other large language models on eleven general benchmarks.

Model General Q&A Safety Task Hallucination Task
GPT3.5 66.3 73.9 72.2
Qwen(14B) 66.4 70.7 64.2
BaiChuan2(7B) 59.1 71.9 40.2
TeleChat-12B 71.4 75.4 66.2

Table 8: The evaluation results of TeleChat and other
models on general dialogue Q&A, safety task and hallu-
cination task. The best results are shown in bold.

6.1.1 Overall Performance
We evaluate TeleChat on multiple challenging
benchmarks. The detailed information of test
benchmarks is as follows:

• MMLU(Hendrycks et al., 2021a): An En-
glish benchmark covering 57 tasks, which are
mostly college level.

• CMMLU(Li et al., 2023): A Chinese bench-
mark to evaluate a LLM’s knowledge and rea-
soning ability.

• C-Eval(Huang et al., 2023): A comprehensive
Chinese benchmark, containing more than 10
thousands questions and four difficulty levels.

• GAOKAO-Bench(Zhang et al., 2023): A Chi-
nese evaluation benchmark utilizing Chinese
college entrance examination questions.

• AGIEVAL(Zhong et al., 2023): A bilingual
evaluation dataset encompassing standardized
test questions.

• CSL(Li et al., 2022): A dataset containing
multiple Chinese papers, which requires to

checks the match between Chinese academic
abstracts and their keywords.

• EPRSTMT(Xu et al., 2021): EPRSTMT is
a sentiment analysis datasets based on com-
ments on e-commerce websites.

• CHID(Zheng et al., 2019): A reading compre-
hension benchmark, which requires the model
to select the most appropriate idiom to fill in
the blanks within the text.

• GSM8K(Cobbe et al., 2021): GSM8K is a
dataset of 8.5K high-quality, linguistically di-
verse, human-written elementary math prob-
lems.

• Math(Hendrycks et al., 2021b): A dataset con-
taining 12.5K challenging competition math
problems.

• HumanEval(Chen et al., 2021): A code test
dataset provided by OpenAI, which consists
of 164 programming questions that measure
the correctness of code.

We record the detailed experiment results in
Table 7. To standardize the evaluation method,
we employ the assessment technique provided by
OpenCompass to obtain the results on most of
the benchmarks. The referenced model results
all originate from the open leaderboard of Open-
Compass. We observe that TeleChat exhibits supe-
rior performance compared to models of the same
size. Particularly in terms of the results on the
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MMLU, AGIEVAL, CMMLU and CHID datasets,
TeleChat’s performance surpasses that of other
models of equivalent size.

6.2 Evaluation on General Dialogue Tasks

We assess TeleChat’s ability to deliver helpful,
truthful, and secure responses to user input, us-
ing a specific set of prompts that are distinct from
our training data. Our test data is categorized into
general dialogue generation tasks, safety tasks, and
hallucination tasks. We compare TeleChat’s output
with other models, using GPT-4 as an automatic
referee, and then ask human labelers to review and
revise the results of GPT-4. The human evaluation
process is conducted in a blind manner. Examples
of our evaluation dataset is shown in Supplement
Material Section C.

The results, presented in Table 8, demonstrate
that TeleChat-12B achieves a 99.3% performance
level compared to GPT3.5 and outperforms other
opensource models of similar sizes. We also show-
case TeleChat’s capability to address real-world
inquiries in Supplement Material Section D.

7 Alleviating Hallucination with
Knowledge Graph

Hallucination problems are frequently observed in
LLMs, where there is a tendency to generate text
that appears coherent and meaningful but lacks
real-world existence. In this paper, we address the
first type of hallucinations by utilizing structured
information representation provided by Knowledge
Graphs (KG).

When a query comes, candidate entities are
firstly retrieved based on n-gram similarity with
query. Subsequently, a random walk of n steps is
conducted within the graph, starting from these can-
didate entities. Finally, all paths obtained through
the random walk are sorted based on their relevance
to the user’s query. The top-k paths are then re-
turned as the final result of the knowledge graph re-
trieval process. By combining this retrieved knowl-
edge with a prompt, the large language model can
process the augmented query, taking into consider-
ation the background knowledge provided by the
knowledge graph. We evaluated the TeleChat’s
ability to answer factual questions in the China
Conference on Knowledge Graph and Semantic
Computing (CCKS) 2020 Knowledge Graph based
Q&A task4. Without the introduction of the knowl-

4https://sigkg.cn/ccks2020/?page_id=69

edge graph, the accuracy of TeleChat on this task is
recorded at 0.19. However, after incorporating the
relevant knowledge by adding the top 10 relevant
paths from the knowledge graph, the accuracy sig-
nificantly improves to 0.69. This demonstrates the
effectiveness of integrating the knowledge graph in
enhancing the TeleChat’s ability to provide accu-
rate answers to factual questions.

8 Engineering

8.1 Hardware

TeleChat is trained on a total of 80 nodes, each hav-
ing 8 Nvidia A100 Sxm 40GB GPUs. Each node
is equipped with 2x Intel 6348 (28 Cores, 2.60
GHz) CPUs, 8x NVLink A100 GPUs, 512GB of
RAM, and a 2GB cache RAID card. All nodes are
interconnected using InfiniBand (IB) for network-
ing. To enhance data transmission speed and miti-
gate bandwidth constraints, we employ NVIDIA’s
GPUDirect RDMA (GRDMA) and utilize the Scal-
able Hierarchical Aggregation and Reduction Pro-
tocol (SHARP).

8.2 Parallel Computing

TeleChat is trained using the Megatron-DeepSpeed
framework (Smith et al., 2022) for large-scale dis-
tributed training. TeleChat successfully leverages
3D parallelism, which integrates tensor parallelism,
pipeline parallelism, and data parallelism to enable
efficient distributed training. We scale our system
to utilize hundreds of GPUs with extensive GPU
utilization, achieving a peak performance of 180
TFLOPs using A100 GPUs, which accounts for
57.6% of the theoretical peak performance of 312
TFLOPs.

9 Conclusions

In this paper, we introduced TeleChat, a collection
of large language models (LLMs) with 7 billion
and 12 billion parameters. We detailed the pretrain-
ing process, supervised fine-tuning, reinforcement
learning, and the integration of a knowledge graph
to enhance the model’s performance. We evalu-
ated TeleChat on various benchmarks and com-
pared its performance with other open-source mod-
els, TeleChat demonstrates superior performance in
general dialogue tasks, knowledge-based question
answering, and various other benchmarks, showcas-
ing its potential for diverse real-world applications.
We release model checkpoints, code, and a portion
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of our filtered high-quality pretraining data totaling
160 billion tokens to the public community.

Limitations

While TeleChat demonstrates impressive perfor-
mance across various language tasks, there are sev-
eral limitations to consider. Firstly, the extensive
computational resources required for training and
inference may also pose challenges for wider adop-
tion and accessibility. Additionally, the integration
of knowledge graphs, while effective in reducing
hallucination, may introduce biases or inaccura-
cies if the underlying knowledge graph data is in-
complete or outdated. Furthermore, the evaluation
of TeleChat’s performance, while comprehensive,
may not fully capture its real-world applicability
and potential limitations in specific domains or sce-
narios. Addressing these limitations will be cru-
cial for the responsible and ethical deployment of
TeleChat in real-world applications.

Ethics Statement

The development and evaluation of TeleChat prior-
itize ethical considerations. We prioritize privacy,
consent, and fairness in data usage, and have made
model checkpoints, code, and a portion of the train-
ing data publicly available for transparency and
reproducibility. We are committed to addressing
ethical concerns such as bias, privacy, and misinfor-
mation, and will continue to monitor and improve
TeleChat’s behavior in alignment with societal val-
ues.
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Abstract

According to the internationally recognized
PIRLS (Progress in International Reading Liter-
acy Study) assessment standards, reading com-
prehension questions should require not only
information retrieval, but also higher-order pro-
cesses such as inferencing, interpreting and
evaluation. However, these kinds of ques-
tions are often not available in large quantities
for training question generation models. This
paper investigates whether pre-trained Large
Language Models (LLMs) can produce higher-
order questions. Human assessment on a Chi-
nese dataset shows that few-shot LLM prompt-
ing generates more usable and higher-order
questions than two competitive neural base-
lines.

1 Introduction

Given the importance of asking questions for ef-
fective learning (Dillon, 2006; Etemadzadeh et al.,
2013; Kurdi et al., 2020), there has been extensive
effort in developing automatic Question Generation
(QG) models to produce high-quality questions for
reading materials in educational systems (Heilman
and Smith, 2010; Lindberg et al., 2013). Through
automatic creation of pedagogical and assessment
material, QG benefits teachers by reducing their
workload. It also levels the playing field for stu-
dents, providing them with instant and free access
to questions for review and practice.

According to PIRLS (Progress in International
Reading Literacy Study), reading comprehension
questions should require not only information re-
trieval, but also higher-order processes such as in-
ferencing, interpreting and evaluation (Mullis and
Martin, 2019). However, existing QG benchmarks
such as SQuAD (Rajpurkar et al., 2016) mostly
focus on factoid short-answer questions. There is
therefore a dearth of publicly available training data
for the more challenging types of questions (Mulla
and Gharpure, 2023) — those requiring inference,

Process Description
Retrieval Focus on and Retrieve Explicitly

Stated Information
Inferencing Make Straightforward Inferences
Integrating Interpret and Integrate Ideas and

Information
Evaluation Evaluate and Critique Content

and Textual Elements

Table 1: Comprehension processes in reading according
to PIRLS (Mullis and Martin, 2019). The italicized
processes are those required by higher-order questions.

synthesis and critique — especially for languages
other than English.

This paper investigates the generation of these
higher-order questions with few or no training sam-
ples. Our contribution is two-fold. First, we report
the first QG evaluation based on PIRLS, an inter-
nationally recognized standard for reading com-
prehension assessment, and demonstrate a high
level of human agreement on PIRLS question type
classification (Table 1). Second, in experiments
on a Chinese dataset, we show that existing QG
neural models generate predominantly information-
retrieval questions, while few-shot prompting of a
Large Language Model (LLM) can generate higher
proportions of higher-order questions. The LLM-
based approach can therefore produce a balanced
set of questions that is desirable in the education
setting with minimal supervision.

2 Previous work

Early QG approaches mostly relied on heuris-
tics, linguistic templates and rules (Labutov et al.,
2015; Mostow et al., 2016). With the avail-
ability of large-scale datasets, QG began to be
formulated as a sequence-to-sequence generation
task. An encoder-decoder architecture with a
global attention mechanism was found to be ef-
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Excerpt of input passage (in Chinese):
太阳和地球虽然相距1.5亿公里，但它却会提供光和热。除此以外，它还会给地球带来
意想不到的“礼物”呢！其实太阳的表面常常发生爆炸，在最活跃的时候，更会把表面的物质
抛射出去，形成太阳风暴。当太阳风暴经过地球时，不但会损毁人造卫星，干扰无线电通讯，
...
Even though the Sun is 150 million kilometers away from Earth, it provides light and heat. Besides,
it also gives a surprising ‘gift’ to Earth! There are frequent explosions on the surface of the Sun ...
forming solar storms. When a solar storm passes by the Earth, it not only destroys satellites and
interfere with wireless communication, ...
Type Example Question
Retrieval: 太阳和地球虽然相距一亿五千万公里，但它却会提供什么?
word-match Even though the Sun is 150 million kilometers away from Earth, What does it provide?
Retrieval: 文章提到太阳和地球之间的距离是多少？
paraphrase What is the distance between the sun and the Earth, as mentioned in the passage?
Inferenc- 根据文章，太阳爆炸造成的“太阳风暴”会对地球造成哪些影响？
ing How is the Earth affected by the solar storms caused by explosions on the Sun?
Integrat- 文章中提到太阳常常发生爆炸会带来什么「礼物」？
ing According to the passage, what ‘gift’ is brought by the frequent explosions at the Sun?
Evaluat- 作者认为太阳的影响对地球有什么优势和缺陷
ion What does the author think are the Sun’s positive and negative impact on the Earth?

Table 2: Example input passage and output questions of each PIRLS question type (Section 3.2)

fective (Du et al., 2017; Kim et al., 2019), but
can be further improved with transformer-based
approaches (Scialom et al., 2019), and fully fine-
tuned language models (LM) (Xiao et al., 2021).
Answer-agnostic QG can be performed via joint
Question and Answer Generation (QAG) (Lewis
et al., 2021). A QAG model based on fine-tuning
encoder-decoder LMs produces high-quality ques-
tions (Ushio et al., 2022), but has not been evalu-
ated in terms of question type.

There have been a few QG studies on LLMs
in the education setting. On a textbook dataset,
few-shot prompting with GPT-3 was able to gen-
erate human-like questions ready for classroom
use (Wang et al., 2022). A similar approach with In-
structGPT achieved an adherence rate between 67%
and 69% for generating 9 question types (Elkins
et al., 2023). A fine-tuned version of ChatGPT was
able to generate questions that are competitive with
human ones in terms of readability, correctness,
coherence and engagement (Xiao et al., 2023). It
remains unknown how these approaches compare
to off-the-shelf neural QG models in terms of gen-
erating higher-order questions.

3 Evaluation metric

To accurately evaluate the utility and nature of the
generated questions, manual assessment is neces-

sary since automatic methods cannot yet reliably
determine usability and PIRLS question types.

3.1 Usability
The human assessor assesses the quality of the ques-
tion on the following three-point scale:

Usable without revision The question can be
used as is: it is grammatical, fluent, and rele-
vant for the input passage.

Usable with minor revision The question is rele-
vant for the input passage, but requires im-
provement in its linguistic quality, e.g., correc-
tion of grammatical errors, better vocabulary
choice or phrasing.

Unusable The question is irrelevant for the pas-
sage, or cannot be understood.

A question classified as one of the first two cate-
gories is said to be “usable”. Only usable questions
are further analyzed on their question type.

3.2 PIRLS question type
According to the International Association for the
Evaluation of Educational Achievement, a reading
comprehension question should address one of four
comprehension processes, as defined in the PIRLS
standards (Table 1):
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Retrieval The answer is explicitly given in a text
span in the passage.

Inferencing Answering the question requires in-
ferences about ideas or information that is not
explicitly stated.

Integrating Answering the question “requires
comprehension of the entire text, or at least
significant portions of it.” (Mullis and Martin,
2019)

Evaluation The answer “involves a judgement
about some aspect of the text”, and is not nec-
essarily found in the passage.

Example questions can be found in Table 2.1 A
question classified as Inferencing, Integrating or
Evaluation is considered as “higher order”. For
pedagogical purposes, a well-balanced set of ques-
tions should include not only Retrieval questions
but also higher-order ones (Mullis and Martin,
2019).

4 Approach

We adopted the answer-agnostic setting for QG,
since the target answer is not always found within
the input text. The input is a Chinese text without
any specified answer span.

4.1 Baseline: pipeline model
We used the DuReader pipeline QG model (Li et al.,
2021), a publicly available QG system for Chinese.
It performs two subtasks in sequence: answer gen-
eration2 using an extractor trained in the Universal
IE framework (Lu et al., 2022)3; followed by ques-
tion generation4 with a base model fine-tuned with
UNIMO (Li et al., 2021).5

4.2 Baseline: Seq2seq model
A seq2seq model, trained directly to generate a
question-answer pair from a passage, serves as a
second baseline. It has been found to be robust
in comparison with the pipeline and multitask ap-
proach, and computationally less intensive (Ushio
et al., 2023).6 We used the Chinese version of their

1The Chinese passage is taken from a Chinese-language
public examinations at https://www.hkeaa.edu.hk/en/sa_tsa/

2https://github.com/PaddlePaddle/PaddleNLP/tree
/develop/applications/question_answering/unsupervised_qa

3We used the extractor uie-base-answer-extractor
and the filter uie-base-qa-filter

4https://github.com/PaddlePaddle/Research/tree/master/
NLP/UNIMO

5unimo-text-1.0-question-generation
6https://github.com/asahi417/lm-question-generation/

Model Unus- Usable w/ Usable wo/
able minor rev. rev.

Zero-shot 31.5% 6.0% 62.5%
Few-shot 22.0% 7.0% 71.0%
Pipeline 46.5% 18.5% 35.0%
Seq2seq 54.0% 11.0% 35.0%

Table 3: Evaluation results on usability

publicly available end-to-end QAG model.7

4.3 LLM: Zero-shot
We used the Chinese version of Stanford Al-
paca (Cui et al., 2023)8, a LLaMA Model that
can comprehend and execute instructions (Touvron
et al., 2023).9 We are not aware of any published
research on prompt engineering for Chinese QG.
Six candidate prompts, with varied keywords on
inference, reasoning, and word usage were infor-
mally evaluated on a small set of passages ran-
domly taken from Chinese-language public exami-
nations.10 As shown in Table 7 (Appendix B), the
following prompt produced the largest number of
usable and non-word-matching questions:

基于给定的文章，生成一个需要推断
的简答题。你的输出应该包含一个简
答问题和这个问题的对应的答案。
文章:<input>

[Translation: “Based on the given passage, gener-
ate a short-answer question that requires deduction.
Your output should include a question and its an-
swer. Passage: <input>]

4.4 LLM: Few-shot
In the few-shot approach, the prompt above is ac-
companied with N sample pairs of input passage
and question, according to the template in Table 8
(Appendix B). We set N = 5, with all five sam-
ple passage-question pairs taken from the public
examination papers mentioned above.

5 Dataset

Our evaluation data was drawn from the dev set
of DuReader_robust (Tang et al., 2021), a widely
used Chinese Q&A dataset11. Due to its filtering
step, the pipeline model in Section 4.1 may not

7mt5-small-zhquad-qag
8Chinese-Alpaca-2-7B
9https://github.com/tatsu-lab/stanford_alpaca

10https://www.hkeaa.edu.hk/en/sa_tsa/
11https://github.com/baidu/DuReader
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Model Unusable Retrieval Higher-order Total
Inferencing Integrating Evaluation higher-order

Zero-shot 31.5% 39.0% 15.5% 9.0% 5.0% 29.5%
Few-shot 22.0% 46.5% 16.5% 13.5% 1.5% 31.5%
Pipeline 46.5% 45.5% 6.0% 2.0% 0% 8.0%
Seq2seq 54.0% 39.5% 4.5% 2.0% 0% 6.5%

Table 4: Evaluation results on PIRLS question types (first 5 columns add to 100%)

generate any question for some passages. Our test
set consists of the first 200 passages for which the
pipeline model successfully produced an output.

Two human assessors, both native speakers of
Chinese with a Bachelor’s degree, independently
evaluated the questions generated for each of these
200 passages in terms of their usability (Sec-
tion 3.1) and question type (Section 3.2). A third
assessor, a native speaker of Chinese with a Mas-
ter’s degree, adjudicated in case of disagreement.

6 Agreement

The two assessors agreed 85.0% of the time in
the 3-way classification on usability (Section 3.1),
leading to a Kappa of 0.739, a “substantial” level
of agreement (Landis and Koch, 1977).

In terms of question types, the two human as-
sessors agreed in 93.5% of the cases, yielding a
Kappa of 0.861, at the “Almost perfect” level of
agreement (Landis and Koch, 1977) The most com-
mon disagreement (19 cases) is between Retrieval
and Inferencing, typically in judging whether a
paraphrase deviates sufficiently from the original
expression to require inference. The two assessors
also disagreed in 9 cases on whether the answer
must be derived from different parts of the pas-
sage (Integrating) or from just a single sentence
(Inferencing).

7 Results

7.1 Usability
The LLM-based approaches attained higher usabil-
ity rates (Table 3). Among questions generated by
zero-shot prompting, 62.5% can be used without
revision. Few-shot prompting, with only five exam-
ple passage-question pairs, produced a significant
boost, with 71% ready for use without revision.
The pipeline and Seq2seq neural models yielded
substantially more unusable questions and fewer
questions that are immediately ready (35.0%). The
amount of unlabeled language data used in training
— an order of magnitude larger in LLMs than the

Retrieval Infer. Integr. Eval.
Retrieval 334 13 3 0
Infer. 6 66 1 0
Integr. 1 8 47 0
Eval. 0 0 0 13

Table 5: Confusion matrix of the two human annotators
on PIRLS question types

neural models — likely contributed to the gram-
maticality and fluency of the generated questions.

7.2 PIRLS question types
Both neural QG models produced very limited num-
ber of higher-order questions, likely because there
were few such questions in the training samples.
Despite the lack of such samples, zero-shot LLM
produces substantially more higher-order questions
(29.5%), and few-shot prompting further increases
the proportion (31.5%) (Table 4). It appears that Al-
paca was able to learn the characteristics of higher-
order questions even with only five samples.

8 Conclusion

Higher-order questions are important for assess-
ment in reading comprehension. However, there is
a lack of publicly available datasets of these chal-
lenging questions in languages other than English.
This paper has presented the first study on auto-
matic question generation (QG) for reading com-
prehension based on PIRLS, assuming no or mini-
mal supervision. Experiments on Chinese passages
show that zero-shot LLM produces more usable
and more higher-order questions than two competi-
tive off-the-shelf neural QG models, and few-shot
prompting further improves the performance.

In future work, we plan to investigate tailored
prompts for producing the different PIRLS question
types, and to construct a Chinese dataset of higher-
order questions for fine-tuning an LLM.
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Limitations

The evaluation has focused on the quality of the
questions, but cannot show their pedagogical im-
pact on the students. At the time of system de-
ployment, users should be clearly informed that
the automatically generated questions should be
viewed only as a first draft, to minimize the risk
that the teacher may fail to edit an unusable ques-
tion and pass it to students.
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A Appendix: Instruction to Human
Assessors

The human assessors gave consent to the data col-
lection and were informed that the results would

remain anonymous. They were shown the follow-
ing instructions:
<passage>
<question>

1. Is the question understandable and relevant
for the passage?

2. Does the language quality of the question need
to be improved?

3. If the answer to #1 is “Yes”, choose one of the
categories for the question:

• Retrieval (Focus on and Retrieve Explic-
itly Stated Information)

• Inferencing (Make Straightforward Infer-
ences)

• Integrating (Interpret and Integrate Ideas
and Information)

• Evaluation (Evaluate and Critique Con-
tent Textual Elements)

B Appendix: Prompt selection and
implementation

Table 6 lists the six prompts that were evaluated.
The top of Table 7 shows zero-shot evaluation re-
sults on a set of 42 passages randomly chosen
from public examinations on the Chinese-language
subject in Hong Kong.12 “Creative” refers to
the parameter values {temperature=0.8, top_p=1}.
Prompt #3 was found to produce the highest pro-
portion of usable questions and questions that are
not word-matching in nature.

The bottom of Table 7 shows the tuning of
the temperature and top_p values. “Conservative”
refers to the values {temperature=0.5, top_p=0.5};
“Less Creative” refers to the values {tempera-
ture=0.6, top_p=0.9}. We empirically set the tem-
perature and top_p values at 0.6 and 0.9 in the rest
of the experiments since they produced more usable
and non-word-matching questions than the other
values.

The few-shot template is shown in Table 8.

12https://www.hkeaa.edu.hk/en/sa_tsa/
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ID Prompt (in Chinese) Keywords
0 基于给定的文章，你需要提炼出一个答案，并以此答案为基础 none

构建一个问题。你的输出应该包含问题和答案。
文章:{input}

1 基于给定的文章，提炼出一个答案，然后根据这个答案创造一个 reasoning
需要推理的问题。确保你的输出包含这个需要推理的问题和
对应的答案。
文章:{input}

2 基于给定的文章，提炼出一个答案，然后根据这个答案生成一个 vocabulary
新的简答题，也就是说，新的简答题需要使用与上下文不同的
词语来表达相同的含义。你的输出应该包含那个简答问题和
对应的答案。输出格式如下所示：
问题：
答案：
文章:{input}

3 基于给定的文章，生成一个需要推断的简答题。你的输出应该 deduction
包含一个简答问题和这个问题的对应的答案。
文章:{input}

4 请根据文章内容，生成一个需要推理的简答题。你的输出格式 reasoning
应如下所示：
问题：
答案：
文章:{input}

5 根据文章，生成一个需要推断的问题。问题措辞需要与上下文 deduction;
不会完全一样。你的输出应该包含问题和答案。 vocabulary
文章:{input}

Table 6: Candidate prompts (in Chinese) for LLM-based question generation with keywords specifying deduction
(tuiduan), reasoning (tuili), and varied vocabulary (keywords are underlined in this table for clarity but not in the
experiments)

ID Parameters % % Non-word-
Usable matching

0 Creative 47.62 40.48
1 57.14 57.14
2 59.52 45.24
3 66.67 61.9
4 61.9 59.52
5 54.76 52.38
3 Conservative 73.81 61.9
3 Less Creative 73.81 66.67
3 Creative 66.67 61.9

Table 7: Evaluation results for prompt selection and
parameter tuning (the prompt corresponding to each ID
can be found in Table 6)

文章: {example passage 1}
简答题: {example question 1}
答案: {example answer 1}
...
文章: {example passage 5}
简答题: {example answer 5}
答案: {example question 5}

基于给定的文章，生成一个需要
推断的简答题。你的输出应该包含
一个简答问题和这个问题的对应的答案。
文章: <input>
简答题:
答案:

Table 8: Prompt template for few-shot question genera-
tion [Translation: “Based on the given passage, generate
a short-answer question that requires inference. Your
output should include a question and its answer. Pas-
sage: <input>]
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Abstract
Entity linking aims to identify mentions from
the text and link them to a knowledge base.
Further, Multi-lingual Entity Linking (MEL) is
a more challenging task, where the language-
specific mentions need to be linked to a multi-
lingual knowledge base. To tackle the MEL
task, we propose a novel model that employs
the merit of adversarial learning and few-
shot learning to generalize the learning ability
across languages. Specifically, we first ran-
domly select a fraction of language-agnostic
unlabeled data as the language signal to con-
struct the language discriminator. Based on
it, we devise a simple and effective adversar-
ial learning framework with two characteristic
branches, including an entity classifier and a
language discriminator with adversarial train-
ing. Experimental results on two benchmark
datasets indicate the excellent performance in
few-shot learning and the effectiveness of the
proposed adversarial learning framework.

1 Introduction

Entity linking (EL), a process of disambiguating en-
tity mentions with a target knowledge base (KB), is
one of the tasks in information retrieval (Joko et al.,
2021) and real applications involving information
extraction (Phan and Sun, 2018) and question an-
swering (Li et al., 2020), etc. Many state-of-the-art
studies generally pay attention to English KB and
do not put enough energy into the low-resource and
challenging languages, such as Persian. In addi-
tion, the vast majority of low-resource languages
are only provided with a limited annotated text,
even without labeled data. Therefore, the cross-
lingual entity linking (XEL) task was proposed for
several pairs of source text and KB languages (Mc-
Namee et al., 2011; Tsai and Roth, 2016; Sil et al.,
2018; Upadhyay et al., 2018a), where mentions ex-
pressed in a language are linked to a KB delivered
in another.

*Corresponding Authors
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Figure 1: Multi-lingual entity linking task: training and
test example of the source text in English and target text
in French.

However, XEL restricted the scope of EL to
some extent since this popular method generally
relies on the hypothesis of one single pivotal KB
language as well as one limited KB. Subsequently,
Multi-lingual entity linking (MEL) has gained at-
tention as the generalization of XEL and some
datasets (Joko et al., 2021; Botha et al., 2020b;
Ji et al., 2015) have been collected for it. Com-
pared to TAC-KBP 2014, TAC-KBP 2015 (Ji et al.,
2015) was broadened from monolingual to tri-
lingual coverage in three languages. Recently,
Mewsli-9 (Botha et al., 2020b) was introduced as
a large dataset featuring all entities to numerous
cross-lingual systems with almost 300,000 men-
tions through 9 kinds of languages.

Given a text and entity mentions, there are two
primary steps for multi-lingual entity linking: (1)
Candidate Generation, possible entities are engen-
dered for the mention, and (2) Entity Ranking, a
score between the representation of mention and a
candidate entity is computed. In this work, we con-
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sider the multi-lingual entity linking task illustrated
in Figure 1 that mainly takes Entity Ranking into
consideration, and adopts a language-adversarial
training approach to improve the performance.

First, a multi-lingual pre-trained transformer
model XLM-Roberta (XLM-R) (Conneau et al.,
2020) which builds robust representations of text
in a wide range of languages, is utilized to build
a single representation of mention including sur-
rounding context and name of mention, and entity
with description. The abundant source languages
are leveraged to compute the similarity between
mention and entity.

Second, we design a dedicated and simple ad-
versarial learning approach to construct a language
discriminator, which cleverly selects a small part
from the test data (excluded during testing) and ef-
fectively generalizes to unseen languages for better
robustness. In addition, previous studies (Arjovsky
et al., 2017) contended that an adversarial training
network could be regarded as a way that minimizes
the Jensen-Shannon (JS) divergence between two
distributions, in our case the feature distributions
of the source language and target language. For
the discontinuities of JS divergence, Wasserstein
distance was proposed to enhance the stability of
hyperparameter selection. Furthermore, a gradient
penalty is introduced in our adversarial training
approach to optimize the discriminator loss that
hopes to enlarge the difference between source and
target language as much as possible.

The main contributions of our work are summa-
rized as follows:

• A novel adversarial learning framework for
the multi-lingual entity linking task in few-
shot learning is proposed with the purpose
of English bias reduction and generalization
improvement.

• We introduce a simple but effective adversarial
training approach that randomly selects a cer-
tain proportion of test data, and optimizes the
feature distributions between source and tar-
get languages by minimizing the Wasserstein
distance with an additional gradient penalty.

• State-of-the-art results of the experiment on
few-shot learning reveal the robustness of our
model in the multi-lingual entity linking task.

2 Related Work

2.1 Entity Linking

A series of previous works paid attention to en-
tity linking which develops a model to link textual
mentions to entities in KB. (De Cao et al., 2020)
proposed a system that retrieves entities by gen-
erating their unique names in an autoregressive
manner, processing each token sequentially from
left to right while conditioning on the given context.
(Liu et al., 2022) introduced a scalable and effec-
tive BERT-based entity linking model that balances
accuracy and speed. Their two-stage zero-shot link-
ing algorithm defines each entity with only a short
textual description, and they provide an extensive
evaluation of the model’s performance. (Botha
et al., 2020a) developed a dual encoder model that
significantly enhances feature representation, incor-
porates negative mining, and includes an auxiliary
entity-pairing task. This approach resulted in a
single-entity retrieval model capable of handling
over 100 languages and 20 million entities.

2.2 Multi-lingual Entity Linking

Building on this foundation, researchers gradually
shifted their focus to Cross-Language Entity Link-
ing (XEL). (Upadhyay et al., 2018b) devised the
first XEL approach that integrates supervision from
multiple languages. This method enhances the lim-
ited supervision in the target language with addi-
tional supervision from a high-resource language,
allowing for the training of a single entity link-
ing model across multiple languages. (Zhou et al.,
2019a) examined the impact of resource availability
on the quality of existing XEL systems and quanti-
fied this effect. They proposed three improvements
to entity candidate generation and disambiguation,
which optimize the use of limited data in resource-
scarce scenarios. (De Cao et al., 2022) designed a
sequence-to-sequence approach for multilingual en-
tity linking that enhances the interaction between
mention strings and entity names. This method
cross-encodes mentions and entity names, captur-
ing more complex interactions than the traditional
dot product between mention and entity vectors.

3 Methodology

3.1 Task Definition and Overview

Multi-lingual entity linking is a task that links an
entity mention in some context languages to the
corresponding entity in a language-agnostic KB.
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Figure 2: Proposed adversarial learning framework. Blue lines show the flow of source texts and the yellow ones are
of target texts. The parameters of R and C are updated and shown as solid lines. The parameters of F are updated
and demonstrated as dotted lines.

On this foundation, we employ a few-shot multi-
lingual entity linking task aiming at reducing En-
glish bias in EL and improving the generalization
for unseen entity set in KBs.

As illustrated in Figure 2, there are three primary
components: Representation Extractor R that at-
tains feature representations, Entity Classifier C
that aims to compute similarity scores of entity-
mention pairs, and Language Discriminator F that
identifies whether the input text is from source or
target language. Going forward, we assume that
if the well-trained language discriminator F can’t
distinguish the language of the given representa-
tion extracted by pre-trained transformer model,
these representations can be regarded as language-
invariant. That’s the motivation we introduce ad-
versarial F to achieve better performance of repre-
sentation extraction and effectiveness of language
invariance.

A representation extractor is designed for the la-
beled source text Tsrc and unlabeled target text Ttgt

given as input data. We then conduct a two-step
training procedure in each training iteration. First,
a small amount of unlabeled source (blue lines) and
unlabeled target data (yellow lines) treated by rep-
resentation extractor R, pass through a language
discriminator F for adversarial training. And the
labeled source data are put into C to calculate the
similarity of mention and entity.

3.2 Representations Extractor

To extract the representation of mention and entity
respectively, XLM-Roberta (XLM-R) (Conneau
et al., 2020), a transformer representation model
that is well-performed in the multi-lingual task is
applied as the encoder to represent text into hid-
den representations. Mention-entity pair in source
language is defined as (msrc, esrc) ∈ Tsrc, while
mtgt ∈ Ttgt in target language. msrc and mtgt are
the combination of local context (the mention span
Mi separated by [A] and [/A] markers , left of the
mention Li, right of the mention Ri ). The source
entity esrc is simply the entity description.

Mention in source text msrc is fed into XLM-R,
and we use max pooling to create a single represen-
tation rmsrc. A similar method is used for entity in
source text and mention in target text to obtain rep-
resentation resrc and rmtgt respectively. Furthermore,
rmsrc and resrc are then fed into entity classifier C
to produce a score using cosine similarity shown
in Eq. 1, while the language discriminator F is
exposed to both rmsrc and rmtgt.

s(msrc, ei) = cos(rmsrc, r
e
i ) =

rmsrc · rei
∥rmsrc∥ · ∥rei ∥

(1)

where the mention representation rmsrc is com-
pared with candidate entity representation rei (i =
1, 2, ..., k) in source text.
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3.3 Adversarial Training
In order to aid the training model to learn represen-
tations preferably fitted for transferring to unseen
languages, we further investigate a simple but effec-
tive adversarial training approach, which randomly
selects test data (excluded during testing) as tar-
get instances according to a proportion of 1%, 5%,
10%. And the distribution of the representation
extractor for both source and target instances are
defined as below:

Y src
R ≜ Y (rmsrc = R(x)|x ∈ msrc)

Y tgt
R ≜ Y (rmtgt = R(x)|x ∈ mtgt)

Our goal is to make these two distributions as close
as possible to get better multi-lingual generaliza-
tion. Traditional adversarial approaches suffer from
convergence and unstable min-max game originat-
ing from the discontinuous JS divergence. To settle
down this problem, Wasserstein Generative Adver-
sarial Networks (WGAN) (Arjovsky et al., 2017)
using Wasserstein distance is proposed. Enlight-
ened by this, we minimize the Wasserstein distance
W between Y src

R and Y tgt
R based on Kantorovich-

Rubinstein duality (Villani, 2009).

W (Y src
F , Y tgt

F ) = sup
||t||L≤1

E
rmsrc∼Y src

R

[t(rmsrc)]−

E
rmtgt∼Y tgt

R

[t(rmtgt)]
(2)

where the supremum is over all the set of 1-
Lipschitz functions t. For convenience, we instead
the function as the language discriminator F . The
adversarial loss is given as:

Ladv = E
rmtgt∼Y

tgt
R

[F (rmtgt)]− E
rmsrc∼Y src

R

[F (rmsrc)] + λpLp

(3)

where λp is the gradient penalty coefficient. The
intuition is that F should output the scores of the
source language much higher than the target one.
Moreover, WGAN also proposes weight clipping
to meet the requirement that the discriminator must
lie within the space of 1-Lipschitz functions. Un-
fortunately, it’s exactly what leads to optimization
difficulties of gradient vanishing and explosion. A
gradient penalty is hence introduced to the opti-
mization function and constrains the output relative
to the gradient norm of the input:

Lp = E
r̃∼Y ′

R

[(||▽r̃F (r̃)||2 − 1)2] (4)

r̃ = µrmsrc + (1− µ)rmtgt, µ ∼ U [0, 1] (5)

Where r̃ is obtained by sampling from the sample
space of the Y ′

R distribution, which is implicitly
defined sampling randomly along straight lines be-
tween a pair of points sampled in the source and
target distribution of the mention representation.

3.4 The whole training process

We adopt the original cross-entropy loss expressed
as LCE(z̃, z), where z̃ and z represent the pre-
dicted label distribution and the corresponding true
label. Finally, combined with entity classifier and
the adversarial training, the entire training loss that
should be minimized, is given as:

L = LCE + λ( E
rmtgt∼Y

tgt
R

[F (rmtgt)]− E
rmsrc∼Y src

R

[F (rmsrc)])

(6)

where λ is the balance factor. The training process
of our proposed adversarial learning framework is
illustrated in the Algorithm 1.

Algorithm 1 The training process of our proposed
adversarial learning framework
Require: Labeled source text Tsrc (mention msrc, entity de-

scription esrc), unlabeled target text Ttgt (mention mtgt),
gradient penalty coefficient λp, hyper-parameter λ > 0

number of critic iterations per generator ncritic, maxi-
mum number of iterations nepoch, and number of batches
nbatch.

1: for t = 0 to nepoch do
2: for i = 0 to nbatch do
3: for j = 0 to ncritic do
4: Sample unlabeled source data msrc from Tsrc

5: Sample unlabeled target data mtgt from Ttgt

6: A random number µ ∼ U [0, 1]

7: rmsrc = R(msrc)

8: rmtgt = R(mtgt)

9: r̃ = µrmsrc + (1− µ)rmtgt
10: ▷ Calculate loss
11: Lp = E[(||▽r̃F (r̃)||2 − 1)2]

12: Ladv = −E[F (rmsrc)] + E[F (rmtgt)] + λpLp

13: end for
14: Update F parameters with Adam to minimize

Ladv

15: end for
16: ▷ Main iterations
17: Sample labeled source data msrc and esrc from Tsrc

18: Sample unlabeled target data mtgt from Ttgt

19: rmsrc = R(msrc)

20: rmtgt = R(mtgt)

21: ▷ Calculate loss
22: L = LCE(C(rmsrc); esrc) + λ(E[F (rmsrc)] −

E[F (rmtgt)])

23: Updata R parameters with Adam to minimize loss.
24: end for
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Table 1: Accuracy (acc), precision (p), recall (r), and F1 of four languages in three few-shot of 1%, 5%, and 10%.

es zh de

Split acc p r F1 acc p r F1 acc p r F1

1% 85.6 92.4 67.9 78.3 90.0 87.8 76.5 81.8 66.1 80.2 86.1 83.0

5% 86.3 93.2 66.8 77.8 91.5 90.3 84.9 87.5 68.4 82.3 86.7 84.4

10% 88.9 93.8 68.2 79.0 92.4 93.5 88.6 91.0 70.1 82.5 87.2 84.8

4 Experiment

4.1 Datasets and Settings

We conduct our evaluation on two well-known en-
tity linking datasets.

• TAC-KBP 2015(Ji et al., 2015): following
(Sil et al., 2018), we use Spanish and Chinese
on TAC-KBP 2015 Tri-Lingual Entity Linking
Track, which contains 166 Chinese documents
(82 discussion forum articles and 84 news)
and 167 Spanish documents (83 discussion
forum articles and 84 news).

• TR 2016hard(Tsai and Roth, 2016): is a cross-
lingual dataset based on Wikipedia. It’s con-
structed to contain difficult mention-entity
pairs and removed the mention overlapping
between training and test data.

In our experiment, the balance factor in Eq. 3 and
Eq. 6 are set to 1. For all the experiments on
each language, R and C are optimized by Adam
(Kingma and Ba, 2015) with a learning rate of
0.0005, while F is trained through different Adam
optimizers with the same learning rate. In order
to present the effectiveness of the language dis-
criminator F intuitively, our model using the ad-
versarial approach is referred to as Model X+, and
the model without the adversarial approach is de-
scribed as Model X . Except for training data, the
target instances were selected randomly from test
data to implement adversarial training at a small
amount proportion of 1%, 5%, and 10% respec-
tively. As for entity candidates, we use FAISS
(Johnson et al., 2021) IndexFlatIP index type to
obtain the top 100 entity candidates.

4.2 Main results

We first explore the performance of the English
training model in an unseen language. This result
presents the challenge of solving the entity linking
task with a few examples per language. We carry

Table 2: Accuracy (%) results of ablation study in four
languages under the circumstance of 10% few-shot set-
ting. AT represents adversarial learning.

Model es zh de

BERT 78.4 80.3 59.2

BERT + AT 81.2 86.8 65.4

XLM-R 83.5 89.2 64.6

XLM-R + AT 88.9 92.4 70.1

out three settings used in few-shot learning (Gao
et al., 2021): taking 1%, 5% and 10% test data as
target instances. For each language in two datasets
- Spanish (es) and Chinese (zh) in TAC-KBP 2015,
German (de) in TR 2016hard, we train our proposed
model and demonstrate four indicators including
accuracy (acc), precision (p), recall (r), and F1
in difference few-shot settings shown in Table 1.
As we can see, with the increase in the few-shot
examples, indicators show an upward trend more
or less.

4.3 Ablation study

We launched an ablation study to explore the im-
pact of different components in the proposed ad-
versarial learning framework, and the results are
reported in Table 2. From two components between
the pre-trained model and whether there is an adver-
sarial training approach or not, we additionally in-
troduce a BERT pre-trained model (Vaswani et al.,
2017; Devlin et al., 2019) initialized by Botha et al.
(Botha et al., 2020b) using the first 4 layers. Note
that XLM-R pre-trained model which can extract
robust representations in a wide range of languages,
performs better than BERT. Moreover, the removal
of the adversarial training approach leads to perfor-
mance degradation. This implies that the proposed
adversarial learning framework with XLM-R pre-
trained model and adversarial training advances the
performance.
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Table 3: Accuracy (%) on TAC-KBP 2015 and TR 2016hard

Model
TAC-KBP2015 TR2016hard

es zh de es fr it

Sil et al.(Sil et al., 2018) 82.3 84.4 - - - -

Upadhyay et al.(Upadhyay et al., 2018a) 84.4 86.0 55.2 56.8 51.0 52.3

Zhou et al.(Zhou et al., 2019b) 85.5 83.3 - - - -

Botha et al.(Botha et al., 2020b) - - 62.0 58.0 54.0 56.0

Model X 84.6 87.2 61.2 58.3 55.2 55.5

Model X+ 85.5 89.3 65.3 63.4 63.9 64.2

4.4 Influence of Adversarial Training
Approach

Many recent researchers fix their attention on the
zero-shot setting that no mention is available dur-
ing inference. Therefore, we conduct the follow-
ing experiment based on a zero-shot setting. On
this foundation, we investigate the influence of the
adversarial training approach. From Table 2, it’s
concluded that the adversarial training approach
helps better performance. More concretely, this
section compares our model with the recent study
in zero-shot setting, and the results are reported in
Table 3 for TAC-KBP 2015 and TR 2016hard using
Model X and Model X+. We can observe that our
Model X+ consistently outperforms all compared
models at the same time. For the model proposed
by Upadhyay et al (Upadhyay et al., 2018a), the
best-improved results of TAC-KBP 2015 and TR
2016hardrespectively are 3.3% and 12.9%.

4.5 Visualization

To qualitatively demonstrate how our proposed ad-
versarial learning framework affects the distribu-
tion between English and Chinese instances, we
present a t-SNE (Van der Maaten and Hinton, 2008)
visualization analysis of feature representations
with 10 random mention texts from English and
Chinese validation set respectively in Figure 3. Fig-
ure 3a shows representation distributions without
adversarial training. Note that the two languages
mention texts are not translations of each other.
To shed light on the effect of our architecture, a
significant reduction after adversarial training is
presented in Figure 3b where we can see a more
mixed distribution of representation between En-
glish and Chinese instances. This further indicates
that our proposed adversarial learning framework
effectively narrows the distance of representation

 
 

   

EN 

CH

 

   

  

EN 

CH

Figure 3: Results of t-SNE visualization. (a) The dis-
tribution of representation between English and Chi-
nese instances without adversarial training presents a
language gap. (b) A more mixed distribution of repre-
sentation between English and Chinese instance with
adversarial training at the end of the representation ex-
tractor shows a smaller language gap.

distribution in different languages using the adver-
sarial training approach.

5 Conclusion

In this paper, we propose a novel model that applies
adversarial learning and few-shot learning method
to better generalize the learning ability across lan-
guages for the multi-lingual entity linking task. To
be more exact, a fraction of language-agnostic un-
labeled data are selected randomly as the language
signal to build the language discriminator. More-
over, we design a simple and effective adversarial
learning framework with two branches of an entity
classifier and a language discriminator. Experi-
mental results on two benchmark datasets empiri-
cally illustrate that the proposed adversarial learn-
ing framework is significantly effective.

Limitations

The current exploration, while demonstrating
promising advancements, has areas for potential
enhancement. Firstly, the study’s focus on a lim-
ited number of languages may not fully capture the
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breadth of linguistic diversity, potentially affecting
the model’s adaptability in multilingual scenarios.
Secondly, variations in data quality could impact
the robustness of the model’s generalization capa-
bilities.
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Abstract

Large language models have recently become
a new learning paradigm and led to state-of-
the-art performance across a range of tasks. As
explosive open-source pre-trained models are
available, it is worth investigating how to better
utilize existing models. We propose a simple
yet effective method, Incr-Pretrain, for incre-
mentally pre-training language models from
smaller well-trained source models. Differ-
ent layer-wise transfer strategies were intro-
duced for model augmentation including pa-
rameter copying, initial value padding, and
model distillation. Experiments on multiple
zero-shot learning tasks demonstrate satisfying
inference performance upon transferring and
promising training efficiency during continu-
ing pre-training. Compared to training from
scratch, Incr-Pretrain can save up to half the
training time to get a similar testing loss.

1 Introduction

Large language models have led to state-of-the-
art accuracies across a range of tasks and have
demonstrated strong performances with few-shot
in-context learning (Zhang et al., 2020b; Zeng et al.,
2021; Brown et al., 2020). From GPT (Radford
et al., 2018) to Switch-Transformer (Fedus et al.,
2021), the number of parameters grows from 125
million to 1.6 trillion at an exponential rate. The
study of GPT3 (Brown et al., 2020) shows that
a large language model (up to 175 billion) can
have strong context learning ability, and obtains
comparable performances with state-of-the-art fine-
tune style methods even without any parameter
updating. An empirical scaling law (Kaplan et al.,
2020) shows that the larger models with wider and
deeper architecture are significantly more sample-
efficient on a relatively modest amount of data.
Furthermore, as the model size increases, there is
still room for performance improvement.

* R. Xu and H. Wang are corresponding authors.

However, training large language models from
scratch always costs huge computing resources and
time. For instance, NVIDIA leveraged their Selene
supercomputer to perform scaling studies and used
up to 3,072 A100 GPUs for training the largest
Megatron (Shoeybi et al., 2019) model (1 trillion
parameters). OpenAI spent 355 GPU-years for
training GPT-3 (Brown et al., 2020), and the to-
tal costs are more than ten million dollars. Most
existing model transfer methods aim at improving
the performance of downstream tasks, e.g. transfer
learning (Zhuang et al., 2019) or speeding up the
inference process, e.g. knowledge distillation (Gou
et al., 2020), but studies for accelerating model
pre-training from scratch remain limited. To our
knowledge, no research on how to transfer a small
pre-trained model to a large model has been done.

We introduce Incr-Pretrain to augment a smaller
source Transformer model to a larger target model
and make them have comparable performances,
both upon transferring and after continuing pre-
training. Different layer-wise transfer strategies
are introduced for model augmentation including
parameter copying, padding and model distillation.
Specifically, we propose a KL-divergence-based
approximation method to distill the LayerNorm
layer to address a mathematically intractable issue
during transferring. We tested our method’s perfor-
mance on zero-shot tasks of BERT-base and GPT-2,
and the results show that the augmented models ob-
tain satisfying performances. When incrementally
training a dialogue-GPT model on different scales,
the training and testing losses can continue declin-
ing from the values before transferring. The total
training time can be saved up to half compared with
that training from scratch.

To the best of our knowledge, this is the first
parameter-based method for incrementally pre-
training language models. Our method can help
reduce the heavy resource cost of training large
language models from scratch and can be applied
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to almost any open-source pre-trained model in the
Transformers library (Wolf et al., 2020). The pro-
posed method is also compatible with mainstream
parallel training techniques. We summarize our
contributions as follows: 1) We prove that it is fea-
sible to train a larger language model from smaller
Transformer models without training from scratch;
2) We propose a distillation-based method to trans-
fer the LayerNorm parameters.

2 Method

We present the implementation of Incr-Pretrain
in the scenarios of both widening and deepening
a Transformer model. For widening the model,
we use parameter copying and padding to trans-
fer the embedding, attention and MLP layers and
a distillation-based method to adjust the Layer-
Norm’s parameters to the new input distribution
due to the changed input dimension problem. For
deepening the model, we initialize the deeper lay-
ers with small parameter values, the noise of which
could be overwritten by the residual connection
setting and have less adverse impact on the entire
model. The overall framework is shown in Figure
1.

Figure 1: The Incr-Pretrain framework

2.1 Widen the model

Linear transformation is the basic operator that
exists in both the multi-head attention and feed-
forward layer. Incr-Pretrain transfers a smaller-size
matrix of the linear transformation from the source
model to a bigger matrix in the target model. As
shown in Figure 2, by padding small random val-
ues or zeros at the tail of the source matrix, both
vertically and horizontally, the result of the matrix
multiplication is approximate to that by directly
doing matrix multiplication on the source matrix.
This is ensured by the block matrix multiplication

rule. We also prove that if we pad random values
θ ∼ N(0, σ2) to the dense layer, the changes on the
output can be controlled in O(σ2) (Appendix). Es-
pecially, if σ reduces to zero, the nonzero values in
the matrix multiplication result will be unchanged.

Figure 2: Block matrix multiplication

In the multi-head attention layer, parameters are
the weights and biases in linear transformation for
queries, keys, and values. So we can also apply
the above method to the attention layer. To ensure
the attention score of each head is valid, we can
keep each attention head dimension fixed and only
increase the head number, or keep the head num-
ber and pad values to each attention head, either
combination is feasible. In the embedding layer,
we directly pad small random values or zeros to the
source embeddings. According to the block matrix
multiplication rule, the inner product similarity of
any two-word vectors will not change much, which
is critical to the attention layer.

2.2 Transfer LayerNorm

LayerNorm is a technique to normalize the distri-
butions of intermediate layers. It enables smoother
gradients and faster training by re-centering and
re-scaling both inputs and weight matrix. How-
ever, both re-centering and re-scaling operations
are related to the hidden size, which would change
after transferring. Mathematical inequivalence will
affect the performance of the target model, but the
scaling weight and bias can be updated fast after
training several steps to adjust new model parame-
ters.

We introduce a distillation-based method for
transferring the LayerNorm layer. Let input x ∈
RH , LayerNorm re-centers and re-scales x as
hi = gi ·N(xi) + bi, where N(xi) = (xi − µ)/σ,
µ = (

∑H
i=1 xi)/H , σ = (

∑H
i=1(xi − µ)2/H)1/2.

h is the output of the LayerNorm layer, (·)i is the
scalar value of the i-th dimension, and µ and σ
are the mean and standard deviation of the input.
The bias b and gain g are parameters with the same
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dimension H .
Let x̂ = (x1, x2, . . . , xH , θ1, . . . , θD−H) be

the input e.g. padded word embeddings, x̂ ∈
RD. Since we padded D-H values to the
input, the mean and variance were changed.
We define ĥi = ĝi · ˆN(xi) + b̂i, ˆN(xi) =
x̂i−µ̂
σ̂ , µ̂ = (

∑H
i=1 xi +

∑D−H
i=1 θi)/D, σ̂ =

((
∑H

i=1(xi − µ̂)2 +
∑D−H

i=1 (θi − µ̂)2)/D)1/2. To
make the outputs of source and target LayerNorm
equal, for every integer i in section [1, H], we need
to let

gi ·N(xi) + bi = ĝi · ˆN(xi) + b̂i,

∀i ∈ [1, H] ∩ N
(1)

So we established a equation where the variables
are ĝi and b̂i, i ∈ [1, H] ∩ N. We need to find
a set of solutions to Eq. 1 which are viable for
∀(x1, x2, . . . , xH). In particular, for any word in-
dex k ∈ [1, |V ocab|] ∩ N, the equation k is

(
N̂k, E

)(
ĝ
b̂

)
= hk (2)

where E is the unit matrix, N̂k =

Diag( ˆN(xk1),
ˆN(xk2), . . . ,

ˆN(xkH)). Unfortu-
nately, we found that Eq. 2 is intractable, the proof
is presented in Appendix.

The gain and bias are parameters that can be
updated based on gradient, so we construct a loss
function to train the LayerNorm parameters in the
target model by calculating the KL-divergence be-
tween the outputs from the target and source. The
loss function L is defined as

L = DKL(P (x|θsource), P (x|θtarget)) (3)

By minimizing the loss, the target and source Lay-
erNorm outputs are converging.

2.3 Deepen the model
Deepening the neural network is the most common
way to increase the model size. When we transfer
a source model with few layers to a deeper tar-
get model, the parameters in deeper layers need
to be initialized with small values. In both self-
attention and MLP layers, the small parameters θ
will result in small layer output layer(x|θ), so the
output through residual connection layer(x|θ)+x
approximates to x. It enables the deeper layers will
not change the output distribution of shallow layers
much, so a deeper target model can have similar
output distributions to the source model.

3 Experiments

We conducted extensive experiments on inference
upon transferring and continuing pre-training. We
tested BERT on the cloze tasks and GPT on the next
word prediction tasks, which are corresponding ob-
jectives at their stages of pre-training. To validate
the time efficiency of using Incr-Pretrain, we con-
tinued to pre-train the target model and compared
the loss curve with that of training from scratch.

3.1 Inference upon transferring

We tested BERT on the LAMA (Petroni et al.,
2020) dataset and GPT-2 on the Lambada (Pa-
perno et al., 2016), ClozeStory (Bugert et al., 2017),
and HellaSwag (Zellers et al., 2019) datasets with
a zero-shot method without any continuing pre-
training.

Datasets BERT is a masked language model
whose primary pre-training task is mask filling
(cloze), so the performance on the cloze task is
the most effective indicator. The language model
tested on LAMA needs to understand the whole
sentence and predict the masked keyword. Consid-
ering that some samples are too difficult to BERT
in zero-shot tasks, to reduce the impact of random-
ness, we let BERT predict 5 times for each sample,
and if any time the correct answer is predicted, we
consider it correct.

GPT is a causal language model (CLM) that
is pre-trained by predicting the next word with
only one side of the text visible. LAMBADA, sto-
ryCloze, and HellaSwag are all datasets that aims
to predict the ending text piece(s), so they are con-
sistent with the pre-training process of the causal
language model. In this task, we let GPT predict
only one time on the test part of LAMBADA, the
test part of StoryCloze, and the dev part of Hel-
laSwag. On StoryCloze and HellaSwag datasets,
the inference method is the same as the perplexity-
based method (Zeng et al., 2021).

Configuration We compared three types of mod-
els on both datasets. The Source models exist as
open-resource models, i.e. BERT and GPT-2. The
Target models are the basic enlarged versions in
which parameters of each layer are directly copied
from the Source models with padded values. For
attention, we let the number of heads increase but
the dimension of each head is unchanged. We set
σ as zero to make the calculation as equivalent as
possible and also reduced the impact of random-
ness on the experiment. Compared to the target
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models, the Target-LN models further transfer the
LayerNorm parameters using the distillation-based
method training on only 2,425 short dialogues (Eric
and Manning, 2017).

The results of the inference tasks are shown in
Table 1. We observe that after transferring, the per-
formances of the Target models drop dramatically
compared with the Source models. This is likely
due to the LayerNorm part, which is not mathemat-
ically equivalent when transferring. In comparison,
the Target-LN (Both GPT and BERT) models are
comparable with the Source models, which shows
that the distillation-based approximation method is
effective.

Table 1: Results on zero-shot tasks. All datasets are
evaluated by accuracy, and perplexity(PPL) is evaluated
on LAMBADA. *Target-LN uses the distillation-based
method to adjust the LayerNorm parameters of target
model.

Model Dataset Source Target Target-LN
BERT ConceptNet 26.00 15.24 22.66
BERT Squad 15.89 10.26 15.89
BERT Google_RE 5.06 4.29 5.23
BERT TREx 19.45 11.22 17.49
GPT PPL 80.37 214.1 95.56
GPT LAMBADA 20.28 16.83 20.88
GPT StoryCloze 59.40 53.10 59.20
GPT HellaSwag 21.65 22.87 23.08

3.2 Continuing pre-training

We pre-trained three sizes of Dialog-GPT models
on a benchmark dialog corpus (Zhang et al., 2020a)
to validate our incremental pre-training method,
including small, medium, and large versions. We
conducted transfers between models of different
sizes and the model configuration details are shown
in Appendix. We pre-trained the three GPT models
for 14.5k steps with the batch size 32, and per-
formed the model transfer from the checkpoints of
the 5,000th steps. The testing losses of different
models are shown in Figure 3. In general, the loss
values can continue declining from a smaller value
after transferring. We did not use the distillation-
based method to transfer LayerNorm parameters
since it is no longer needed to make the model
converge to the source model during continuing
pre-training. As shown in Table 2, training GPT-
m using Incr-Pretrain only costs 7.05k steps to
reach a testing loss value comparable with that
of 14.5k steps training from scratch. This shows
that our method saves about 51% of the training
time. However, as more parameters are padded, e.g.

from small to large, the amount of training time
that can be saved declines, which is likely due to
pre-training larger models needing more computa-
tion. (Kaplan et al., 2020).

Figure 3: Testing Loss

Table 2: Pre-training time saved. Pre-training steps num-
ber when reaching the same loss. ECPN: enlargement
coefficient of parameters number, PPTS: percentage of
pre-training time saved.

Train Mode Steps ECPN PPTS
GPT-S/M/L from scratch 14.5k - -

GPT-S to GPT-M 7.05k 2 51%
GPT-M to GPT-L 8.50k 3 41%
GPT-S to GPT-L 9.50k 6 34%

Further experiments showed that using our trans-
fer method, the amount of pre-training time saved
depends on not only the enlargement of the num-
ber of parameters but also the padding values.
When padding zeros, the testing loss can decline
starting from near to the loss value of the source
model but converging slowly. Considering previous
work (Glorot and Bengio, 2010; He et al., 2015)
on parameter initialization, we padded smaller ran-
dom values instead of zeros, and the convergence
can accelerate much. More experimental details
are presented in the Appendix.

4 Conclusion

We propose a transfer strategy that can incremen-
tally pre-train language models with acceptable per-
formance decreases. The inference performances
show that the target models are comparable with
the source models. The continuing pre-training ex-
periment demonstrates that the transfer method is
computationally efficient compared to pre-training
a large model from scratch. Our future directions
will be transferring with different parallel styles
and exploring the influence of padding values.
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Limitations

During the process of incremental pre-training, al-
though this method effectively reduces training
time and achieves test losses close to those obtained
by training from scratch, the percentage of pre-
training time saved gradually decreases as the num-
ber of model parameters increases. For instance,
transitioning from a small to a medium-sized model
can save approximately 51% of training time, but
extending from a small directly to a large model
reduces the saving to 34%. This indicates a dimin-
ishing marginal return in pre-training efficiency as
the model scale expands.
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A Experimental Details

In the distillation-based method, we used the Adam optimizer, the learning rate was set as 1E-4, batch
size as 8, and the sequence length as 512. Other model configurations are shown in Table 3. We used the
KVRET corpus to train the LayerNorm parameters in GPT-2 for 20k steps (about 3 hours on NVIDIA-
V100) and discovered that using pseudo inputs constructed by randomly choosing word indices produced
better results than those from the real corpus when transferring BERT’s LayerNorm parameters.

In the continuing pre-training experiments, we used the Adam optimizer and linear warm-up at the first
100 steps, the learning rate was 1.5E-4, and the batch size was 32. As shown in Figure 4, we compared
two padding strategies, padding zeros and padding random values θ ∼ N(µ, σ2), µ = 0, σ = 0.02. When
padding zeros, the testing loss starts from that of before-transferring, and it proved that our transferring
method is feasible. However, the test loss converged slowly since padding zeros disturbed the initialization
distribution. To speed up the incremental training process, we padded random values that follow a
normal distribution with small variance instead of zeros. Although padding random values breaks the
mathematical equivalence of transferring a bit and the loss value is higher at the beginning, the acceleration
for the convergence is remarkable.

Table 3: Model configurations for inference

Model Heads Layers Dim Total
Source BERT 12 12 768 119.5M
Source GPT 12 12 768 124.4M

Target(LN) BERT 16 12 1024 184.0M
Target(LN) GPT 16 12 1024 203.7M

Table 4: Model configurations for pre-training

Model Heads Layers Dim Total
Model-Small 6 6 384 15.8M

Model-Medium 8 8 512 32.2M
Model-Large 12 12 768 95.5M

Figure 4: Comparison on the testing loss

B Proof-1

We prove that if we pad random values θ ∼ N(0, σ2) to the parameters of the dense layer, the changes of
output can be controlled in O(σ2).

For simplicity of proof, we consider a fully connected layer with a mapping function F : RH → RH ,
F (x) = Ax + b, where A ∈ RH×H , b ∈ RH , and x is a input column vector such as word embeddings.
The padded layer can be expressed alike, i.e. F̂ : RD → RD, F̂ (x̂) = Âx̂ + b̂, Â ∈ RD×D, b̂ ∈ RD,
where

42



Â =

(
A, Λ1

Λ2, Λ3

)
, b̂ =

(
b
β

)
, x̂ =

(
x
χ

)
,

All of the Λi(i = 1, 2, 3), β, and χ are independent and identically distributed to the Gaussian
distribution N(0, σ2), while A and x are constants.

F̂ (x̂) =

(
Ax+ Λ1χ+ b
Λ2x+ Λ3χ+ β

)

So the mathematical expectation is

E(F̂ (x̂)) =
(

E(Ax) + E(Λ1χ) + E(b)
E(Λ2x) + E(Λ3χ) + E(β)

)

=

(
E(Ax) + E(Λ1)E(χ) + E(b)
E(Λ2)x + E(Λ3)E(χ) + E(β)

)

=

(
Ax + b

0

)

The variance is

D(F̂ (x̂)) =
(

D(Ax) + D(Λ1χ) + D(b)
D(Λ2x) + D(Λ3χ) + D(β)

)

= σ2

(
(D −H)σ2E1

(1 + |x|2 + (D −H)σ2)E2

)

where 1(∗) is all-one tensor with the same shape of tensor (*) ,E1 ∈ RHandE2 ∈ RD−H are all-one
column vectors, x2e is elements squared of x, and |x|2 is the square of the norm of x.

Above all, we proved that the padded dense layer maintains the same mathematical expectation with that
of before-padding, and the variance is O(σ2). Therefore, if we pad random values with small variances,
the output of the model will not change much. Especially, if the variance reduces to zero, the output will
be unchanged.

When applying the method to the multi-head attention layer, we can pad random values θ ∼ N(0, σ2)
to the parameters of queries, keys, and values. The output of the attention layer is SoftMax((QT +
O(σ2))× (K+O(σ2)))× (V +O(σ2)), so if the variance σ2 is zero, the output of attention layer remain
unchanged after padding.

C Proof-2

We prove that Eq. 2 has no solution. According to the laws of linear equations, we only need to prove that
the rank of the coefficient matrix is not equal to that of the augmented matrix. The augmented matrix Â0

of Eq. 2 is

Â0 =




N̂1, E, h1

N̂2, E, h2

...
...

...
N̂ |V ocab|, E, h|V ocab|




Let the last |V ocab| − 1 row blocks subtract the first row block, the augmented matrix Â0 changes to

Â1 =




N̂1, E, h1

N̂2 − N̂1, 0, h2 − h1

...
...

...
N̂ |V ocab| − N̂1, 0, h|V ocab| − h1



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Let the first column block subtract the product of N̂1 and the second column block, and the third column
block subtract the product of h1 and the second column block, the augmented matrix Â1 changes to

Â2 =




0, E, 0
N̂2 − N̂1, 0, h2 − h1

...
...

...
N̂ |V ocab| − N̂1, 0, h|V ocab| − h1




After going through a similar matrix transformation, the coefficient matrix A0 changes to

A2 =




0, E
N̂2 − N̂1, 0

...
...

N̂ |V ocab| − N̂1, 0




We define N̂∗ and h∗ as follows:

N̂∗ =




N̂2 − N̂1

N̂3 − N̂1

...
N̂ |V | − N̂1


 , h∗ =




h2 − h1

h3 − h1

...
h|V | − h1




According to the calculation of N̂∗ and h∗, they are not linearly dependent. Obviously, it is equivalent
to that the matrices Â2 and A2 have different ranks. So Eq. 2 has no solution.

D Figures

Figure 5: Overview of the distillation-based method
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Abstract

In this paper, we conduct a holistic explo-
ration of Universal Decompositional Semantic
(UDS) parsing, aiming to provide a more effi-
cient and effective solution for semantic pars-
ing and to envision the development prospects
after the emergence of large language models
(LLMs). To achieve this, we first introduce a
cascade model for UDS parsing that decom-
poses the complex task into semantically ap-
propriate subtasks. Our approach outperforms
prior models while significantly reducing in-
ference time. Furthermore, to further exploit
the hierarchical and automated annotation pro-
cess of UDS, we explore the use of syntactic
information and pseudo-labels, both of which
enhance UDS parsing. Lastly, we investigate
ChatGPT’s efficacy in handling the UDS task,
highlighting its proficiency in attribute pars-
ing but struggles in relation parsing, revealing
that small parsing models still hold research
significance. Our code is available at https:
//github.com/hexuandeng/HExp4UDS.

1 Introduction

A long-standing objective in natural language un-
derstanding is to create a structured graph of lin-
guistic meaning. Various efforts have been made
to encode semantic relations and attributes into a
semantic graph, such as Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), Uni-
versal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013), and Semantic De-
pendency Parsing formalisms (SDP; Oepen et al.,
2014, 2016). Recently, Universal Decompositional
Semantics (UDS; White et al., 2020) introduced a
more advanced hierarchical approach, as shown in
Figure 1. It can automatically construct semantic
relations from syntactic annotations (Zhang et al.,
2017) and annotates semantic attributes following
decompositional semantics (Reisinger et al., 2015),

*Corresponding author: Meishan Zhang.

Sounds  like     we     may  actually    get     these  documents executed early   next    week        .

ROOT SOMETHING

Assets

Subspace Attribute Value
factuality factual -1.529
genericity dynamic 1.145
genericity hypothetical 1.145

time instant -0.894
... ... ...

Assets

Subspace Attribute Value
protoroles exists-before 1.504 
protoroles exists-during 1.507
protoroles exists-after 1.504 
protoroles change-of-state 0.059 

... ... ...

Words Semantic Node (Predicate) Semantic Node (Argument)

Syntactic Edge Instance Edge Non-Head Edge Semantic Edge

Figure 1: An example of UDS datasets with syntactic
tree and semantic graph. Syntactic tree corresponds
to the gray nodes and purple edges, semantic relations
correspond to the red and blue nodes as well as the
yellow edges, and semantic attributes are in the tables.

using only simple questions about words or phrases,
significantly lowering the annotation cost.

However, existing solutions on UDS parsing re-
main suboptimal. Previous parsing approaches
mainly rely on the Seq2Seq transduction frame-
work (Stengel-Eskin et al., 2020), suffering from
poor parallelism and long inference times that in-
crease with sentence length. In this paper, we pro-
pose a cascade architecture that decomposes the
complex parsing task into multiple semantically ap-
propriate subtasks. Within each subtask, our model
predicts all corresponding sentence elements simul-
taneously, enhancing parallelism and substantially
reducing inference time. Experimental results show
that our approach outperforms previous models
while maintaining high efficacy during inference.

Furthermore, the structured data and highly au-
tomated annotation procedure of the UDS dataset
enable low-cost data augmentation schemes. To
take full advantage of this, we design two ap-
proaches. Firstly, we incorporate syntactic informa-
tion, proven beneficial to various tasks (Zaremoodi
et al., 2018; Zhang et al., 2020; Stengel-Eskin et al.,
2021; Deng et al., 2023). We use multi-task train-
ing (Caruana, 1997) to incorporate syntactic infor-
mation, and propose several approaches for further
improvement. Secondly, to utilize the automated
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tool in UDS that derives semantic relation from syn-
tax, PredPatt (Zhang et al., 2017), Stengel-Eskin
et al. (2020) attempted to introduce this tool during
inference but do not achieve improvements. In con-
trast, we propose a data augmentation method that
effectively exploits PredPatt’s capabilities, leading
to significant performance gains in relation pars-
ing. Detailed analysis is also provided to guide the
design of parsing systems.

Lastly, we reveal the strengths and weaknesses
of large language models (LLMs), such as Chat-
GPT (Bubeck et al., 2023), in semantic parsing
tasks, providing guidance for future developments
in this field. LLMs have shown considerable perfor-
mance in various tasks (Jiao et al., 2023; Wu et al.,
2023; Li et al., 2023). For semantic parsing tasks,
we conduct preliminary experiments on ChatGPT
for the UDS task, directly applying it for parsing,
as well as using it for data augmentation. Due
to poor performance when directly answering by
ChatGPT, we carefully design prompts, breaking
down questions into small steps. Results show that
ChatGPT excels in attribute parsing but struggles
in relation parsing, revealing that small, specialized
models still hold research significance.

2 Background and Related Work

UDS Datasets Silveira et al. (2014) create a stan-
dard set of Stanford dependency annotations for
the English Web Treebank (EWT, Silveira et al.,
2014) corpus. Subsequently, White et al. (2016)
proposed a framework aimed at constructing and
deploying cross-linguistically robust semantic an-
notation protocols and proposed annotations on top
of the EWT corpus using PredPatt (White et al.,
2016; Zhang et al., 2017). Several works have then
been proposed to provide semantic annotations
within this framework, including annotations for
semantic roles (Reisinger et al., 2015), entity types
(White et al., 2016), event factuality (Rudinger
et al., 2018), linguistic expressions of generaliza-
tions about entities and events (Govindarajan et al.,
2019), and temporal properties of relations between
events (Vashishtha et al., 2019). All of these efforts
culminated in White et al. (2020), which presents
the first unified decompositional semantics-aligned
dataset, namely, Universal Decompositional Se-
mantics (UDS).

UDS Parser UDS parsing has been conducted
using transition-based parser (Chen and Manning,
2014), deep biaffine attention parser (Dozat and

Manning, 2017), and sequence-to-graph transduc-
tive parser (Stengel-Eskin et al., 2020). The latter
significantly outperforms the others by employ-
ing an efficient Seq2Seq transduction framework
(Sutskever et al., 2014; Bahdanau et al., 2015). This
approach is initially used in AMR parsing (Zhang
et al., 2019a) and later extended to cover other
semantic frameworks, such as UCCA and SDP,
by Zhang et al. (2019b) in a unified transduction
framework, which predicts nodes and correspond-
ing edges simultaneously in a Seq2Seq manner.
For UDS, an attribute module is added by Stengel-
Eskin et al. (2020). Syntactic information is in-
corporated by Stengel-Eskin et al. (2021), yielding
further improvements. Despite these attempts, cas-
cade models with better parallelism and shorter
inference time have not yet been explored.

Incorporating Syntactic Information Syntactic
information has been shown to improve the perfor-
mance of downstream tasks. Multi-task learning
is widely used to incorporate syntactic informa-
tion. Hershcovich et al. (2018) improve the per-
formance of semantic parsing by using multi-task
learning, with syntactic and other semantic pars-
ing tasks serving as auxiliary tasks. Zaremoodi
et al. (2018) use syntactic and semantic informa-
tion to improve the efficacy of two low-resource
translation tasks. Stengel-Eskin et al. (2021) em-
ploy a single model to parse syntactic and semantic
information simultaneously to improve semantic
parsing. Graph convolutional networks (GCN, Kipf
and Welling, 2017) are also widely used. Marcheg-
giani and Titov (2017) use GCNs to incorporate
syntactic information in neural models and con-
struct a syntax-aware semantic role labeling model.
Zhang et al. (2018) propose an extension of GCNs
to help relation extraction models capture long-
range relations between words. Zhang et al. (2020)
presents a syntax-aware approach based on depen-
dency GCNs to improve opinion role labeling tasks.

3 Preliminaries

The UDS dataset comprises three layers of annota-
tions: syntactic annotations, semantic relation an-
notations, and decompositional semantic attribute
annotations at the edge and node levels.

Syntactic Annotation is derived from the EWT
dataset, which provides consistent annotation of
grammar, including part-of-speech (POS) tag, mor-
phological features, and syntactic dependencies,
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for human languages. These annotations are used
to construct the syntactic tree, where each word
is tied to a node. As shown in Figure 1, the head-
word of "we" is "get", and the headword of the root
"Sounds" is defined as itself.

Semantic Relations consist of predicates, argu-
ments, and edges between them, which forms the
semantic relations. It is generated by Predpatt tool
(Zhang et al., 2017) automatically, using the POS
tag and the syntactic tree as input. Each semantic
node explicitly corresponds to one word in the sen-
tence called the center word, demonstrated by the
instance edge. Additionally, each semantic node is
also tied with several non-repetitive words with the
non-head edge, which forms a multi-word span. As
shown in Figure 1, the leftmost predict node has a
span "Sounds like" with the center word "Sounds".
Note that two semantic nodes may correspond to
the same word in the case of clausal embedding.
Then, an extra argument node "SOMETHING" is
introduced as the root of the clause, e.g., "executed"
corresponds to an extra argument node.

Semantic Attributes consist of crowdsourced
decompositional annotations tied to the semantic
relations, detailed in §2. These annotations can be
further categorized into node-level and edge-level
attributes, corresponding to the table on the left and
right in Figure 1, respectively. For each node or
edge, all attributes have a value in range [−3, 3].
Besides, each attribute also has a confidence in
range [0, 1], which shows how likely it is to have
the property. Following Stengel-Eskin et al. (2020),
we discretized it into {0, 1} by setting every non-
zero confidence to one.

4 Methodology

In this section, we introduce our cascade model
and methods to improve its performance.

4.1 Efficient Cascade Model

As discussed in §3, our goal is to predict syntactic
information (POS tags and syntactic tree), semantic
relations (semantic nodes, edges, and spans), and
semantic attributes (node- and edge-level) using
a single model. To this end, we propose a cas-
cade model to predict all of these information step
by step, as illustrated in Figure 2. In the follow-
ing paragraphs, we discuss each component of our
model in detail. The sentence is represented as
x1, x2, . . . , xK , where xi represents the i-th word.

The properties of the node are represented as t, the
properties of the edge as e, the softmax function
as σ, and the ReLU function as R.

Encoder Module embeds each word xi into a
corresponding context-aware representation hi. We
utilize three types of encoders: multi-layer BiL-
STM, transformer encoder, and Pre-trained Lan-
guage Model (BERT, Devlin et al., 2019). For BiL-
STM and transformer encoder, we employ a similar
embedding layer with Stengel-Eskin et al. (2021)
to ensure comparability, concatenating GloVe word
embeddings (Pennington et al., 2014), character
CNN embeddings, and BERT contextual embed-
dings. For BERT encoder, we use the default sub-
word embeddings layer and mean-pool over all
subwords to obtain the word-level representations.

Syntactic Module predicts the part-of-speech
(POS) tag and the syntactic tree. For POS, we
use a simple multi-layer perceptron (MLP) over
each word representation hi. For the syntactic tree,
each word has exactly one syntactic head, so we
predict the headword xyi and the corresponding
edge type tyi for each word xi. We follow the ap-
proach of Dozat and Manning (2017) and Zhang
et al. (2019b) to use a biaffine parser, formally:

x̂yi =p(x|xi)
=σ(Biaffine(R(wy

l hi), R(wy
rh1:K)))

t̂yi =p(ty|xi, x̂hi )
=σ(Bilinear(R(wt

lhi), R(wt
rĥ

y
i )))

(1)

where x ∈ {x1, x2, . . . , xK}, and ĥyi is the repre-
sentation of the predicted head x̂yi .

Word Classification Module predicts the seman-
tic edge directly connected to each word (instance,
non-head) and the type of the parent node. We
simplify this edge prediction problem into a classi-
fication problem. We define:

• Type “Φ”: Words with no connecting edge;
• Type “Syn”: Words connect with a non-head

edge;
• Type “Pre”: Words connect with an instance

edge, and its parent is a predicate node;
• Type “Arg”: Words connect with an instance

edge, and its parent is an argument node;
• Type “Pre + Arg”: Words connect with two in-

stance edges, and their parents are a predicate
node and an argument node;

We use a simple MLP for classification, formally:

t̂mi = p(tm|xi) = σ(MLP(hi)) (2)
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Figure 2: The data flow of our cascade model. The detailed definition of every block is shown in §4.1.

Node Generation predicts the syntactic nodes,
semantic nodes, and their corresponding node em-
beddings. Syntactic nodes n1, n2, . . . , nN have the
label “Syn”, and we define the embedding gni of the
syntactic node ni the same as its word embeddings.
semantic nodes m1, m2, . . . ,mM have label “Pre”,
“Arg”, or “Pre + Arg”. We generate two nodes for
“Pre + Arg”. So for node embeddings, we first
concatenate a node type embedding with its word
embedding to distinguish whether it is an argument
or predicate node. Then we project it back to the
previous dimension with a linear layer to generate
the embedding gmi of the semantic node mi. Fur-
thermore, we generate a virtual root node for every
sentence with the same trainable embeddings.

Semantic Span Module predicts the semantic
span by separating each syntactic node from the
semantic nodes. Each syntactic node belongs to
exactly one semantic node. So we use the same
model as Eq. 1 to predicted which semantic node
mh

i is the syntactic node ni belongs to, formally:

m̂h
i =p(m|ni)

=σ(Biaffine(R(wm
l gni ), R(wm

r gm1:M )))
(3)

where m ∈ {m1,m2, . . . , mM}. The new span
level embedding gsi for the semantic node mi is the
same as gmi by default. Besides, we have also tried
to refine gsi with the syntactic node embedding,
which does not achieve obvious effects.

Semantic Edge Module predicts the edge and
the corresponding type emi,j between any two se-
mantic nodes. We consider the case where there is
no edge between two semantic nodes as a special

type Φ. For prediction, we consider the span level
embedding for each pair of nodes, formalized as:

êmi,j =p(em|mi,mj)

=σ(Biaffine(R(we
l g

s
i ), R(we

rg
s
j )))

(4)

Attribute Module predicts the node-level at-
tributes t̂ai for node mi, and edge-level attributes
êai,j for edge between mi and mj . We use the MLP
model as the main part, formalized as follows:

t̂ai =MLP(gsi )

vi =R(wv
l g

s
i ), vj = R(wv

rg
s
j )

êai,j =MLP([vTi Wvj , vi, vj ])

(5)

Here, W ∈ Rdv×dv×do , where dv is the dimension
of vi and vj , and do is the output dimension. i, j
must satisfy êmi,j ̸= ϕ for êai,j (edge exists). Note
that attributes may not exist, and we use the same
model as above to predict the mask of attributes.

Loss To train our models, we use different loss
functions depending on the task. For word classifi-
cation, semantic span, and semantic edge modules,
we use cross-entropy loss. For the attribute module,
when predicting the mask, we use binary cross-
entropy loss. When predicting the attribute, we
follow Stengel-Eskin et al. (2020) to use a compos-
ite loss function L for the values, formally:

Lvalueattr

(
t̂, t

)
=

2 · LMSE

(
t̂, t

)
· LBCE

(
t̂, t

)

LMSE

(
t̂, t

)
+ LBCE

(
t̂, t

) (6)

where LMSE is the mean squared loss, LBCE is the
binary cross-entropy loss, t is the gold attribute,
and t̂ is our prediction. LMSE encourages the pre-
dicted attribute value to be close to the true value,
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whileLBCE encourages the predicted and reference
values to share the same sign.

Finally, to handle this multi-task problem, we
use a weighted sum of all the loss functions men-
tioned above for our model:

L =a1Lcls + a2Lspan + a3Ledge+
a4Lmask

attr + a5Lvalueattr

(7)

where ai = 1 for i ∈ [1, .., 5], except a2 = 2.

4.2 Incorporating Syntactic Information
By default, we incorporate syntactic information
by multi-task training. Additionally, we propose
GCN and attention approaches for a more profound
incorporation of syntactic information. Specifically,
we utilize the syntactic information to update the
word embeddings generated by the encoder. The
strategies are as follows:

Multi-task Training We add the loss of the syn-
tactic module to term L, which incorporates syn-
tactic information into the shared encoder through
back-propagation. We use cross-entropy loss for
POS and syntactic tree parsing, formally:

Lsyn = L+ a6Lpos + a7Ltree (8)

where a6 = a7 = 1 during our experiments.

GCN Inspired by the idea of GCN (Kipf and
Welling, 2017), we try to encode the predicted ad-
jacency matrix information into the embedding. In
the syntactic tree, we consider two types of edges:
directed edges from parent nodes (top) to child
nodes (bottom), and those with reverse directions.
Then we employ a bidirectional GCN consisting
of 1) top-down GCN to convey sentence-level in-
formation to local words, and 2) bottom-up GCN
to convey phrase-level information to the center
word. Additionally, to further convey the edge type
information corresponding to the current word, we
3) consider the probability distribution of its edge
type, and use a GCN-like method to convey this
information. With the word embedding matrix H
being the input H(0), we use a l layer model (with
l = 2 in practice), formally:

V(i) =[AhH
(i)W

(i)
1 ,AT

hH
(i)W

(i)
2 ,AtTeW

(i)
3 ]

H(i+1) = R(W
(i)
4 R(V(i)))

Ho = Wo[H
(0),H(l)]

(9)
where Ah is the top-down adjency matrix predic-
tion, AT

h is the bottom-up ones, At is the edge

type probability distribution, and Te is the train-
able edge type embedding matrix. Note that the
adjacency matrix does not self-loop, so GCN does
not convey information about the words themselves.
We then combine the original word embeddings
H(0) with the output H(l) to get the new word em-
beddings Ho. Under such a design, good results
can be achieved with a relatively shallow network.

Attention Word representation after dimension
reduction used in syntactic edge and type predic-
tion contains basic information of the syntactic tree
(Stengel-Eskin et al., 2021). So we directly use
the representations in Eq. 1, which are used in the
Biaffine and Bilinear model. Formally:

V =R([ww
l H, ww

r H, wt
lH, wt

rH])

Ho = Wo[H,AhV]
(10)

where all the w∗
∗H come from Eq. 1 without re-

calculation. Compared to the GCN approach, this
method uses fewer new parameters and requires
less additional calculation, while still preserving
the performance improvements achieved by the
GCN approach to some extent.

4.3 Data Augmentation with PredPatt

One of the features of the UDS dataset is the strong
correlation with external tools PredPatt. Stengel-
Eskin et al. (2020) attempt to use an external model
to predict the POS tags and syntactic tree on the test
dataset, which are then fed directly to PredPatt to
obtain the semantic relations. However, the effec-
tiveness of this method is relatively poor, likely due
to two issues: 1) the error transmission problem
comes from the prediction of the syntactic model,
and 2) the rule-based tools are not as robust as
neural networks towards noisy inputs.

To address these issues, we propose a data aug-
mentation method. Instead of using it during infer-
ence, we use it to augment the data, with only the
help of external unlabeled data. Specifically, we
first train a model to predict the syntactic tree and
POS tag, using the above syntactic model. Next,
we use PredPatt to generate pseudo labels (i.e., se-
mantic relations) for the unlabeled data. Finally,
we use these data to pre-train our model, and then
fine-tune it with a smaller learning rate using the
labeled UDS dataset, which achieves significant
improvements in relation parsing.
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Strategy S-P S-R S-F1 Attr. ρ Attr. F1 UAS LAS POS
B

as
el

in
e LSTM 89.90 85.85 87.83 0.46 60.41 - - -

+ SYN 88.58 87.67 88.12 0.46 61.28 91.44 88.80 -
TFMR 90.04 87.98 89.19 0.56 67.89 - - -

+ SYN 91.09 89.01 90.04 0.56 66.85 92.40 89.96 -

O
ur

s

LSTM 87.75 91.12† 89.79† 0.47† 57.93 - - -
+ SYN 88.82† 92.50† 90.62† 0.46 57.34 91.71 89.10 96.29
+ SYN + DA 90.00 93.37 91.65 0.33 49.66 92.65 90.51 96.67

TFMR 88.34 92.90† 90.56† 0.49 59.68 - - -
+ SYN 89.28 93.56† 91.37† 0.49 58.45 92.07 89.65 96.85
+ SYN + DA 90.15 93.49 91.79 0.42 54.27 93.03 90.91 97.10

BERT 88.90 92.77† 90.79† 0.60† 67.02 - - -
+ SYN 89.51 94.18† 91.79† 0.59† 65.78 92.81† 90.73† 97.18
+ SYN + DA 90.27 94.23 92.20 0.54 63.91 92.98 90.93 97.08

L
L

M PRED 35.50 51.28 41.96 - - - - -
CASC 38.13 53.26 44.44 - - - - -
ATTR - - - - 80.69 - - -

Table 1: Main results. “LSTM”, “TFMR”(Transformer), “BERT” stands for different encoder. We run t-test
against the corresponding baseline, and † means significantly higher with > 95% confidence. “+SYN” means GCN
approach in §4.2, and “+DA” means the data augmentation method in §4.3. Other abbreviations are detailed in §5.1.

5 Experiment and Analysis

5.1 Experimental Setup

Datasets We conduct experiments on the UDS
dataset (White et al., 2020), with 10k valid training
sentences. For English monolingual data, we use
publicly available News Crawl 2021 corpus (Zhang
and Zong, 2016; Wu et al., 2019). In the experiment
of the data augmentation method, we first generate
the pseudo-targets for all the monolingual data,
then filter out the ones that have invalid syntactic
and semantic graphs. Finally, we randomly select
a 100k corpus subset.

LLMs We explore the direct use of LLMs for
parsing tasks. First, for semantic relation pars-
ing, we try two types of prompts: 1) The Predpatt
prompt guides the LLM to first generate the syn-
tactic parsing, then follow the instructions of the
PredPatt tool step by step to generate the semantic
relations (PRED). 2) The cascade approach follows
the idea of our model to decompose the UDS pars-
ing (CASC), which first selects the center phrase of
the semantic node, and then expands every phrase
into a span. To make sure that the center word has
only one word, we select it at the last step. Sec-
ond, for semantic attribute parsing, we provide the
sentence and the corresponding node/edge as input,
definitions of attribute types as instruction, and con-
duct experiments under the oracle setting defined
in §A.2 (ATTR). As the scale of attribute scoring
may vary across conversation rounds, we only let
it predict positive or negative.
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Figure 3: Total inference time for forward propagation
of the two models, varying with the batch size. We use
logarithmic coordinates for better comparison.

Metrics We follow the setting given by Stengel-
Eskin et al. (2021), using S-score for semantic re-
lation prediction, Attribute ρ and F1 for UDS at-
tributes, UAS and LAS for heads and edge types,
and POS for part-of-speech.

We use Stengel-Eskin et al. (2021) as the base-
line. Details regarding the baseline for comparison,
prompts and settings used for ChatGPT, the intro-
duction of metrics, and model training configura-
tions are provided in Appendix A.

5.2 Main Results

We conduct experiments on three types of encoders,
as demonstrated in Table 1.

Our cascade model outperforms the base-
line model. Under basic settings, our best set-
ting (BERT) significantly improves the baseline
(TFMR) in S-F1 (+1.60) and Attr. ρ (+0.04), and
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Strategy S-P S-R S-F1 Attr. ρ Attr. F1 UAS LAS POS

L
ST

M
Naive 87.75 91.12 89.79 0.47 57.93 - - -

+ Joint 88.21 92.51 90.31 0.45 55.42 91.51 89.07 96.23
+ Attn. 88.62 92.55 90.54 0.45 57.65 91.95 89.41 96.26
+ GCN 88.82 92.50 90.62 0.46 57.34 91.71 89.10 96.29
+ Span 88.45 92.31 90.34 0.47 57.85 91.58 89.08 96.37

T
FM

R

Naive 88.34 92.90 90.56 0.49 59.68 - - -
+ Joint 88.64 93.53 91.02 0.51 59.56 91.99 89.42 96.60
+ Attn. 88.82 93.46 91.08 0.49 58.86 91.84 89.35 96.77
+ GCN 89.28 93.56 91.37 0.49 58.45 92.07 89.65 96.85
+ Span 88.85 93.19 90.97 0.50 59.46 91.60 89.29 96.71

B
E

R
T

Naive 88.90 92.77 90.79 0.60 67.02 - - -
+ Joint 88.87 93.75 91.25 0.60 67.63 92.95 90.79 97.12
+ Attn. 89.25 94.05 91.59 0.58 66.60 92.94 90.77 97.02
+ GCN 89.51 94.18 91.79 0.59 65.78 92.81 90.73 97.18
+ Span 88.95 93.64 91.23 0.59 65.97 92.92 90.74 97.23

Table 2: The effect of different strategies to incorporate syntactic information. “Naive” means no additional
syntactic information. “+Joint”, “+Attn”, and “+GCN” mean incorporating syntactic information using joint
training, GCN, and attention in §4.2, separately. “+Span” means refine span embeddings using syntactic nodes.

slightly worse in Attr. F1. The above results are
also preserved under +SYN settings (+1.75 and
+0.03, respectively). Furthermore, we calculated
the total inference time for forward propagation of
the two models, averaging on validation and test
datasets (about 1.3k sentences). The results are
shown in Figure 3 under logarithmic coordinates.
Our model significantly reduces the inference time
for all batch sizes (9.56 times faster on average). Fi-
nally, using additional data augmentation methods,
the S-F1 can be further improved (+2.16), which
is also held in LSTM and Transformer (+3.53 and
+1.75, respectively). The above results show that
our model significantly outperforms the baseline.

Syntactic information and data augmentation
methods enhance semantic relation parsing.
Our model primarily focuses on improving seman-
tic relation parsing, which LLMs are not good at.
We summarize the corresponding result in Fig-
ure 4. We can see that both the two approaches
can significantly improve relation parsing, with
+0.88 for syntactic information and +0.62 for the
data augmentation method on average. Besides,
the improvements are orthogonal to each other and
can be used simultaneously, pushing the results
of different models towards a similar limit, since
lower-performing models experience greater im-
provements.

The same methods do not benefit attribute pre-
diction. However, our proposed methods for fur-
ther improvements do not consistently improve the
attribute parsing. Attributes derive from crowd-
sourced annotation, which is not closely related to

LSTM TFMR BERT
87

88

89

90

91

92

93

S-
F1

 S
co

re

Ours
Ours +SYN
Ours +SYN +DA

Figure 4: S-F1 score of different encoders. Abbrevia-
tions are defined in Table 1.

the syntactic or semantic information. Thus, syntac-
tic information cannot provide useful information
for attribute prediction, and using more data to pre-
train a better model for semantic relation parsing is
harmful to the performance of attribute parsing.

ChatGPT performs poorly on relation parsing
but well on attribute parsing. The generated re-
lations of ChatGPT are typically semantically com-
pliant. However, they struggle to follow instruc-
tions step by step, resulting in poor performance on
relation parsing. Additionally, data augmentation
does not work well for the UDS task with Chat-
GPT, revealing significant distribution shifts for the
data generated by ChatGPT. Despite these short-
comings, its high performance on attribute parsing
demonstrates promising syntactic understanding.
Detailed analysis can be found in Appendix B.

5.3 Exploration on Syntactic Information
We conduct experiments on different ways to join
syntactic information into the model, and the re-
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Model In domain Predpatt S-P S-R S-F1 ∆ UAS LAS POS

Ours × × 89.34 94.05 91.63 +0.38 93.05 91.01 97.10
Ours × ✓ 90.15 94.28 92.17 +0.92 93.26 91.28 97.17
Ours ✓ × 89.08 94.03 91.49 +0.24 92.62 90.52 97.19
Ours ✓ ✓ 89.56 94.37 91.90 +0.65 92.88 90.91 97.22
Stanza × ✓ 89.24 94.12 91.62 +0.37 92.96 90.86 97.27
Stanza ✓ ✓ 89.69 94.24 91.90 +0.65 92.76 90.74 97.10
ChatGPT × ✓ 88.25 93.28 90.70 -0.55 92.38 90.28 96.99

Syntactic Teacher - - - 93.24 91.14 97.54
Semantic Relation Teacher 88.87 93.75 91.25 - 92.95 90.79 97.12

Table 3: The effect of different data augmentation approaches. “Model” means which teacher model to use, “In
domain” means whether to select data with closer domain, and “Predpatt” means whether to use an external tool
or simply use the distillation method. “Syntactic Teacher” is trained only on syntactic targets, while “Semantic
Relation Teacher” on syntactic and semantic relation targets. Both only use multi-task learning methods.

sults are shown in Table 2.

Syntactic information enhances semantic rela-
tion parsing. Our experiments show consistent
improvements in S-F1 scores across different meth-
ods of integrating syntactic information, with +0.48
for SYN, +0.69 for Contact, and +0.88 for GCN,
which is also used as our default settings. How-
ever, because of the different syntactic foundations
arising from different annotation methods, we do
not observe a consistent trend of attribute parsing,
aligned with findings in Stengel-Eskin et al. (2021).

Incorporating child syntactic information has
less impact on the results. We tried to use a bet-
ter span representation, which uses a self-attention
over all words in the span, instead of using only
the representation of the center word. However,
the attribute prediction does not achieve consistent
improvements. This shows that the center word
can well represent the semantics of the whole span,
and is the default setting in our experiments.

5.4 Exploration on Data Augmentation
We conduct experiments using the data augmen-
tation method under the basic multi-task training
method to incorporate syntactic information, and
the results are shown in Table 3.

Data augmentation significantly improves the
semantic parsing. Under different ways to in-
corporate syntactic information, the S-F1 consis-
tently improves, with +0.54 on average and +0.92
for best settings (ours without in-domain and with
PredPatt), which is used as the default data aug-
mentation method. Besides, our proposed ways to
better utilize the external tool also significantly out-
perform the basic distillation settings, i.e., +0.48 on
average, which shows the efficacy of our methods.

How does the in-domain unlabeled data act?
We are also curious about how the domain of the
datasets influences the results. We follow the idea
of Moore and Lewis (2010) to score the unlabeled
data by the difference between the score of the in-
domain language model and the language model
trained from which the unlabeled data is drawn.
We refer the reader to the original paper for further
details. Results have shown that for our larger
models with better generalization, the in-domain
data hurt the performance (-0.27). For the smaller
model given in Stanza, the in-domain data performs
better (+0.28), while both are worse than the results
with our models. This shows that the performance
of the teacher model is important, and for models
with good generalization, always using in-domain
data is not a good choice.

6 Conclusion

In this paper, we conduct a holistic exploration of
semantic parsing, focusing on Universal Decompo-
sitional Semantic (UDS) parsing. First, we develop
an efficient cascade model that offers improved
performance and reduced training and inference
costs. Additionally, we examine data augmentation
methods that incorporate syntactic information and
employ the PredPatt tool to strengthen the model’s
syntactic and semantic comprehension. Lastly, we
find that ChatGPT performs poorly in relation pars-
ing and data augmentation but excels in attribute
parsing. This reveals that small, specialized models
still hold research significance in semantic parsing.
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Limitations

This study has several limitations. Firstly, due to
computational constraints, the research is confined
to using small models for solving semantic parsing
problems, resulting in a lack of exploration in fine-
tuning with LLMs. Better performance may be
achieved with LLMs, given their stronger semantic
understanding capabilities. Secondly, although the
approach proposed in this study can be applied to
various semantic parsing tasks, time constraints led
to the selection of only one representative dataset
for testing. This restricts a more comprehensive
analysis of the proposed approach and LLMs’ per-
formance. Furthermore, due to cost constraints
and regional lockouts, we were unable to include
more LLMs, such as GPT-4, GPT-4o, and Claude,
in our analysis. Lastly, before the era of LLMs,
semantic parsing was able to enhance the perfor-
mance of various downstream tasks. However, for
LLMs, whether fine-tuning LLMs with semantic
parsing datasets or providing semantic trees in the
context can improve downstream tasks remains to
be explored in future work.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In LAW@ACL.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: early experiments with gpt-4. ArXiv.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In ACL.

Rich Caruana. 1997. Multitask Learning. Mach. Learn.,
28(1):41–75.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural
networks. In EMNLP.

Hexuan Deng, Liang Ding, Xuebo Liu, Meishan Zhang,
Dacheng Tao, and Min Zhang. 2023. Improving

simultaneous machine translation with monolingual
data. AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Venkata Subrahmanyan Govindarajan, Benjamin Van
Durme, and Aaron Steven White. 2019. Decompos-
ing generalization: models of generic, habitual and
episodic statements. Trans. Assoc. Comput. Linguis-
tics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In ACL.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? a preliminary study. ArXiv.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. In ICLR (Poster).

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating
chatgpt’s information extraction capabilities: an as-
sessment of performance, explainability, calibration,
and faithfulness. ArXiv.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In EMNLP.

Robert C. Moore and William D. Lewis. 2010. Intel-
ligent selection of language model training data. In
ACL.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, Angelina Ivanova, and Zdenka Uresová. 2016.
Towards comparability of linguistic graph banks for
semantic parsing. In LREC.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: broad-coverage semantic dependency parsing. In
SemEval@COLING.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: global vectors for word rep-
resentation. In EMNLP.

Barbara Plank, Héctor Martínez Alonso, Zeljko Agic,
Danijela Merkler, and Anders Søgaard. 2015. Do
dependency parsing metrics correlate with human
judgments? In CoNLL.

53



Dee Ann Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic proto-roles. Trans. Assoc.
Comput. Linguistics.

Rachel Rudinger, Aaron Steven White, and Ben-
jamin Van Durme. 2018. Neural models of factuality.
In NAACL-HLT.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: summarization with pointer-
generator networks. In ACL.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel R. Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for english. In
LREC.

Elias Stengel-Eskin, Kenton W. Murray, Sheng Zhang,
Aaron Steven White, and Benjamin Van Durme. 2021.
Joint universal syntactic and semantic parsing. Trans.
Assoc. Comput. Linguistics.

Elias Stengel-Eskin, Aaron Steven White, Sheng Zhang,
and Benjamin Van Durme. 2020. Universal decom-
positional semantic parsing. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In ACL.

Aaron Steven White, Dee Ann Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal decompositional semantics on universal depen-
dencies. In EMNLP.

Aaron Steven White, Elias Stengel-Eskin, Siddharth
Vashishtha, Venkata Subrahmanyan Govindarajan,
Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi,
Sheng Zhang, Francis Ferraro, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2020. The
universal decompositional semantics dataset and de-
comp toolkit. In LREC.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang
Jiao, and Michael Lyu. 2023. Chatgpt or grammarly?
evaluating chatgpt on grammatical error correction
benchmark. ArXiv.

Lijun Wu, Yiren Wang, Yingce Xia, Tao Qin, Jianhuang
Lai, and Tie-Yan Liu. 2019. Exploiting monolin-
gual data at scale for neural machine translation. In
EMNLP/IJCNLP.

Poorya Zaremoodi, Wray L. Buntine, and Gholamreza
Haffari. 2018. Adaptive knowledge sharing in multi-
task learning: improving low-resource neural ma-
chine translation. In ACL.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and
Min Zhang. 2020. Syntax-aware opinion role label-
ing with dependency graph convolutional networks.
In ACL.

Jiajun Zhang and Chengqing Zong. 2016. Exploiting
source-side monolingual data in neural machine trans-
lation. In EMNLP.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019a. Amr parsing as sequence-to-graph
transduction. In ACL.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019b. Broad-coverage semantic parsing as
transduction. In EMNLP/IJCNLP.

Sheng Zhang, Rachel Rudinger, and Benjamin Van
Durme. 2017. An evaluation of predpatt and open ie
via stage 1 semantic role labeling. In IWCS.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In EMNLP.

54



A Supplementary Experimental Setup

A.1 Experimental Configurations

Model Training Our model is trained on one
NVIDIA A30 Tensor Core GPU with a batch size
of 16 and a dropout rate of 0.3. We fix BERT
parameters for LSTM and transformer encoders
and keep them trainable when BERT itself is the
encoder. For the majority of the training process,
we set the learning rate to 2e-4, while for BERT
encoder, we set it to 1e-5. For a fair comparison,
we use a linear projection of the output of all the
encoders to unify the output dimension to 1024.
We run each model five times under different seeds
in the main table and show the average score.

Baseline We use Stengel-Eskin et al. (2021) as
the baseline. It first employs GloVe word embed-
dings (Pennington et al., 2014), character CNN
embeddings, and BERT (Devlin et al., 2019) to
generate the context-aware representations of the
input sentence. Then, it generates each edge with a
decoder in an autoregressive way, following the
idea of a pointer-generator network (See et al.,
2017). After that, it uses a deep biaffine (Dozat
and Manning, 2017) graph-based parser to create
edges. Node- and edge-level attributes are then
predicted after every step, with a multi-layer per-
ception for node attributes and a deep biaffine for
edge attributes. Besides, the introduction of syntac-
tic information is preliminarily tried, and we only
report their optimal results for each metric.

LLMs For ChatGPT, we conduct experiments in
the dialog box, using the ChatGPT Mar 23 Version
in 2023. We provide details on the prompts used for
evaluating ChatGPT under UDS tasks in Figure 5.

A.2 Metrics

We follow the setting given by Stengel-Eskin et al.
(2021), detailed as follows.

S-score This metric measures performance on the
semantic relation prediction task. Following the
Smatch metric (Cai and Knight, 2013), which uses
a hill-climbing approach to find an approximate
graph matching between a reference and predicted
graph, S-score (Zhang et al., 2017) provides pre-
cision (S-P), recall (S-R), and F1 score (S-F1) for
nodes, edges, and attributes. We follow Stengel-
Eskin et al. (2021) and evaluate the S-score for
nodes and edges only, which evaluates against full

UDS arborescences with linearized syntactic sub-
trees included as children of semantic heads.

Attribute ρ & F1 For UDS attributes, we use
the pearson correlation ρ (Attr. ρ) between the
predicted attributes at each node and the gold an-
notations in the UDS corpus. We also use F1-score
(Attr. F1) to measure whether the direction of the
attributes matches that of the gold annotations. We
binarized the attribute with threshold value θ = 0
for gold attributes, and tune θ for predicted ones
per attribute type on validation data. Both of them
are obtained under an “oracle” setting, where the
gold graph structure is provided.

Syntactic Metric We follow Plank et al. (2015)
to use Unlabeled Attachment Score (UAS) to com-
pute the fraction of words with correctly assigned
heads, and Labeled Attachment Score (LAS) to
compute the fraction with correct heads and edge
types. While for part-of-speech (POS), we simply
use the accuracy of prediction.

B Exploration on LLM Paradigm

ChatGPT performs poorly on relation parsing.
For semantic relation parsing, we use the prompt
given in §A.1 3 times, which generates 9 different
results. We filter out invalid output (no table or
table with incorrect headers) and select the best
result for each sentence. There are still 11.04% and
0.37% of the sentences that do not have correct re-
sults for PRED and CASC, respectively, which are
filtered out. Despite this favorable setting, it still
achieved poor results. Under our observation, the
generated relations of LLMs are typically semanti-
cally compliant. However, they struggle to follow
the instructions step by step, leading to outputs that
often do not meet our requirements, and repetitions
and incorrect summarizations in the table also com-
monly occur. As a result, LLMs perform poorly on
relation parsing, especially in precision, and com-
plex post-processing constructed by professionals
is highly required.

ChatGPT performs perfectly on attribute pars-
ing. For semantic attribute parsing, we only run
ChatGPT once. 3.03% of the sentences do not have
correct results and are filtered out. Results show
that ChatGPT significantly outperforms the small
models, achieving a +12.80 increase in Attribute
F1 scores compared to the best model. We think
that for ChatGPT, which is well-aligned with hu-
mans, it is easier to predict the attributes given by
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Given the sentence "# Input #", I would like you to do the following works step by step.
First, ... for each clause, ... 0. Predict the Universal

Dependency parsing... 1. Predicate root identification:
... 2. Argument root identification: ... 3. Argument
resolution: ... 4. Predicate phrase extraction: ... 5.

Argument phrases extraction: ...  Please follow the
instructions above and print the result of each step. 

1) Select the predicate, the corresponding arguments,
and the root predicate in the sentence... 2) ... seperate
unused words into one and exactly one predicate or

argument part ... 3) Selece exactly one center word from
every predicate or argument phrases... Please follow the

instructions above and print the result of each step.

 Please summarize the process that you have performed above into a table, with ... If the predicate does not have a
father, ... If the predicate root or the argument root consists of multiple words, ...

 1) I notice some predicates you predicted are actually 
 corresponding arguments subordinate to a predicate, ... 
 2) I notice some of the information you predicted above 
 is missing ...

 1) I notice some Predicate Roots or Argument Roots 
 have more than one word, ... 
 2) I notice some of the Argument Phrases overlap with 
 each other, ...

Input

Instruction

Format
Defination

Post-
process

Input
PredPatt Instruction Cascade Instruction

Figure 5: The prompt for semantic relation parsing for ChatGPT. For each generation, we first input the input and
instruction, then input the format definition to get the prediction. Finally, we input the post-process part one by one
to generate better predictions, i.e., three predictions for a sentence in a single conversation.
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Figure 6: Attribute F1 score for each UDS attribute using ChatGPT (80.69 on average) or using our basic BERT
model (67.02 on average). The x-axis is the UDS attribute name, with the ones beginning with “protoroles” being
the edge-level attributes (the rightmost 14 attributes), and other attributes are at the node level.
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Figure 7: The Attribute F1 score distribution across each
UDS attribute. “ChatGPT” stands for prompted with
ATTR settings, and “Ours” represents our best strategy
under attribute prediction.

human annotators rather than the long logical chain
reasoning task. In addition, only need to predict
positive and negative without considering the pear-
son correlation is also one of its advantages.

For further verification, we calculate the At-
tribute F1 scores for all attributes in Figure 6. We
can observe that ChatGPT performs well on most
of the attributes when compared to our model, with
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Figure 8: Loss function curve over the first 3k steps.
The defination of “+SYN” and “+DA” are align with
ones in Table 1.

60.34% and 25.86% of the attributes respectively
having F1 scores above 85%. Furthermore, Chat-
GPT performs perfectly on word-sense attributes,
achieving an F1 score of 86.99. In contrast, our
models do not display significantly superior results,
with an F1 score of 68.49. For a clearer comparison,
we have compiled the distribution of Attribute F1
values for different attributes for our best-trained
small model and ChatGPT, as shown in Figure 7.

56



We can see that ChatGPT scores higher on a greater
number of attributes. We believe that with more
detailed guidance and rigorous post-processing,
LLMs have the potential to replace humans in an-
notation tasks.

How does data augmentation with ChatGPT
act? We investigate the generation of new data
for downstream model training, which is widely
used. We use the random token lists as input rather
than the unlabeled data, and let LLM generate the
POS tag and syntax tree, which are further used to
generate pseudo-labels, following §4.3. Since Uni-
versal Dependencies is a widely used dataset and
contains both of the required information, a simple
prompt can be used. For ChatGPT generation, we
select a 10k corpus subset.

LLMs do not perform well in semantic relation
generation, and directly using external tools to as-
sist the test set is not effective (Stengel-Eskin et al.,
2020), so it is natural to think of using LLM to
augment the data in a similar way. We used the
zero-shot settings, detailed in §A.1. However, the
performance has declined. For further analysis, we
propose the training loss for the first 3k updates for
different models in Figure 8. We can see that our
data augmentation method can significantly lower
the initial training loss, which shows that similar
data distribution is shared between our proposed
pseudo-labeled data and the training data. However,
the initial loss of ChatGPT argumentation is even
higher than random initializing (Ours +SYN). This
shows significant distribution shifts for the data
generated by ChatGPT, which shows the need for
more detailed prompts and ways to select properly
generated data.
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Abstract

Vast amount of online conversations are pro-
duced on a daily basis, resulting in a press-
ing need to automatic conversation understand-
ing. As a basis to structure a discussion, we
identify the responding relations in the con-
versation discourse, which link response utter-
ances to their initiations. To figure out who
responded to whom, here we explore how the
consistency of topic contents and dependency
of discourse roles indicate such interactions,
whereas most prior work ignore the effects of
latent factors underlying word occurrences. We
propose a neural model to learn latent topics
and discourse in word distributions, and pre-
dict pairwise initiation-response links via ex-
ploiting topic consistency and discourse depen-
dency. Experimental results on both English
and Chinese conversations show that our model
significantly outperforms the previous state of
the arts.

1 Introduction

The growing popularity of online platforms have
resulted in the revolution of interpersonal commu-
nications. Individuals now engage in diverse forms
of online conversations to exchange viewpoints
and share ideas. It allows users to access an abun-
dance of fresh materials, whereas the explosive
growth of online texts — essentially conversational
and usually in multiple threads (Wang and Rosé,
2010) — has also hindered human capability to
find the information needed. There consequently
presents a pressing need to develop conversation
understanding methods to automatically digest mas-
sive texts and complex interactions therein. To that
end, it is crucial to capture the interactions of who
responded to whom — the base to build and un-
derstand the conversation structure, as pointed out
in many previous studies (Wang and Rosé, 2010;

*Lu Ji and Lei Chen have equal contribution.
†Corresponding author.

[C1] I am aware that you can thank them in private argu-
ment but what does that matter?
[C2] The most important part of my argument is that it
hurts literally nobody.
[C3] All they are doing is trying to be polite.
[C4] Some people gild comments anonymously and do
not respond to the private messages, so the gildee never
knows who gave them gold.
[C5] Note: for the purposes of my argument, assume I
am talking about comments edited in such a way as to say
thanks for the gold!
[R] We are all aware that you can do that, but sometimes
people like to express gratitude publicly.

Figure 1: A Reddit conversation snippet. C1 and R is
an initiation-response pair while C2 to C5 are the other
four candidates. Topic words reflecting the discussion
points “public gratitude expression” are in bold. The
blue and italic “that” occurring in both C1 and R imply
R’s possible intention to answer C1’s question.

Zeng et al., 2019b). By reflecting how partici-
pants interact with each other, such structure has
shown useful to predict users’ online social activi-
ties (Zeng et al., 2019b), summarize key discussion
topics (Qin et al., 2017; Li et al., 2018a), measure
argument persuasiveness (Ji et al., 2018a), and so
forth.

To date, despite of the extensive efforts on user
interaction modeling, many of them employ user-
annotated in-reply-to signals, such as @-mention
on Twitter (Li et al., 2018a; Zeng et al., 2019b).
Nonetheless, such labels are usually unavailable
or unreliable (Du et al., 2017; He et al., 2019),
especially for online conversations in informal
styles. Other studies assume utterances only re-
spond to their chronological neighbors (Jiao et al.,
2018; Zhao et al., 2018), largely ignoring the long-
distance interactions prominent in online conver-
sations (Wang and Rosé, 2010). All these con-
cerns lay down our objective to investigate who
responded to whom in conversation contexts.

Following previous practice (Schegloff, 2007),
we define our task to predict pairwise initiation
utterances and their responses in an online con-
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versation (henceforth initiation-response pairs),
where an initiation sets up an expectation earlier
and its response later react to it in process of a dis-
cussion. To illustrate our task, Figure 1 shows an
example response R and the other five utterances
C1 to C5 from R’s previous post in a Reddit con-
versation. Our goal is to identify which utterance
from C1 to C5 is R’s initiation. As can be seen,
R is most likely to respond to C1 for two possible
reasons: First, they both focus on the topic of pub-
lic gratitude expression (as topic words “thank”,
“public”, “gratitude” are mentioned); Second, C1

raises a question (signaled by “what” and the ques-
tion mark “?”) that can be well answered by R (via
echoing the pronoun “that”).

Here, we examine two latent factors that implic-
itly link an initiation and its response — the consis-
tency of the topics they center around (henceforth
topic consistency) and the dependency of their dis-
course roles (henceforth discourse dependency).
Our intuition is that responses tend to follow the
points pushed forward in their initiations (such as
public gratitude expression in Figure 1) and their
discourse roles are likely to exhibit some depen-
dency in interactions, such as an answer respond-
ing to an initiated question (like R answering C1

in Figure 1) and an argument followed by another
argument in a back-and-forth debate. To the best
of our knowledge, we are the first to analyze the
effects of topics and discourse in conversational
responding behavior, while previous work predict
initiation-response pairs without modeling such la-
tent factors embedded in the relations (Du et al.,
2017; He et al., 2019).

To learn topics and discourse, we separate two
word distributions for representing each of them.
The latent variables are inferred with a neural ar-
chitecture in an unsupervised manner (Zeng et al.,
2019a), which enables topic and discourse infer-
ence without either manually annotated data (Zhao
et al., 2017) or expertise involvements to customize
model inference (Li et al., 2018b). Afterwards, two
neural modules are employed, one to capture topic
consistency and the other discourse dependency,
both aim to explore the implicit links of a response
and a candidate initiation. The learned representa-
tions are hence coupled to predict how likely the
two utterances form an initiation-response pair.

In an empirical study, we carry out extensive
experiments on two conversation datasets, one con-
tains English argumentative discussions on Red-
dit (from the ChangeMyView subreddit), and the

other Chinese customer service dialogues from
e-commerce platform Wangwang. Both of them
will be released upon publication as part of our
work. The experimental results show that our
model significantly outperforms state-of-the-art
methods from previous work. For example, we
achieve 79.02 MRR on the Wangwang dialogues
compared with 72.69 produced by He et al. (2019).
In extensive analyses on latent topics and discourse,
we find that meaningful representations can be
learned by our model and both topics and discourse
may contribute to indicate initiation-response pairs.
Lastly, we show that our learned representation
to indicate initiation-response relations can further
benefit to identify persuasive arguments in social
media debates.

2 Study Design

2.1 Task Formulation

We define initiation-response pairs following Sche-
gloff (2007) and refer both initiations and responses
to conversation utterances from different partici-
pants. In a discussion flow, responses appear and
react to the points raised earlier in their initiations
and hence hold responding relations with them.

In previous practice, an initiation-response pair
is defined to cover a wide range of user interac-
tions, such as questions and answers, quotations
and replies, blames and denials, all existing in di-
verse genres of conversations (Wang and Rosé,
2010). In empirical study, we will experiment on
quotation-reply pairs in forum discussions (Wang
and Rosé, 2010) and question-answer pairs in cus-
tomer service dialogues (He et al., 2019). We thus
describe these two types of initiation-response rela-
tions in the following.

Quotations and Replies. Many popular online
forums, such as Reddit and Usenet, allow users to
quote utterances from previous messages to indi-
cate what they are commenting on. Such quoting
behaviors provide us with abundant user-annotated
data to extensively study initiation-response rela-
tions in forum conversations.

Here we are interested in a specific type of online
conversations — argumentative dialogues from the
ChangeMyView subreddit (henceforth CMV) (Tan
et al., 2016), exhibiting rich user interactions in
back-and-forth social media debates. In CMV, an
opinion holder (OH) first initiates a debate with
their viewpoints and challengers then engage in,
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raising their arguments in comments and attempt-
ing to change OH’s mind. As challengers carry on
the persuasion process, they usually quote OH’s
utterances to explicitly point out what they are ar-
guing against, followed by their own responsive
arguments (replies). An example quotation in a
CMV comment is shown in Figure 2, where the
reply utterance questions the positive aspects of
early Americans — a point initialized by OH.

Original Post from an Opinion Holder:
... Strong family values in society lead to great results. I
want society to take positive aspects of the early Amer-
icans and implement that into society. This would be a
huge improvement than what we have now. ...
Comment from a Challenger:
&gt; I want society to take positive aspects of the early
Americans and implement that into society. What do you
believe those aspects to be? ...

Figure 2: An original post and its comment from the
CMV subreddit. The comment quotes an utterance from
the original post (in italic), followed by its reply utter-
ance.

Questions and Answers. We also examine ques-
tions and answers in customer service dialogues on
Chinese e-commerce platform Wangwang (hence-
forth CS) (He et al., 2019). In a dialogue thread,
customers may raise multiple questions in a se-
quence of utterances and the seller’s answers may
appear in the following turns. Our goal is to pair a
question from the customer’s utterances and an an-
swer from the seller’s. Figure 3 shows a customer
service dialogue excerpt centered around a dress
in winter style. We observe two question-answer
pairs therein focusing on the product quality and
dress style, respectively.

𝑢"

http:xxx.com𝑢#

𝑢$

I really like this color.𝑢%
𝑢&

Is there a winter style?𝑢'

𝑢(
Why hasn’t been echoed again?𝑢)

𝑢"*

Question-Answer

Customer Server

Is this a quality product?

Hello?

Our clothes are certified products.

This is the latest style of this year.

The dress is in autumn and winter.
Question-Answer

Welcome, what can I do for you? 𝑢+

Figure 3: A Wangwang dialogue between a customer
(on the left) and a seller (from the server team on the
right) from He et al. (2019). Pairwise questions and
answers are linked and displayed with the same color.

Pairwise Ranking. To explore how responses
and initiations interact with each other, here we fol-

low previous settings to formulate our task into a
pairwise ranking problem (Wang and Rosé, 2010).
It is shown that the determination of who responds
to whom largely relies on subjective judgements
(without explicit indicators); thus we view the pair-
ing of responses to their initiations from a compari-
son perspective (instead of answering “yes or no”
in binary classification fashion).

Specifically, given a response utterance r, we
rank a set of candidate utterances with one positive
initiation q+ and u negative ones q−1 ∼ q−u . In
practice, we measure a matching score S(q, r) to
indicate the likelihood of q as r’s initiation and
the one with the highest score will be considered
as r’s predicted initiation. In Section 2.2, we will
describe how we form the candidate initiations.

2.2 Data Collection and Analysis

Data Collection. The CMV dataset gathers so-
cial media arguments, whose raw data is released
by Tan et al. (2016). For each discussion, we only
examine the context of an OH’s post and a chal-
lenger’s comment to focus on the quotation-reply
relations therein. In challenger’s comments, we
form a quotation and the utterance right after it to
be an initiation-response pair. The rest utterances in
the quoted post (from OH) are used as the negative
instances, and the samples are randomly selected
with a cap at 4 to avoid unbalanced labels. In ad-
dition, the quotation of the OH’s post is removed
from the challenger’s comment when forming an
instance.

The CS dataset is annotated and released with He
et al. (2019). The newest 4 consecutive customer’s
utterances (skipping the positive initiation) before
a seller’s response serve as the negative instances.
Here the candidate number is also capped at 4 for
comparable results with CMV.

CMV Dataset CS Dataset
# of utt. per conv 21.2±15.6 9.6±2.8
# of words per conv 403.1±292.5 130.8±73.1
# of convs 7,937 4,277
# of words per r 19.7±6.0 15.0±20.8
# of words per q+ 20.6±6.2 6.5±4.3
# of words per q− 16.5±5.0 11.2±18.7
max # of pairs 14 7
avg. # of pairs 1.1±0.3 1.7±1.1

Table 1: Data statistics. Means and standard deviations
appear before and after ±. utt. and r refers to utterance
and response, while q+ and q− for positive and negative
initiation. # of pairs represents the number of initiation-
response pairs per conversation.
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Data Analysis. Table 1 shows the data statistics,
where the two datasets exhibit different characteris-
tics. CMV arguments contain more utterances and
richer contexts (with more words) compared with
CS. For initiation-response pairs, CMV challengers
only quote once on average while the maximum
number is 14 (to extensively criticize OH’s weak
points); whereas the number of question-answer
pairs are diverse in CS dataset, ranging from 1 to 7
with 1.1 standard deviation.

3 Learning Topics and Discourse Effects
for Initiation-Response Prediction

The overall architecture of our model is shown in
Figure 4 (a). It takes an initiation candidate q, a
response r, and their corresponding contexts cq
and cr as inputs. The outputs are matching scores
indicating how likely r responds to q.

3.1 Latent Topics and Discourse Modeling
Inspired by previous efforts in neural topic mod-
els (Miao et al., 2017; Zeng et al., 2019a), we
adopt variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014) to learn la-
tent topics and discourse. It allows their associated
word distributions to be learned in neural architec-
ture and end-to-end training with other components
in a deep learning framework. The corresponding
networks are illustrated in Figure 4 (b). In below,
we first describe how we model the topics, followed
by the process to learn discourse.

Latent Topics. We first assume there are K latent
topics in the corpus, each represented by a word dis-
tribution ΦT

k (k = 1, 2, ...,K) over the vocabulary
V . The latent topics of each utterance is defined as
z and generated from the topic composition of its
context c. Here we learn utterance-level topics in
its conversation context assuming that utterances
in a discussion excerpt tend to focus on similar top-
ics. It allows the modeling of rich patterns of word
statistics for topic inference.

The following process presents how to generate
an utterance x in context of c. Here, we adopt
the bag-of-words assumption of most latent topic
models (Blei et al., 2002; Miao et al., 2017) and
generate x in its bag of words (BoW) form xBoW .

• Draw the latent topic z ∼ N(µ, σ2)
• c’s topic mixture θ = softmax(fθ(z))
• For the n-th word in x:

– βn = softmax(fΦT (θ))
– Draw the word wn ∼Multi(βn)

where f∗(·) is a neural perceptron (fully connected
layer). The weight matrix of fΦT (·) (after the soft-
max normalization) is viewed as the topic-word
distributions ΦT .

The prior parameters µ and σ are estimated from
conversation c’s bag of words cBoW :

µ = fµ(fe(c
BoW )), log σ = fσ(fe(c

BoW )) (1)

fµ, fe and fσ are neural perceptron defined above.
As can be seen, the entire topic modeling process

follows a VAE fashion — for each utterance x, we
first encode its latent topic z from the conversation
context c (in BoW form cBoW ) and then reconstruct
its BoW (xBoW ) via decoding.

Latent Discourse. Similar to latent topics, we
represent latent discourse with word distributions
ΦD
d (d = 1, 2, ..., D) and D denotes the number of

discourse roles observed from the corpus.
Following Ritter et al. (2010), we assume each

utterance x reflects only one discourse role d (to
signal its dialogue act). It is hence represented by
a D-dimensional one-hot vector over the discourse
inventory (the high bit indicates x’s discourse role).
To learn latent discourse, we adopt the similar VAE-
based process as topic modeling with both the input
and output as utterance x’s BoW (xBoW ). First,
xBoW is encoded into its latent discourse role d
with the following formula:

π = gs(fπ(x
BoW )), d = Multi(π) (2)

where gs refers to Gumbel softmax function (Lu
et al., 2017) to encode the discrete nature of la-
tent discourse d and fπ is another neural percep-
tron. Afterwards, the decoding process reconstructs
xBoW conditioned on d with another fully con-
nected layer:

xBoW = fΦD (d) (3)

Here similar to latent topics, we utilize fΦD ’s
weights to compute discourse-word distributions.

3.2 Initiation-Response Pair Prediction
Given topic and discourse representations of a re-
sponse r (zr and dr) and those of its candidate
initiation q (zq and dq), we further predict how
likely they form an initiation-response pair with an
utterance matching process. Here we measure the
effects of topic consistency and discourse depen-
dency to indicate initiation-response relations.

For topic consistency, we capture how similar
the topics of q and r is with the following score:
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Figure 4: (a) Our model architecture to predict initiation-response pairs. We first learn latent topics and discourse
factors for both response r and the candidate initiation q in award of their contexts cr and cq and show the detailed
learning process in (b) (x denotes q or r.) Then, utterance matching is conducted to measure topic consistency and
discourse dependency. Lastly, we predict S(q, r) — the likelihood of r responding to q.

Stopic(q, r) = zTr Wtzq (4)

where Wt is a weight matrix learned to indicate the
importance of each topic factor.

Likewise, q and r’s discourse-level matching
score is denoted as Sdiscourse and defined below:

Sdiscourse(q, r) = dTr Wddq (5)

where the trainable weight matrix Wd is employed
to capture the transition probabilities from q’s dis-
course role to r’s (Pr(dr | dq)).

Further, to yield the final matching score S(q, r)
to estimate how likely r responding to q, we lever-
age Stopic(q, r) and Sdiscourse(q, r) to couple both
topic and discourse effects with the weighted sum:

S(q, r) = γStopic(q, r) + (1− γ)Sdiscourse(q, r) (6)

where γ ∈ [0, 1] is the parameter balancing the
relative contributions of topic and discourse.

3.3 Learning Objectives

Latent Topics and Discourse Modeling Loss.
We employ neural variational inference to approxi-
mate the posterior distributions over the latent topic
z and the latent discourse d.

Encoding Topics and Discourse. To examine
how to learn topics and discourse, the cross entropy
loss is used to reflect the estimation of z and d from
encoding process:

Lt = Eq(z | c)[log p(c | z)]−KL(q(z | c) || p(z)) (7)

Ld = Eq(d | x)[log p(x | d)]−KL(q(d |x) || p(d)) (8)

KL cost term is added to avoid posterior collapse.
For space limitation, we leave out the derivation
details and refer the readers to Zhao et al. (2018).

Reconstructing Utterances. For the reconstruc-
tion loss to reflect how an utterance can be inferred
from z and d, we define the loss Lx as:

Lx = Eq(z | x)q(d | c)[log p(x | z, d)] (9)

Distinguishing Topics and Discourse. As dis-
cussed above, topics and discourse are modeled in
different granularity (discourse in utterance only
while topics in richer contexts). To further distin-
guish their respective word distributions, we follow
Zeng et al. (2019a) to employ the mutual infor-
mation to define the mutual dependency of latent
topics and discourse:

Eq(z)q(d)[log
p(z, d)

p(z)p(d)
] (10)
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Further, the mutual information loss (shown in be-
low) is adopted to separate the semantic space of
topics and discourse:

LMI = Eq(z)q(d)[KL(p(d | z) || p(d))] (11)

Initiation-Response Pair Prediction Loss. To
allow positive pairs to obtain higher matching
scores than negative, we use hinge loss in train-
ing:

Lm =

u∑

i=1

max(0, λ− S(q+, r) + S(q−i , r)) (12)

where u is the number of negative initiations for
each response. λ is a margin parameter and
S(q+, r) and S(q−i , r) are the matching scores of
a response and its positive and negative initiations.

The Final Objective. Finally, we combine all the
effects above and define the overall objective of the
entire model as:

L = Lt + Ld + Lx + Lm − LMI (13)

In the training process, the optimization of final
objective L enables the end-to-end exploration of
topic and discourse representation and their joint ef-
fects to signal pairwise initiation-response relations
in conversation structure.

4 Experimental Setup

Data Preprocessing. For CMV dataset, the raw
data was preprocessed by Tan et al. (2016). We
first filter out tokens occurring less than 15 to al-
leviate sparsity and maintain a vocabulary with
15, 182 tokens. Then, we remove too short (with
less than 7 words) and too long utterances (with
over 45 words) to better explore utterance-level
word statistics for topic and discourse modeling.
Next, to form context for quotations and replies (cq
and cr), we consider all utterances in the original
post (from OH) as cq and those in the challenger’s
comment as cr. Lastly, the training and test data is
separated following Tan et al. (2016), where 6, 839
pairs are used for training and and 1, 098 for test.

For CS dataset, we don’t remove words and the
vocabulary size is 15, 407, with the scale similar to
CMV. Short utterances with less than 5 words are
removed. The Chinese word segmentation and the
separation of training and test set has been done
by He et al. (2019), with 3, 701 and 576 instances
for training and test. Here all utterances in the

dialogue thread are used to form both cq and cr due
to the synchronous nature of CS conversations.

For both datasets, 10% data is further sampled
from the training set for validation.

Model Settings. The hyperparameters are tuned
on validation set. For the number of topics (K)
and discourse roles (D), we set K = 50, D = 5
for CMV dataset and K = 10, D = 3 for CS. Max
margin weight λ is set to 10 (Eq. 12) and γ =
0.5 for balancing topic consistency and discourse
dependency (Eq. 6). In model training, we set the
batch size to 32, dropout probability to 0.5, and
the maximum epoch number to 200 (with early
stop). The trainable parameters are optimized via
stochastic gradient descent with learning rate decay,
whose initial learning rate is set to 0.1.

Evaluation Metrics. In evaluation, we exam-
ine whether the positive initiations can be ranked
higher than negative for each response. Two
widely-used information retrieval metrics Hits@N
and Mean Reciprocal Rank (MRR) are adopted. For
Hits@N we only measure the hits at the top two
retrieved initiations, i.e., N = 1, 2.

Comparison Models. We first consider three
non-neural baselines that rank initiations based
on: 1) POSITION, where earlier utterances are
ranked higher for CMV while later is higher for
CS; 2) EMBEDDING_SIM — the cosine similar-
ity between a response and an initiation utterance
measured by the average word embeddings from
Glove (Pennington et al., 2014); 3) LDA_DISC

— using cross entropy to discriminate initiation’s
and response’s topic distributions inferred by latent
Dirichlet allocation (LDA) (Du et al., 2017).

We also compare with the following neu-
ral models proposed by previous work: 1)
MALSTM (Mueller and Thyagarajan, 2016)
designed for sentence-level semantic matching
(LSTM for utterance encoding and Manhattan dis-
tance for matching); 2) COATTENTION (Ji et al.,
2018b) proposed for pairwise argument quality
evaluation, where a co-attention network learns
alignment representations and a BiGRU layer com-
putes similarity for matching. 3) RPN (He et al.,
2019), the state-of-the-art model for question-
answer pairing in dialogues that ranks initiations
by recurrent pointer networks (RPN).

In addition, we consider the following neural
matching models with a fully connected layer to
score initiation-response pairs and the following
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encoders for utterance-level representation learn-
ing: RNN (henceforth MATCH_RNN), autoen-
coder (henceforth MATCH_AE), variational au-
toencoder (henceforth MATCH_VAE), and dis-
crete variational autoencoder (Zhao et al., 2018)
(henceforth MATCH_DVAE).

Further, to study the relative contributions
of topic consistency and discourse depen-
dency, we compare with our two ablations,
one only explores the topic effects (henceforth
TOPIC_ONLY) and the other discourse (henceforth
DISCOURSE_ONLY).

5 Results and Discussions

5.1 Main Comparison Results

The overall results are shown in Table 2. Several
interesting observations can be drawn.

• All models yield generally better performance
on CS than CMV. It shows that initiation-response
links are more difficult to be identified on dialogues
in argumentative than everyday styles.

• Neural networks perform better than non-neural
baselines. Initiation-response pair prediction is
challenging, where shallow features from position,
word embeddings, and LDA-based latent topics
cannot guarantee good performance. Neural mod-
els explore deeper semantic features and hence pro-
vide better results.

• Autoencoders can learn useful representations.
It is observed that models based on autoencoders
perform generally better than other neural models.
This shows that autoencoders are effective in en-
coding utterances compared with other alternatives,
such as RNN.

• Topics contribute more on CMV while discourse
is more useful in CS. TOPIC_ONLY performs much
better than DISCOURSE_ONLY on CMV, while the
opposite is observed on CS. It is probably because
of the richer context in CMV to learn latent top-
ics (with more words per conversation as shown in
Table 1), while the synchronous CS dialogues ex-
hibits richer discourse word patterns from back and
forth interactions between participants and hence
allow better discourse modeling.

• Our model significantly outperforms all compar-
isons. This shows that the joint effects of topics
and discourse can usefully indicate the relations of
initiations and responses in conversation context.

5.2 Effects of Topics and Discourse
We have shown the joint effects of topics and dis-
course to signal initiation-response relations. Here
we further analyze what we learn for topic and
discourse representations.
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Figure 5: The distribution of topic similarity in the
CMV dataset (a) and CS (b). X-axis shows similarity
intervals and y-axis indicates proportions. For each
interval, positive pair results are displayed on the left
(in blue) and negative on the right (in orange).

Topic Effects. We first analyze the effects of
topic consistency and compute the cosine simi-
larity of the latent topics we learn for responses
(zr) and candidate initiations (zq). The distribu-
tions over positive and negative pairs are shown in
Figure 5. For both datasets, our model generally
assigns higher topic similarity for positive pairs
than negative, probably because responses tend
to follow the concern of initiations and are hence
likely to contain similar topic words. We also ob-
serve a proportion drop in very similar positive
pairs (sim > 0.8), indicating that most responses
do not echo what were said in initiations, though
their topics might be similar. Nevertheless, nega-
tive pairs exhibit different distributions compared
with the positive ones. Our model is able to capture
such features in topic consistency modeling (Eq.
4), which might help in distinguishing positive and
negative initiations for a response.
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Figure 6: The transition distributions of discourse roles
from initiations to responses, CMV in (a) and CS in (b).
Only the top 5 transitions observed in positive (on the
left in blue) and negative pairs (on the right in orange)
are displayed. X-axis: initiation-response discourse
roles (dq → dr); Y-axis: proportions.

Discourse Effects. We then discuss how dis-
course dependency affects the prediction of
initiation-response pairs. The transition distri-
butions of discourse roles from initiations to re-
sponses (dq → dr) are shown in Figure 6. As can
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2*Models CMV Dataset CS Dataset
Hits@1 Hits@2 MRR Hits@1 Hits@2 MRR

Non-Neural Models
POSITION 24.68* 24.68* 24.68* 49.13* 49.13* 49.13*
EMBEDDING_SIM 22.77* 45.00* 48.66* 17.01* 39.06* 44.04*
LDA_DISC 24.68* 42.99* 47.77* 26.39* 49.65* 52.40*
Neural Models
MALSTM (Mueller and Thyagarajan, 2016) 29.87* 42.99* 50.91* 43.58* 72.40* 65.80*
COATTENTION (Ji et al., 2018b) 47.72* 68.31* 67.26* 51.56* 79.17* 71.77*
RPN (He et al., 2019) 46.45* 67.21* 66.22* 52.95* 80.21* 72.69*
MATCH_RNN 49.45* 71.58* 68.79* 50.00* 80.38* 71.13*
MATCH_AE 51.82* 74.77‡ 70.50* 52.78* 82.12‡ 72.88*
MATCH_VAE 53.19* 73.95‡ 71.11‡ 52.60* 81.42* 72.70*
MATCH_DVAE 47.45* 69.95* 67.34* 53.82* 82.81‡ 73.65*
Ablations
TOPIC_ONLY 58.20 76.14 73.78 42.53* 69.10* 64.11*
DISCOURSE_ONLY 41.44* 63.02* 62.20* 48.96* 76.04* 69.76*
Our model 59.74 76.23 74.41 64.93 84.20 79.23

Table 2: Comparison results on two datasets and our model achieves the best results under all settings. * and ‡

indicates that our model significantly outperforms the comparison model (* for p<0.01 and ‡ for p<0.05, both
measured with Wilcoxon signed rank test).

be seen, the discourse transition distributions in
CS dataset are diverse for positive and negative
pairs. It may help explain why discourse can better
signal initiation-response pairs on CS compared
with CMV (observed from DISCOURSE_ONLY’s
performance in Table 2). For CMV, there are
slightly different distributions for positive and neg-
ative pairs. For this reason, topic factors may con-
tribute more than discourse (seen via comparing
DISCOURSE_ONLY and TOPIC_ONLY on CMV).
This also indicates that discourse modeling for ar-
gumentative dialogues is challenging, which may
require the learning of more complex features other
than word statistics and is beyond the capacity of
our model.

6 Related Work

Our work is in the line with prior efforts to detect
initiation-response pairs. Wang and Rosé (2010)
explore how topic features discovered via latent se-
mantic analysis (LSA) work in this task, largely
ignoring the effects of discourse roles. On the
contrary, our study shows that both topics and dis-
course are helpful to identify who respond to whom
in conversation structure. Other related work (Jami-
son and Gurevych, 2014; Du et al., 2017; Chen
et al., 2017) focus on the design of hand-crafted
features. Recently, there exists a growing attention
over how neural framework perform to identify
replying relations in conversation discourse (Guo
et al., 2018; He et al., 2019). However, they ignore
the effects of latent topics and discourse to structure
a conversation, which are extensively studied here

and shown useful to indicate initiation-response
relations in experiments.

We are also inspired by the previous approaches
to discover latent topics and discourse in conversa-
tions contexts. Many of them employ probabilistic
graphical models in LDA-fashion to explore word
statistics (Ritter et al., 2010; Li et al., 2018a; Zeng
et al., 2018). We take the advantage of the recent
progress to explore conversation representations
via variational autoencoders (VAE) (Miao et al.,
2017; Zhao et al., 2018; Zeng et al., 2019a), al-
lowing to capture topic and discourse factors in
an unsupervised manner. However, their effects to
signal user interactions in conversation structure
have never been studied before, which is a gap our
work fills in.

7 Conclusion

This work explores the effects of latent topics and
discourse roles to signal initiation-response rela-
tions that structure a conversation. We first em-
ploy a VAE-based neural model to capture topic
and discourse representations in an unsupervised
manner. Then, topic consistency and discourse
dependency are further exploited to predict how
likely an utterance responds to an initiation. Exten-
sive experiments on large-scale datasets containing
asynchronous English argumentative conversations
(from the CMV subreddit) and synchronous Chi-
nese customer service dialogues (from Wangwang
platform) show that our model significantly outper-
form the previous state-of-the-art models.
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Limitations

The model’s performance relies on preprocessing
steps, such as token filtering and utterance length
restrictions, which could potentially introduce bias
or eliminate valuable information. To address this
issue, the use of modern tokenizers and large lan-
guage models may be beneficial. Additionaly, in
terms of multi-lingual generalizability, the model’s
ability to identify initiation-response pairs in asyn-
chronous English argumentative conversations and
synchronous Chinese customer service dialogues
may not readily transfer to other languages.
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A Position Distribution of Datasets
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Figure 7: The distribution over relative positions of ini-
tiations and responses. X-axis: initiations’ utterance
order counted from responses (only considering cus-
tomer’s or OH’s turns). Y-axis: proportions.

We analyze the relative positions of initiations
and responses and show the distribution of their in-
termediate utterance number in Figure 7. As can be
seen, large proportion of responses do not interact
with the closest utterance, though CS sellers do re-
spond more to newer questions, probably because
of recency effects in in synchronous dialogues —
people’s attention tends to be drawn by new infor-
mation. However, in asynchronous forum discus-
sions, CMV challengers are more likely to quote
the opening points in OH’s post. Another possible
reason is that most key arguments are located at the
beginning of a post.

B Further Discussions

B.1 Parameter Analysis.

Here we present in-depth analyses of our model
and start with the discussion of two important pa-
rameters — the number of topics (K) and discourse
(D).

Varying Topic Number. Figure 8 (a) shows
how Hits@1 scores change over varying num-
ber of topics (K). For comparison, we also dis-
play MATCH_DVAE’s results, the best comparison
model in Table 2. For relatively large K, our model
performs consistently better than MATCH_DVAE.
We also find that the our trend on both datasets
are not monologues, where the best performance
is attained at K = 50 for CMV and K = 10 for
CS. This implies that the topics in customer service
dialogues are limited (focusing on products) while
participants may discuss wide range of topics in
social media debates.
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Varying Discourse Number. The results for vary-
ing discourse number (D) are displayed in Figure 8
(b). Similar to K, our model exhibits consistently
better results than MATCH_DVAE for D > 1. It
is also observed that CS is more sensitive to D
compared with CMV, indicating that discourse fac-
tors largely affect the initiation-response prediction
results on CS.
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Figure 8: Hits@1 over varying number of topics and
discourse X-axis: topic number (K in (a)) and discourse
number (D in (b)). Y-axis: Hits@1 score. Blue and red
curves: our model on CMV and CS. Purple and black
lines: MATCH_DVAE on CMV and CS.

B.2 Case Study.

To further examine what we learn to represent top-
ics and discourse, we take the CMV conversation
snippet in Figure 1 as an example to analyze the
topic and discourse words assigned by our model.
Recall that R answers C1’s question suggested by
the shared pronoun “that” and the similar topics
they concern. Figure 9 shows the visualization re-
sults and displays topic words in red and discourse
in blue. It is observed that our model is able to
separate topic words (e.g., “thank”, “private”, and
“public) from discourse (e.g., “that”, “what”, and
“?”), which may resulting in coherent topic and
discourse distributions and indicative representa-
tions to signal initiations-response relations. Inter-
estingly, discourse words are mostly stop words
and punctuation. Their meaningful clusters exhibit-
ing different statistic patterns might usefully indi-
cate varying discourse behaviors in conversations,
which is consistent with the findings from previous
studies (Li et al., 2018b; Zeng et al., 2019a).

B.3 Downstream Task.

In Introduction, we mentioned that the detection of
initiation-response pairs may contribute to a better
understanding of conversation structure and hence
benefit downstream applications. Here we take the
prediction of argument persuasiveness as an exam-
ple to discuss whether the representations learned

Figure 9: Visualization of the topic and discourse word
assignment for the CMV conversation snippet in Fig-
ure 1. The blue words are prone to indicate discourse
(p(w | d) > p(w | z)) while red topic. Darker colors
indicate higher confidence.

by our model can advance the state-of-the-art per-
formance on this task. Table 3 shows the perfor-
mance of the non-neural baseline (Tan et al., 2016),
the state-of-the-art model (Ji et al., 2018b), and Ji
et al. (2018b) incorporating the topic and discourse
representations we learn (z and d). The dataset is
also collected from CMV and argument quality is
labeled by ∆ (given by OH to indicate the success-
ful persuasion). It is seen that the latent topics and
discourse learned to signal initiation-response rela-
tions can indeed help to predict argument quality,
suggesting that the persuasiveness of arguments are
closely related to the structure of who respond to
whom in argumentation processes.

Models Pairwise accuracy
Tan et al. (2016) (baseline) 65.70

Ji et al. (2018b) (SOTA) 70.45
Ji et al. (2018b)+Our model 74.12

Table 3: The pairwise accuracy to predict argument
persuasiveness. The results in the first two rows were
reported in their original paper. Our representations
help advance the state of the art (SOTA).
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Abstract

Despite being spoken by a large population
of speakers worldwide, Cantonese is under-
resourced in terms of the data scale and diver-
sity compared to other major languages. This
limitation has excluded it from the current “pre-
training and fine-tuning” paradigm that is dom-
inated by Transformer architectures. In this pa-
per, we provide a comprehensive review on the
existing resources and methodologies for Can-
tonese Natural Language Processing, covering
the recent progress in language understanding,
text generation and development of language
models. We finally discuss two aspects of the
Cantonese language that could make it poten-
tially challenging even for state-of-the-art ar-
chitectures: colloquialism and multilinguality.

1 Introduction

Cantonese, or Yue Chinese, is a diaspora lan-
guage with over 85 million speakers all over the
world (Lai, 2004; García and Fishman, 2011; Yu,
2013; Eberhard et al., 2022). 1 It is commonly
used in colloquial scenarios (e.g., daily conversa-
tion and social media) but also in formal and writ-
ten contexts, such as in the Legislative Council of
the Hong Kong Special Administrative Region, or
in sections of special local interests in the newspa-
pers, such social and entertainment, or in horse rac-
ing and betting information. Otherwise Standard
Chinese (SCN) 2, sometimes called Putonghua (普
通话) or Guoyu (國語), is generally favored in for-
mal and written contexts (Luke, 1995; Lee, 2016;
Li, 2017; Wong and Lee, 2018).
In terms of digital language support, Mandarin

Chinese thrives with a mature Natural Language
Processing (NLP) environment. Chinese NLP
has a versatile and growing literature from major

1https://www.ethnologue.com/language/yue.
2Notice that the written form of SCN includes both sim-

plified and traditional orthographies for writing in a specific
Chinese dialect or topolect.

conferences, such as ACL and COLING. In con-
trast, as for digital language support Cantonese is
at the vital level, one level lower than thriving
(cf. Ethnologue) (Zhao et al., 2024b; Zhu et al.,
2024). In fact, Cantonese is an rare exception as
a main diaspora language, as most diaspora lan-
guages -including but not limited to Arabic, Chi-
nese, English, French, Hindi, Japanese, Korean,
Portuguese, Spanish, etc.- have both a thriving dig-
ital language support and a strong NLP commu-
nity, while Cantonese does not (Li et al., 2023;
Zhao et al., 2024a).
More specifically, while current NLP paradigms

have been deeply changed by large-scale pre-
training models based on Transformer architec-
tures, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), ELECTRA (Clark et al., 2020), GPT-
3 (Brown et al., 2020) and GPT-4 (Achiam
et al., 2023), which have achieved state-of-the-
art (SOTA) level of performance on several tasks.
Compared to the previous generation systems, the
progress was particularly remarkable in task requir-
ing fine-grained semantic understanding, such as
textual entailment, question answering and causal
reasoning (Wang et al., 2018, 2019; Zhao et al.,
2023). On the other hand, language technologies
for Cantonese have not yet benefited from this rev-
olution (Xiang et al., 2022). From this point of
view, the number of publications in the ACL An-
thology is emblematic (see Figure 1): only 61 pa-
pers are related to “Cantonese”, compared to 9,756
papers for English, and 5,312 (4,919 + 393) for
SCN/Mandarin.
The history of publications in Cantonese NLP,

as in Figure 1, shows that the numbers of papers
published yearly remains in single digit, although
there is a moderate increasing trend (cf. Figure 2).
However, as an emergent language in NLP, it is
surprising that only a small portion (17/61, 27.9%)
introduces language resources, as shown by Table
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Figure 1: Number of publications in the ACL Anthol-
ogy indexed by languages as of Mar 2024. The publi-
cations were retrieved via searching the language name
in either the title or the abstract.

Figure 2: Yearly publications of the 61 papers for Can-
tonese NLP in the ACL Anthology from 1998 to 2024.

Research Topics # of Papers
Phonetics&Phonology&
Speech Recognition 22

Lexicography&Syntax&
Semantics&Morphology 10

NLP Resources 17
NLP Tasks 12
Total 61

Table 1: Papers on Cantonese by research topic (statis-
tics checked on Mar 2024).

1. This explains why Cantonese NLP has a prob-
lem in terms of scarcity of resources and lack of
alignment to state-of-the-art practices.
In light of these concerns, this paper presents a

first overview of Cantonese NLP, going through
essential issues regarding this language’s unique-
ness, data scarcity, research progress, and major
challenges. As a pilot study, we also present some
preliminary analysis on Cantonese data from so-
cial media and discuss the possible challenges. We

found that, given the prominence of colloquial lan-
guage and code-switching in the data, it is desir-
able that future models will be developed to prop-
erly deal with such phenomena. Finally, we con-
clude our contribution by indicating some possible
directions for future research.

2 Cantonese NLP Resources

2.1 Corpora

Cantonese was perhaps the most documented
Sinitic languages in early bilingual dictionaries
compiled by western missionaries (Huang et al.,
2016). Some Cantonese words were included
in the first ’modern’ bilingual Chinese dictionary
compiled by Matteo Ricci at the end of the 16th
century. The majority of the bilingual dictionar-
ies published throughout the 19th century were, in-
deed, dedicated to Cantonese. Given the impor-
tant role of Cantonese in the context of the en-
counter between China and the West, it is perhaps
no surprising that the first Cantonese corpus was
a bilingual one. Wu (1994) introduced the work
on the HKUST Chinese-English Bilingual Parallel
Corpus, based on the transcriptions from the Hong
Kong legislative Council. The first monolingual
Cantonese corpus was most likely the CANCORP
(Lee and Wong, 1998), consisting of one million
characters from Cantonese-speaking children in
Hong Kong. Another important corpus for child
language acquisition is the CHILDES Cantonese-
English Corpus by Yip and Matthews (2007), con-
taining both audio and visual data of children con-
versation and the related transcripts.
The Hong Kong Cantonese Adult Language

Corpus (HKCAC) focuses instead on adult lan-
guage and contributes speech recorded from
phone-in programs and forums (Leung and Law,
2001). This corpus also presents speech transcrip-
tions for a total of 170k characters. Another re-
source, the Hong Kong University Cantonese Cor-
pus (HKUCC) (Wong, 2006) was collected from
transcribed spontaneous speech in conversations
and radio programs and its annotation include
word segmentation, Cantonese pronunciation and
parts-of-speech, covering approximately 230,000
words.
Lee (2011) introduced a parallel corpus that

aligns Cantonese and SCN at the sentence level for
machine translation. The annotation materials are
the transcriptions of Cantonese speeches from tele-
vision shows in Hong Kong, and their correspond-
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Figure 3: Outline of the survey.

ing Mandarin subtitles. The corpus contains 4,135
pairs of aligned sentences, with a total of 36,775
characters in Mandarin, and 39,192 in Cantonese.
Wong et al. (2017) later published a small paral-
lel dependency treebank for Cantonese and Man-
darin, based on the same textual materials. The
corpus consists, in total, of 569 aligned sentences
and it is annotated with the Universal Dependen-
cies scheme (DeMarneffe et al., 2014; Nivre et al.,
2016). Another corpus based on the transcripts of
Hong Kong Cantonese movies has been presented
by Chin (2015), and made accessible to the users
via an online interface. 3

Spoken Cantonese data from television and ra-
dio programmes broadcasted in HongKong are the
source material also for the corpus introduced by
Kwong (2015). The corpus covers different topics,
such as politics, affairs, economics/finance, and
food/entertainment, and a variety of textual typolo-
gies (interviews, phone call transcriptions, reviews
etc.). The Hong Kong Cantonese Corpus by Luke
and Wong (2015) includes 150,000 words, and
it also consists of transcribed Cantonese speech
recordings that are annotated with both segmen-
tation and part-of-speech tags. Ng et al. (2017)
proposed the first bilingual speech corpus of Can-
tonese and English, built with the goal of the as-
sessment of correct Cantonese pronunciation. Fi-
nally, the most recent introduction is the MYCan-
Cor corpus (Liesenfeld, 2018), which has been
built with 20 hours of Cantonese speech recorded
in Malaysia (plus the videos and the related tran-
scriptions) to support studies on multimodal com-
munication.
Concerning domain-specific resources, the par-

allel corpus by Ahrens (2015) includes 6 million
words from political speeches from China, Hong
Kong, Taiwan and USA, and it contains more than

3https://hkcc.eduhk.hk/.

one million words of transcribed speeches of Hong
Kong’leaders before and after the handover. It
consist of more than 400k words in English, and
more than 600k words in Chinese/Cantonese. Pan
(2019) introduced a Chinese/English Political Cor-
pus for translation and interpretation studies. With
over 6 million word tokens, the corpus consists of
transcripts of both Cantonese and Mandarin and
their English translations. Lee et al. (2020) intro-
duced a Counselling Corpus in Cantonese to re-
search domain-specific dialogues: 436 input ques-
tions were solicited from native Cantonese speak-
ers and 150 chatbot replies were harvested from
mental health websites. The authors later extended
their work by collecting another dataset used for
text summarization and question generation (Lee
et al., 2021), containing 12,634 post-restatement
pairs and 9,036 post-question pairs, all with man-
ual annotations. It also includes 89,000 unla-
beled post-reply pairs collected from the online
discussion forums in Hong Kong. Finally, the
SpiCE corpus by Johnson et al. (2020) is an open-
access corpus created specifically for translation
tasks and contains bilingual speech conversations
in Cantonese and English, for a total of 19 hours
of conversation. The transcripts have been pro-
duced with the Google Cloud Speech-to-Text ap-
plication, followed by manual corrections, ortho-
graphic alignment and phonetic transcriptions.

For corpus reading and preprocessing, Lee et al.
(2022) recently introduced the PyCantonese pack-
age, which includes reader modules for some of
the most popular Cantonese corpora (e.g. the
CHILDES Cantonese-English Bilingual Corpus,
the Hong Kong Cantonese Corpus etc.), stopword
lists, modules for carrying out word segmentation
and part-of-speech tagging, parsing and common
computational tasks involving Jyutping (e.g. ro-
manization of the characters).
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2.2 NLP Benchmarks

The gap between Cantonese and other diaspora
languages in NLP research and digital support is
underlined by the scarcity of benchmark datasets
specifically targeting Cantonese. A first example
was the shared task for Chinese Spelling Check,
which was conducted in co-location with the work-
shop on NLP for Educational Applications in 2017.
The organizers published a benchmark dataset
with 6,890 sentences for normalizing Cantonese,
mapping from the spoken to thewritten form (Fung
et al., 2017).
Xiang et al. (2019) provided a sentiment analy-

sis benchmark collected OpenRice, a Hong Kong
catering website, where over 60k comments are
labeled with 5-level ratings indicating sentiment
scores. The authors anonymized the data, fil-
tered out comments written in other languages (e.g.
SCN, English) and limited the length of the exam-
ples to 250 words. 4

Chen et al. (2020) published a rumor detec-
tion benchmark collected from Twitter, including
27,328 web-crawled tweets (13,883 rumors and
13,445 non-rumors) written in Traditional Chinese
characters, in part in Taiwanese Mandarin and in
part in Cantonese 5. However, the dataset does
not provide the information about the language in
which a tweet has been written.
For text genre categorization, a benchmark has

been collected by the ToastyNews project 6. The
dataset consists of more than 11000 texts, divided
into 20 different categories. The texts have been
extracted from LIHKG, a popular Hong Kong fo-
rum with a structure similar to Reddit, and the cat-
egory labels have been generated from the discus-
sion threads they belong to.
Finally, for the development of dialogue sys-

tems, Wang et al. (2020) presented a food-ordering
dialogue dataset for Cantonese called KddRES, in-
cluding dialogues extracted from Facebook and
OpenRice for 10 different Hong Kong restaurants.
Using this dataset, it is possible to evaluate systems
either on the classification of the intention of cus-
tomer statements, or on sequence labeling tasks to
identify the slot of interests of a conversation (e.g.
the selected food, the number of people for a reser-
vation, the time for take-out etc.).

4https://github.com/Christainx/Dataset_
Cantonese_Openrice.

5https://github.com/cxyccc/CR-Dataset.
6https://github.com/toastynews/lihkg-cat-v2

3 Pilot Study for Cantonese

In the previous sections, we have illustrated the
general scarcity of resources in NLP for Cantonese.
We also mentioned that Cantonese has a numer-
ous and active social media community, and Can-
tonese social media language provides an interest-
ing example for analysis, as it can show the main
challenges related to the automatic processing of
this language.
As we anticipated, colloquialism and multilin-

guality are primary obstacles to robust and effec-
tive processing. In the next sections, we present
an analysis of the two phenomena in Cantonese so-
cial media.

3.1 Colloquialism and Lexical Differences

In the introductory sections, we already discussed
how the Cantonese vocabulary deeply diverges
from SCN (Ouyang, 1993; Snow, 2004), and men-
tioned the fact that, due to the long tradition of
all Sinitic languages sharing a written/formal strata
(i.e. written Chinese), the divergence and chal-
lenges of Cantonese are in the spoken or informal
strata. This include transcriptions of speech, as
well as the habit in writing to adopt a colloquial
style when dealing with topics of local interest,
hence we refer to it as ”colloquialism”).

Data Source Token Count Text Size
DISCUSS 118.7 M 258.8 MB
LIHKG 632.7 M 651.9 MB
OpenRice 172.1 M 226.1 MB

Table 2: Scales of textual data from 3 different Can-
tonese forums (0.924 billion tokens and 1.1 Gigabytes
size in total).

In this section, we analyze the colloquial fea-
tures of Cantonese, with some examples, and
present some data from a small-scale study on
word surprisal (Hale, 2001, 2016). To start with,
we examined the data from three popular Can-
tonese online forums: DISCUSS, LIHKG, and
OpenRice (Hong Kong).7 The first two are gen-
eral forums with diverse topics, while OpenRice
is s the most popular forum for sharing restaurant
and food reviews. Table 2 shows the statistics of
the forums, where the three sources altogether con-
tribute 1.1 Gigabytes (G) texts and 0.924 billion

7DISCUSS: discuss.com.hk; LIHKG: lihkg.com;
OpenRice:https://www.openrice.com/zh/hongkong.
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(B) tokens. Just to give some figures for compari-
son, 80G texts and 16B tokens have been used for
pre-training English models on tweets (BERTweet,
Nguyen et al. (2020)), and 5.4B tokens have been
used for a relatively small size model for SCN
(MacBERT, Cui et al. (2021)). This would be, to
the best of our knowledge, the largest social media
text collection for pre-training a Cantonese model
from scratch, although the data size is certainly
smaller compared to other languages.

One reason why it is challenging to directly
apply or adapt SCN NLP models for Cantonese
is the large number of Cantonese specific vocab-
ulary and expressions, including words with un-
known forms and words with known forms but
with novel meanings. These discrepancies made
the pre-trained models based on Mandarin ineffec-
tive for Cantonese NLP. In addition, due to the low
degree of conventionalizing, spelling mistakes are
prominent in the data, such as the mis-replacement
of fan3 gaau3 訓覺 instead of fan3 gaau3 瞓覺
(sleep), together with intentional misspellings in
jokes and punning, which are commonly found
also in newspapers headlines (Li and Costa, 2009).

As in all social media texts, slang expressions
and idioms are also frequently found, requiring ex-
ternal knowledge and background for the correct
understanding, and most of such expressions are
unknown in standard Chinese. Consider the fol-
lowing example: gam1 ci3 jin2 coeng3 wui2 hou2
naan4 maai5 dou3 fei1，keoi5 dou1 hai6 zap1 sei2
gai1 sin1 zi3 jau5 dak1 tai2 zaa3。今次演唱會
好難買到飛，佢都係執死雞先至有得睇咋。
(It’s extremely hard to buy tickets for the concert.
He would not have a chance to go to the concert
if he did not collect a lucky coin). There are at
least two expressions that would be challenging to
a SCN trainedmodel. The first is the word飛‘fare,
ticket’, which is a phonetic borrowing as discussed
above. AMandarin trained model would treat it as
the verb‘to fly’, with a different PoS and totally
different behavior. The second is the expression
zap1 sei2 gai1執死雞 is a Cantonese idiom origi-
nated from football terminology, literally meaning
‘to hold (a) dead chicken’, which is shared byMan-
darin and Cantonese. However, in Cantonese, it
also has the idiomatic meaning that was originally
used in soccer ‘scoring a goal with pure luck.’
These two meanings in Cantonese cannot be ob-
tained without either a comprehensive Cantonese
lexicon of colloquial usages or a large training cor-

pus. Without the prior knowledge of its extended
meaning of “to get a great deal”, even for humans
it would be challenging to make sense of the sen-
tence, not to mention NLP models.
We studied the bigram distributions of DIS-

CUSS, containing forum threads in 20 different
topics, and compare it with the Gigaword cor-
pus, which is composed of text from news out-
lets in Chinese (Huang, 2009; Parker et al., 2011).
Both datasets concern contemporary and widely-
discussed events in diverse news topics and are
written in traditional Chinese. For both datasets,
we sampled 260 megabytes of textual data and
computed the average frequency of the union of the
top 1000most frequent bigrams in the two datasets.
The relative frequencies of the bigrams are shown
in Figure 4. We can observe, at a glance, that the
distribution of DISCUSS exhibits a high spike on
the left, and then it has a long tail of low-frequency
bigrams. Notice that, given the bigger size and the
more standardized nature of GigaWord, the rela-
tive frequencies of many of the shared bigrams in
the long tail are comparably higher.
To explore the predictability of Cantonese text

by SCN models, we utilized two representative
models to extract and compare surprisal scores for
Cantonese sentences and the corresponding trans-
lations in Simplified and Traditional Chinese. We
chose to use the BERT-CKIP model 8, which was
trained on Traditional Chinese on a concatenation
of a 2020 dump of the Chinese Wikipedia and the
Chinese Gigaword Corpus (Huang, 2009; Parker
et al., 2011); and the RoBERTa-HFL model 9, an
implementation of RoBERTa by Cui et al. (2021).
It has been trained on both Simplified and Tradi-
tional characters on a 2019 dump of the Chinese
Wikipedia and various news and question answer-
ing websites.
The surprisal of a word w (Hale, 2001; Levy,

2008) is generally defined as the negative log prob-
ability of theword conditioned on the sentence con-
text, according to the following:

Surprisal(w) = −logP (w|context) (1)

The higher the surprisal for a given linguistic ex-
pression, the more unpredictable that expression
is for a given computational model. If a model
instead is able to provide confident estimates of

8https://github.com/ckiplab/
ckip-transformers

9https://huggingface.co/hfl/
chinese-roberta-wwm-ext
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Figure 4: Distribution of bigrams from DISCUSS and Gigaword datasets. The x-axis shows the union dataset of
the top 1,000 bigrams from each dataset ordered by the average relative frequency in the two datasets. The top
curve refers to DISCUSS, the bottom one to Gigaword.

words occurring in a corpus, the surprisal will be
low.
To run our small experiment, we adopted the im-

plementation of theminicons library (Misra, 2022),
which provides handy functions to estimate proba-
bility and surprisal scores of a sentence. We ran-
domly sampled 50 sentences from the Cantonese
forums in Section 4.1, and for each of themwe gen-
erate the translation in both Traditional and Simpli-
fied Chinese using the Baidu translation interface
10. Then we computed the surprisal score for each
sentence using the two SCN models, and took the
average across sentences. The sampling was re-
peated 10 times (Table 3 reports the average across
different samples). Notice that, since both BERT-
CKIP and RoBERTa-HFL are bidirectional mod-
els trained, the surprisal scores for each word are
computed by masking the words in the sentence
one-by-one, computing their probabilities in con-
text and then applying the formula in (1). Once
the scores for single words are obtained, the mini-
cons library outputs their average as the surprisal
score for the sentence. 11
We tested both Cantonese sentences and Taiwan

Mandarin sentences from the Academia Sinica
Corpus (Huang and Chen, 1992). Note that both
Hong Kong and Taiwan use traditional characters

10https://fanyi.baidu.com/
11This method for estimating probabilities/surprisals for

sentences with bidirectional language models is known as
pseudo log-likelihood, and it has been introduced by Salazar
et al. (2020). This method has a standard implementation in
the minicons library.

with variations in lexical choices. Thus, our study
was carried out in three different writing systems
to ensure that the differences in writing systems do
not contribute to the surprisal scores. Thus each
set of data are tested in 1) original writing forms,
2) converted writing forms with each other (i.e.
Hong Kong vs. Taiwan), and 3) converted to sim-
plified Chinese. The results in Table 3 show that
for both models and for three possible writing sys-
tem settings (i.e. original, switched, simplified),
the Cantonese sentences tend to have higher sur-
prisal scores. The experiment establishes that it is
more difficult for SCN trained models to predict
Cantonese sentences. One of the reasons of the ad-
ditional difficulties may be the usage of different
words in Cantonese: we computed that, compared
to the translated sentences, there is an overlap of
characters of 69.1% for the Traditional Chinese
translation and 65.5% for the Simplified Chinese
one (i.e. more than 30% of the Cantonese charac-
ters do not appear in the translations). Still, given
the relatively high overlap degree, it is likely that
Cantonese-specific words play a role together with
other factors, such as regional usages of the same
words/characters and differences in grammar.
The two models behave very differently when

the Cantonese text is translated into Simplified
Chinese: RoBERTa-HFL, which is trained on
both Traditional and Simplified characters, reports
lower surprisal scores than on the original Can-
tonese sentences, and has a slightly higher score
for the translation from Traditional to Simplified
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BERT-CKIP RoBERTa-HFL
Can_Orig 4.30 4.39
Trad_Translated 3.17 2.89
Simp_Translated_Can 5.84 2.79
Trad_Orig 0.61 1.09
Can_Translated 1.71 2.20
Simp_Translated_Trad 5.38 1.15

Table 3: Surprisal analysis on 50 Cantonese and Traditional Chinese sentences. The average surprisal scores are
shown in the table. Can_Orig: 50 Cantonese sentences. Trad_Translated: 50 Traditional Chinese sentences trans-
lated from Can_Orig. Simp_Translated_Can: 50 Simplified sentences translated from Can_Orig.

(which might be due to the ambiguity of the con-
version, as for a traditional character there might
be multiple corresponding characters in Simplified
Chinese); BERT-CKIP has instead extremely high
surprisal scores when either Cantonese or Tradi-
tional Chinese are translated into Simplified Chi-
nese, as it was not exposed to Simplified characters
during pretraining. In any case, we can notice that
predicting words in Cantonese is much more chal-
lenging for SCNmodels, and that extra difficulties
may come in when there is a conversion from Tra-
ditional to Simplified characters.

3.2 Multilinguality

language Cantonese SCN English Others
DISCUSS 31.49% 52.00% 9.19% 7.32%
LIHKG 40.57% 33.40% 11.85% 14.18%
OpenRice 73.65% 18.91% 4.93% 2.55%

Table 4: Ratio of language usage. Cantonese and Stan-
dard Chinese are dominant in all the datasets under con-
sideration.

To better understand the nature of multilingual-
ism, we examine the contribution of different lan-
guages to Hong Kong social media data. The open-
source toolkit fastlangid is employed to analyze
the language usage ratio of the datasets 12. More
specifically, we used fastlangid with the default
settings and the parameter k = 1, meaning that
only the most likely language shall be detected.
The percentages are shown in Table 4, where the
statistics have been computed as an aggregation of
sentence-level results. As it can be seen, the code-
switching behavior across Cantonese and SCN is
frequent; English is also very often attested in our
data 13, and we can even observe code-mixing

12https://github.com/currentsapi/fastlangid
13It should be kept in mind that English is still one of the

primary languages in Hong Kong education.

with other languages. This is because Cantonese-
speaking areas happen to integrate speakers of
multiple nationalities (Yue-Hashimoto, 1991; Li,
2006).
To exemplify the multilingualism phenomenon

in Cantonese, we present some typical code-
switching cases of Cantonese and English. The
original texts are followed by the English transla-
tions in brackets. The switched scripts are under-
lined in both the original texts and the translations.

• E1: sau1 dou3 offer, gam1 nin4 gau2 jyut6
zung6 heoi3 m4 heoi3 dou3 ngoi6 gwok3
duk6 syu1 hou2? 收到offer,今年 9月仲去
唔去到外國讀書好? (Got the offer. Will it
be better or not to go for overseas study in
September this year?)

• E2: hai6 ge3 zau6 wai4 jau5 hai2 hoeng1
gong2 maai5 liu5, tung4 maai4 dim2 gaai2
hoeng1 gong2 di1 din6 hei3 dim3 m4 gaau2
haa6 di1 si3 sik6 wut6 dung6。係嘅就唯有
喺香港買了,同埋點解香港啲電器店唔搞
下啲試食活動。(I can only buy it in Hong
Kong. And why don’t the electrical appliance
stores of Hong Kong do some trial promotion
campaigns.)

• E3: zaa3 zoeng3 bei2 gaau3 taam5, bat1
gwo3 min6 hou2 Q, zan1 hai6 hou2 zeng3。
炸醬比較淡, 不過麵好Q, 真係好正。(The
fried sauce is bland, but the noodles are very
chewy. it’s really tasty.)

The code-switching phenomenon in E1 is com-
monly observed in the data: the English nouns “of-
fer” is directly taken and inserted in a Cantonese
context. E2 uses “D” in the alphabet as an al-
ternative to Cantonese tokens di1 “啲” (of ) and
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dim2 “點” (some) because of their similar pronun-
ciations. For E3, “Q” is borrowed from Hokkien,
another Chinese variety of the SouthernMin group
that is widely used in Fujian and Taiwan, and it
means “chewy”. The borrowing can be explained
by the geographical proximity of the Cantonese
and Hokkien speaking areas and by the constant
migratory flows between the two regions.
In sum, our analysis shows how colloquialism

and code-switching with multiple languages are
pervasive in Cantonese social media data, and thus
models for Cantonese NLP will have to be robust
to such phenomena. For example, future Can-
tonese language understanding systems could be
integratedwith spelling correction and dialect iden-
tification components, in order to mitigate the ir-
regularity of the input data.

4 Conclusions

In this paper, our goal is to present the status of
the research on Cantonese NLP, to describe the
uniqueness of this language and to suggest possible
solutions for addressing the current shortcoming,
due to the lack of resources. Indeed, most research
on Cantonese NLP has not translated into the re-
lease of useful models, corpora and benchmark
datasets, which are often not publicly available or
not up to date. A possible reason of this difficulty
is the limited number of online sources of Can-
tonese text with non-restrictive licenses (Eckart de
Castilho et al., 2018), which does not leave too
many options to researchers for putting together
new benchmarks and for training large-scale mod-
els that are Cantonese-specific.
After reviewing the existing resources andmeth-

ods, we analyzed the twomain challenges that such
data pose to automatic systems: the pervasive col-
loquialism and the multilinguality of Cantonese
text, which often leads to the simultaneous pres-
ence of multiple languages in the same message
or post. As strategies to tackle the challenges of
Cantonese NLP, we could safely indicate data aug-
mentation and crosslingual learning as two possi-
ble ways to go, in case the collection and balancing
of large-scale Cantonese corpora turn out to be too
problematic.
Cantonese is one of the most pervasive dias-

pora languages with native speaking communities
spread around the world and has a vibrant and mul-
ticultural online community, and unique features
that deserve a special attention for computational

modeling. With our contribution, we hope we will
manage to stimulate a new interest around this lan-
guage in the NLP community, and to encourage fu-
ture studies that will be devoted to resource sharing
and to the reproducibility of the research results on
public benchmarks.

Limitations

The main limitation of this work is that we only
conduct our pilot study on limited number of do-
mains since the textual data demands more efforts
to clean. In future work, we plan to extend our
study in more domains and more specifically focus
on multi/cross lingual scenarios.
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Abstract

Conversational question answering aims to re-
spond to questions based on relevant contexts
and previous question-answer history. Existing
studies typically use ground-truth answers in
history, leading to the inconsistency between
the training and inference phases. However,
in real-world scenarios, progress in question
answering can only be made using predicted
answers. Since not all predicted answers are
correct, indiscriminately using all predicted an-
swers for training introduces noise into the
model. To tackle these challenges, we pro-
pose an automatic answer correctness evalu-
ation method named Auto-ACE. Specifically,
we first construct an Att-BERT model which
employs attention weight to the BERT model,
so as to bridge the relation between the current
question and the question-answer pair in his-
tory. Furthermore, to reduce the interference of
the irrelevant information in the predicted an-
swer, A-Scorer, an answer scorer is designed to
evaluate the confidence of the predicted answer.
We conduct a series of experiments on QuAC
and CoQA datasets, and the results demonstrate
the effectiveness and practicality of our pro-
posed Auto-ACE framework.

1 Introduction

Conversational Question Answering (ConvQA) in-
volves responding to a sequence of questions within
a conversation, while considering the relevant con-
text provided (Qu et al., 2020; Pearce et al., 2023;
Reddy et al., 2019). Different from the traditional
extractive question-answering tasks which conduct
one-turn dialog, as shown in Figure 1, ConvQA is
expected to resolve such implicit information from
the conversational history in a multi-turn way.

With the rise of virtual assistants and chatbots,
ConvQA has recently garnered increased interest.
Hence, numerous works have been conducted for

*These authors contributed equally to this work.
†Corresponding author.

Figure 1: Examples of using (a) ground-truth answers
and (b) predicted answers.

further study. Raposo et al. (2022) proposed a con-
versational question answering system specifically
designed for the Search-Oriented Conversational
AI (SCAI) shared task, and provided a detailed
analysis of its question rewriting module. Qu et al.
(2019b) introduced a positional history answer em-
bedding method to encode conversation history
with positional information using BERT (Devlin
et al., 2018). They also designed a history attention
mechanism (HAM) for each question-answer pair
and utilized multi-task learning to predict the final
answer. Nevertheless, despite their successes, these
works on ConvQA rely on the ground-truth answer,
overlooking the fact that real-world progress can
only be achieved using predicted answers.

Existing researchers found a way to tackle this
limitation by using the predicted label (Mandya
et al., 2020; Christmann et al., 2022). This method
can partially trade off the balance between training
and inference. However, if the predicted answer is
incorrect, it will introduce noisy samples into the
model, thereby affecting performance. For exam-
ple, as shown in Figure 1, {Q2, A2, Q1, A1} are
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input as the conversation history of Q3 into the
Question Answering (QA) model to perform infer-
ence for A3. Figure 1(a) indicates that ground-truth
answers are used for inference, which significantly
differs from the real-world inference scenarios. Fig-
ure 1(b) indicates the use of all predicted answers
for inference. Although this way is more practical,
it introduces noise into the model to some extent
when the predicted answers are incorrect. There-
fore, we propose an answer scorer model that can
automatically assign attention weights to predicted
answers and incorporate them into the QA model’s
inference phase. The most similar work to ours is
the work of Jeong et al. (2023), which requires an
initial round of training and prediction to obtain
the predicted answers along with their confidences
and uncertainties before the official training. This
additional training and prediction step increases the
overall training time and computational resource
consumption.

In this paper, we propose an automatic answer
correctness evaluation method named Auto-ACE,
which comprises an Att-BERT and an A-Scorer
method to maximize the use of effective informa-
tion from the predicted answers. To be more spe-
cific, we first construct an Att-BERT model which
employs attention weight to the BERT model, so as
to bridge the relation between the current question
and the question-answer pair in history. Further-
more, to reduce the disturbance of the irrelevant
content in the predicted answer, A-Scorer, an an-
swer scorer is designed to evaluate the confidence
of the predicted answer. During the training phase,
Att-BERT and A-Scorer are trained, while in the
inference period, A-Scorer evaluates each question-
answering pair in the history to obtain the correct-
ness of the predicted answer. Numerous experi-
ments on QuAC and CoQA datasets demonstrate
the effectiveness and practicality of our proposed
Auto-ACE framework1.

The main contributions of our work can be sum-
marized as follows:

• We propose an Auto-ACE framework to es-
tablish the connection between the current
question and historical question-answer pairs,
balancing the process between training and
inference phases.

• To bridge the relation between the current
question and the historical question-answer

1https://github.com/baibaizhixin/Auto-ACE

pair, Att-BERT is designed. Moreover, we
devised the A-Scorer, which is trained with
Att-BERT during the training phase and eval-
uates the correctness of the predicted answer
during the inference phase to mitigate the im-
pact of erroneous predicted answers and max-
imize the utilization of historical conversation
information.

• Our Auto-ACE framework achieves excellent
performances on QuAC and CoQA datasets,
which shows our approach is effective.

2 Related Works

2.1 Conversational Question Answering
ConvQA is an extension of the QA task which aims
to train a model that can answer the question by
means of understanding the context of the given
context and the previous conversational questions
and answers. In the work by Nishida and Tomita
(2019), BERT is utilized to encode contexts in-
dependently conditioned with each question and
answer within a multi-turn context. This process
enables the method to predict answers based on the
context representations encoded with BERT. Qu
et al. (2019a) presented a distinct method termed
history answer embedding, which incorporates con-
versation history into a ConvQA model built on
BERT. Query rewriting became a popular technique
for ConvQA. Vakulenko et al. (2021) addressed
question ambiguity by rewriting them, ensuring
they can be effectively processed by existing QA
models as standalone questions, independent of the
conversation context. Wu et al. (2022) introduced
a query rewriting model tailored for converting
conversational questions within a context into stan-
dalone queries. This model is trained using a novel
reward function, optimized directly for retrieval via
reinforcement learning. Although the above stud-
ies attain excellent performance in ConvQA, they
ignore the unbalance between training and infer-
ence phases due to the utilization of ground truth
or predicted answers.

2.2 Score-based Methods
Score-based methods have gained significant at-
tention in various Natural Language Processing
(NLP) tasks due to their capability to enable mod-
els to selectively focus on relevant parts of the in-
put sequence. For example, Osama et al. (2020)
introduced the Score-Based Ambiguity Detector
and Resolver method. This system uses Stanford
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Figure 2: A figure

CoreNLP to generate possible parse trees for each
sentence in a given textual requirement. It then
analyzes these parse trees through four filtering
pipelines to detect syntactic ambiguities and sug-
gest multiple possible interpretations, effectively
resolving the ambiguities. Several attempts have
been made to enable self-attention to learn depen-
dencies between words in a sentence and capture
the sentence’s inner structure (Tan et al., 2018; Cao
et al., 2018). Liu et al. (2021) devised an attention
score-based word rank approach, incorporating a
word sequence encoder and a word-level attention
layer. Despite the extensive work on score-based
methods in various natural language tasks, their ap-
plication in ConvQA remains under-explored. This
is particularly important when historical questions
and answers contain implicit information, making
the predicted answer unusable directly.

3 Methodology

This section begins with a concise introduction to
the ConvQA task, then we describe how the pro-
posed Auto-ACE framework can bridge the gap
between training and real-world inference scenar-
ios by incorporating predicted answers into model
training, as demonstrated in Figure 2. In addition,
we discuss the calculation of attention weights and
the overall training pipeline.

3.1 Conversational Question Answering

We first provide a general description of the Con-
vQA task. For the i-th turn of the conversation, a
question Qi and its corresponding context C are
given, as well as a conversation history Hi com-
posed of previous questions and answers: Hi =

{Qi−1, Ai−1, ..., Q1, A1}. Then, the goal of Con-
vQA is to correctly extract the answer Ai from C,
along with Qi and Hi, as shown below:

P (Ai) = P (Ai | C,Qi,Hi)

= Mθ (C,Qi, Qi−1, Ai−1, . . . , Q1, A1)
(1)

where Mθ is the ConvQA model.
In previous work, some of them assumed that

the ground-truth answers {Ai−1, Ai−2, ..., A1} are
available in the inference phase, as shown in Equa-
tion 1. However, this setup is far from reality be-
cause progress in the real world can only be made
using the predicted answer. If the training process
always uses ground-truth answers, it will lead to
the model not performing well in real-world infer-
ence scenarios. Another part of them recognized
this and tried to select whether to include the pre-
dicted answer of a certain historical turn in the
conversation history by setting a threshold. How-
ever, it often requires an additional step of training
to calculate the confidence of all predicted answers
and determine the value of the threshold, which in-
creases the overall training time and computational
resource consumption. Therefore, we modify the
formulation in Equation 1 to bridge the gap be-
tween the training and the inference phase, which
we will describe in the following section.

3.2 Training with Predicted Answers

As delineated in Section 3.1, employing ground-
truth answers during model training and predicted
answers during inference is inadvisable. To align
the model’s training phase more closely with real-
world inference scenario, a rational strategy entails
utilizing the model’s prior predictions as inputs to
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the conversation history for subsequent turns of
prediction, as follows:

P (Ai) = Mθ

(
C,Qi, Qi−1, Ai−1, . . . , Q1, A1

)
(2)

where {Ai−1, Ai−2, ..., A1} are the predicted an-
swers.

Given that the accuracy of the model’s predictive
answers is not infallible, incorporating erroneous
predictions into the conversation history may intro-
duce superfluous noise, thereby potentially degrad-
ing the efficacy of the predictions. Therefore, we
propose an Att-BERT model that applies attention
weights to the BERT model, giving higher weights
to answers with high confidence and lower weights
to answers with low confidence, which allows for
the use of predicted answers during training while
minimizing the noise caused by incorrect predicted
answers.

To be more specific, we assign attention weights
to each turn’s question Qj and predicted answer
Aj in the conversation history. The weight of the
Qj represents the degree of relevance to the cur-
rent question, and on this basis, the weight of the
Aj also represents the confidence of the predicted
answer, as shown in the following.

P (Ai) = Mθ

(
C,Qi,W

q
i−1Qi−1,W

a
i−1Ai−1,

. . . ,W q
1Q1,W

a
1A1

) (3)

Considering the real-world inference scenario,
we assign attention weights to the questions and an-
swers at each turn of the conversation history. The
attention weight W q

j of the question Qj represents
the degree of relevance to the current question Qi,
that is, the more similar Qj is to the Qi, the more
attention the model will give to this sequence. No-
tably, the attention weight is complemented by the
cosine similarity between Qj and Qi, as shown in
Equation 4. Since all questions in the conversation
history are provided in the inference scenario, the
whole attention weights can be directly calculated.

W q
j = Similarity(Qj , Qi) (4)

where W q
j represents the attention weight of the

question in the j-th turn of the conversation history,
Similarity is used to compute the cosine similarity.

3.3 Confidence-based Attention Calculation
In this section, we aim to enhance the model’s fo-
cus on the most relevant content of the predicted
answers. However, it is impractical to calculate

weights for all predicted answers, as some of them
may be incorrect. To address this challenge, an
A-Scorer is devised to automatically evaluate the
confidence of predicted answers and is trained in
conjunction with the Att-BERT model. In specific,
after the Att-BERT model generates a predicted an-
swer each turn, we input the question Qj , the pre-
dicted answer Aj , and the corresponding context C
into the A-Scorer model to evaluate the confidence
of the Aj , and use the cosine similarity between
the predicted answer and the actual answer as the
ground truth for the confidence.

W a
j = W q

j × A-Scorer(Qj , Aj) (5)

where W q
j and W a

j represent the attention weights
of the question and the predicted answer in the
j-th turn of the conversation history, A-Scorer is
the model we proposed for automatic confidence
evaluation.

Following the joint training of the Att-BERT
model and the A-Scorer model, these two models
become capable of operating in concert with real-
world inference scenarios. The answer predicted
by the Att-BERT model is evaluated for confidence
by the A-Scorer model. Furthermore, during the
prediction of an answer, the attention weight of
each question or answer within the conversation
history is ascertained contingent upon the predicted
answer’s confidence, as well as the degree of corre-
spondence to the current question.

3.4 Overall Pipeline

In this subsection, we describe the training pipeline
for the Att-BERT model and the A-Scorer model,
which are trained together in a single step and are
also applied together in the inference phase.

We divide the training data into batches, ensur-
ing that (1) the same batch does not contain ex-
amples from the same conversation, and (2) for
any two examples from the same conversation, the
batch of the example that appears later in the con-
versation is also later. We do this to ensure that
when an example is input into the model, all pre-
dicted answers for the questions in its conversation
history have already been obtained, thus ensuring
that only predicted answers are used during the
training phase, not the ground-truth answers. Then,
we train the Att-BERT model and the A-Scorer
model together following the training protocol in
Equation 3. The Att-BERT model assigns different
attention weights to the questions and predicted
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answers in the conversation, while the A-Scorer
model evaluates the confidence of the answers pre-
dicted by the Att-BERT model.

For evaluation, we still use Equation 3 as the
actual evaluation protocol. Instead of using ground-
truth answers or sampling predicted answers based
on the confidence obtained during training, we di-
rectly apply the predictions of the A-Scorer model
to the attention weights of the Att-BERT model.
Doing so not only bridges the gap between training
and real-world inference scenarios but also avoids
the need for additional training steps and reduces
the demand for excessive computational resources.

4 Experiments

4.1 Datasets and metrics

QuAC (Choi et al., 2018) is a benchmark ConvQA
dataset, which comprises 14K conversations and
100K question-context pairs and is designed to sim-
ulate realistic information-seeking conversations.
In QuAC, questioners did not have access to the
contexts during data collection. Since the test set
is not publicly available, we use the development
set for evaluation.

CoQA (Reddy et al., 2019) is another ConvQA
dataset, containing 127K question-context pairs.
Similar to QuAC, we use the development set for
CoQA as the test set is not publicly accessible.

F1-score: To assess the performance of our mod-
els, we use the F1-score as the evaluation metric.
This follows the standard evaluation protocol es-
tablished by (Kim et al., 2021). The F1-score is a
widely recognized metric that balances precision
and recall, making it particularly suitable for evalu-
ating the quality of predictions in natural language
tasks.

Baselines: We compare Auto-ACE with several
relevant baselines. Except for the gold and No Pred
models, all other models used predicted answers as
the conversation history in the inference phase.

• Gold: which uses an unrealistic setting in both
training and inference phases, using ground-
truth answers as conversation history.

• No Pred: which does not use predicted an-
swers during training and inference.

• All Pred: which retains all predicted answers
as conversation history during both training
and inference.

Method
QuAC CoQA

BERT RoBERTa BERT RoBERTa
Gold† 59.86 65.08 72.79 77.62

No Pred† 55.44 61.24 70.83 75.56
All Pred† 55.76 61.53 71.28 75.42
CoQAM† 55.83 61.55 71.27 74.29

AS-ConvQA† 57.06 62.18 71.99 76.76

Auto-ACE (ours) 58.38 63.04 72.56 77.29

Table 1: Performance(%) on QuAC and CoQA. Bold
indicates the model with the best performance. Results
with † comes from Jeong et al. (2023).

• CoQAM: which dynamically adjusts the sam-
pling rate to alternately select ground truth
answers or predicted answers during training,
and uses predicted answers during inference
phase.

• AS-ConvQA: This method decides whether
to include the predicted answer in the con-
versation history during the training and in-
ference phases based on the confidence and
uncertainty of the predicted answer.

4.2 Main Results
As shown in Table 1, the Auto-ACE framework,
which includes an Att-BERT and an A-Scorer
model, demonstrates significant performance im-
provements across all baselines. The evaluation
results show that, our method outperforms the
strongest baseline that does not use ground-truth
answers by 1.32%. In addition, our model can be
trained in one step, unlike AS-ConvQA, which re-
quires additional training and prediction steps. It
should be noted that since the Gold model uses an
unrealistic evaluation setting where ground-truth
answers are used as conversation history, it is not
fair when compared with other methods.

It is worth mentioning that the No Pred meth-
ods outperform those using predicted answers or
heuristic sampling of conversation history, which
demonstrates incorrect predicted answers can in-
troduce noise to the QA model. Moreover, our
method shows a significant advantage, it might at-
tribute to the A-Scorer can automatically evaluate
the confidence of predicted answers, allowing the
QA model to truly focus on relevant and correct
answers, and minimize the impact of noise at the
same time.

4.3 Ablation Study
We also conducted an ablation study on the use
of the attention mechanism. Specifically, we di-
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Method
QuAC CoQA

BERT RoBERTa BERT RoBERTa
Auto-ACE 58.38 63.04 72.56 77.29

w/o attention(Q&Q) 57.32 62.08 70.95 75.29
w/o attention(Q&A) 57.88 62.25 71.19 76.68
w/o attention(both) 56.46 60.98 69.23 74.57

Table 2: Performance (%) of ablation study on QuAC
and CoQA datasets. Bold indicates the model with the
best performance.

vided it into three scenarios: not considering the
attention between the current question and the his-
torical question-answer pairs, not considering the
attention to the predicted answers in the history,
and not using the attention mechanism at all. The
evaluation results are shown in Table 2. The perfor-
mances of all ablation models are worse than the
complete model, which demonstrates the necessity
of the attention mechanism.

The most significant performance drop occurs
when neither of the two attention mechanisms is
considered, so using either one of them alone can
improve the performance, indicating that both of
them are effective. An interesting finding is that
disregarding the attention between the current and
previous questions (Q&Q) often results in worse
performance than disregarding the attention to the
predicted answer (Q&A), indicating that the simi-
larity between the current question and the histori-
cal question-answer pairs seems to have a greater
impact on the model’s performance.

4.4 Difference of Evaluator
To demonstrate that our proposed Auto-ACE frame-
work can deliver robust performance across differ-
ent QA models, we also evaluated it by replacing
the evaluator with Roberta, with the results shown
in Table 1. It can be seen that our model has per-
formed well in both configurations using BERT
and Roberta as evaluators. In the configuration us-
ing RoBERTa as an evaluator, Auto-ACE improved
the F1 scores on the quac and coqa datasets by %
and % compared to the best-performing baseline,
respectively.

4.5 Effect of the Contextual Number
To examine and analyze the impact of the max
length of utterances over the performance of our
proposed Auto-ACE framework, we conduct ex-
periments by varying the max length from 1 to 12.
Since the maximum number of conversation turns
in all sessions of the QuAC dataset is 12, setting

Figure 3: Results(%) of the effect of the different con-
textual number.

the contextual number to 12 means that all samples
retain the complete conversation history. In other
cases, samples retain the most recent contextual
number of conversation turns’ history.

We plotted the experimental results in a bar chart
and demonstrate them in Figure 3. It should be
noted that, to consider the relationship between the
attention in our proposed Att-BERT model and the
contextual number, we also evaluated the model
without applying the attention under different con-
textual number settings. From Figure 1, it can be
seen that as the contextual number increases, the
model’s performance gradually decreases, with the
best results for the model being achieved when the
contextual number is set to 1-3. This also conforms
to our intuition: the more recent Q&A turns in the
conversation history tend to be more relevant to the
current question.

Another point worth noting is: with the increase
of contextual number, although the model’s per-
formance declines, the model without attention to
the conversation history declines more significantly
than our model. This is because, even though there
are many irrelevant Q&A pairs in the long conver-
sation history, the proposed Auto-ACE model can
allocate attention to the conversation history based
on relevance and predicted answer’s confidence,
thus allowing the model to focus on the information
that is relevant and reliable to the current question
in a long sequence.

4.6 Case Study

Two representative conversation scenarios are pro-
vided in Figure 4. These two examples demonstrate
that our method of weighting the conversation his-
tory in the form of attention is highly practical and
meaningful. From example (a), we can observe
that the current question Q3 has a strong correla-
tion with the historical question Q1, because "first
film" in the current question refers to the answer
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Figure 4: Examples of applying the attention weight to the history.

of question Q1:"Flesh and Blood". In our method,
due to the high similarity to Q3, Q1 is assigned
a high attention weight. A1, as the predicted an-
swer for Q1, also receives a high final attention
weight because the A-Scorer deems it to have a
high degree of confidence. When these weights are
applied in the form of attention to Att-BERT, the
model can focus more on the useful information
in the history: Q1 and A1, and thus it is easier to
predict the correct answer.

The opposite scenario is depicted in Figure 4(b).
Although the predicted answer A2 is crucial for the
current question as it includes the keyword "cam-
paign" from Q3, the model’s prediction for ques-
tion Q2 is "Can not answer" at this point, which
could introduce noise into the model when being
used as part of the conversation history. In our
method, "Can not answer" is assigned an atten-
tion weight of 0 by the A-Scorer, hence its final
attention weight is 0. The Att-BERT does not pay
attention to this incorrect answer, thus not affecting
the prediction of the answer for the current turn.

5 Conclusion

In this paper, we introduce an automatic answer cor-
rectness evaluation method named Auto-ACE for
ConvQA task, which can balance the inconsistency
between training and inference. The proposed
Auto-ACE method consists of two primary compo-
nents including Att-BERT and A-Scorer. The Att-
BERT effectively bridges the current question with

historical Q&A pairs using attention mechanisms,
enabling the model to focus on more relevant
content. Furthermore, the A-Scorer is designed
to evaluate the confidence of predicted answers
and is applied to the Att-BERT as the confidence-
based attention. Experiments conducted on QuAC
and CoQA datasets demonstrate that our proposed
Auto-ACE method significantly improves the per-
formance and reliability of other baseline models.

Limitations

Although the Auto-ACE framework demonstrates
promising results in the Conversational Question
Answering task, there are still some limitations that
require further attention: 1) The model’s capability
to process lengthy conversational histories needs
enhancement to ensure consistent performance. In
the future, we will consider the richness of real-
world conversations to improve the model’s perfor-
mance. 2) The A-Scorer may still introduce noise
due to inappropriate evaluation of predicted an-
swers, future work could consider employing large
language models to further enhance the accuracy
of answer evaluation.
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Abstract

The TMAK-Plus team proposes a Multi-
Agent Collaboration (MAC) model for the
dimensional Aspect-Based Sentiment Analy-
sis (dimABSA) task at SIGHAN-2024. The
MAC model leverages Neuro-Symbolic AI to
solve dimABSA transparently and rationally
through symbolic message exchanges among
generative AI agents. These agents collab-
orate on aspect detection, opinion detection,
aspect classification, and intensity estimation.
We created 8 sentiment intensity agents with
distinct character traits to mimic diverse sen-
timent perceptions and average their outputs.
The AI agents received clear instructions and
20 training examples to ensure task understand-
ing. Our results suggest that the MAC model
is effective in solving the dimABSA task and
offers a transparent and rational approach to un-
derstanding the solution process.

1 Introduction

We consider the dimABSA task a challenging sen-
timent analysis problem (Cai et al., 2021; Pontiki
et al., 2016) that requires a deep understanding of
natural language and the ability to sense sentiments
with distinct character traits. Specifically, aspect
detection, opinion detection, and aspect classifica-
tion account for distinct sentiment analysis abil-
ities, while intensity estimation requires a com-
prehensive understanding of valence and arousal
intensities corresponding to the empathetic senti-
ment sensitivity of different individuals.
To address the dimABSA task, we propose a

MACmodel that sequentially solves the aforemen-
tioned challenges, as shown in Figure 1. The
model consists of GPT-4o (gpt-4o-2024-05-13)
powered generative neural AI agents, including
AD, OD, CD, AC, OC, CC, and IE. We pair AD
and AC for collaborative aspect detection, OD and
OC for collaborative opinion detection, and CD
and CC for collaborative aspect classification. IE
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Figure 1: MAC model in the dimABSA Task. The
central dimABSA Manager (DM) agent manages the
overall collaboration, reading the input sentence, gen-
erating the dimABSA result, and coordinating other
agents. These agents include the Aspect Detector (AD)
and Opinion Detector (OD) for sentiment term extrac-
tion, the Category Detector (CD) for aspect classifica-
tion, the Aspect Critic (AC), Opinion Critic (OC), and
Category Critic (CC) for critical evaluation, and the In-
tensity Estimator (IE) for averaging sentiment intensi-
ties from 8 distinct estimators. All messages, including
the input sentence, output quadruples, and intermediate
results, are exchanged in JSON format.

averages the sentiment intensities from 8 estima-
tors with distinct character traits. All agents ex-
change messages in JSON format, including the
detected results or critical feedback, in a symbolic
manner to ensure transparency and rationality.
Unlike previous approaches that focus on the

end-to-end training of a single neural network with
a particular training set (Chen et al., 2021; Mao
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et al., 2021, 2022; Peng et al., 2020; Xu et al., 2020;
Peper and Wang, 2022; Zhang et al., 2021), the
MAC model is powered by multiple generative AI
agents. These agents require only a few training
examples and clear instructions to perform their
tasks in a more robust manner and generalize eas-
ily to out-of-domain data. Our results demonstrate
that MAC provides a generalizable and transpar-
ent Neuro-Symbolic AI framework for solving key
phrase detection, multi-class classification, and re-
gression tasks that require a deep understanding of
natural language.
The main contributions are as follows:

• We propose a transparent and rational MAC
model for the dimABSA task.

• We provide a new paradigm of Neuro-
Symbolic AI powered by generative AI with
symbolic collaboration.

• We demonstrate the effectiveness and gener-
alizability of MAC in solving a challenging
sentiment analysis task.

2 MAC Model for dimABSA

2.1 Formal Definition of dimABSA
The dimABSA task consists of 3 subtasks:
Subtask 1: Intensity Prediction involves pre-
dicting sentiment intensities (i) in the valence and
arousal (v#a) dimensions for given aspect terms in
a sentence.
Subtask 2: Triplet Extraction requires extracting
sentiment triplets composed of an aspect term (a),
an opinion term (o), and their corresponding inten-
sity (i).
Subtask 3: Quadruple Extraction focuses on ex-
tracting sentiment quadruples that include an as-
pect term (a), an aspect category (c), an opinion
term (o), and their intensity (i).
We use the following running example through-

out this paper. The example is presented in tradi-
tional Chinese with an English translation for clar-
ity and analysis purposes.
{

"k": "R0645:S125",
"s": "這牛排外面裹著一層麵包粉看起來蠻粉嫩的，吃下去外皮

酥脆卡滋卡滋真的好吃。",
e_s: "This steak is coated with a layer of

breadcrumbs on the outside, making it
look quite tender. When you bite into
it, the crust is crispy and crunchy
and really delicious.",

"a": ["牛排", "外皮", "牛排"],
e_a: ["steak", "crust", "steak"],

"c": ["食物#品質", "食物#品質", "食物#品質"],
e_c: ["food#quality", "food#quality",

"food#quality"],
"o": ["蠻粉嫩的", "酥脆", "真的好吃"],
e_o: ["quite tender", "crispy",

"really delicious"],
"i": ["6.25#5.75", "6.62#6.0", "6.88#6.62"]

}

In this example, the aspect terms (a) are 牛排
(steak) and 外皮 (crust), the opinion terms (o) are
蠻粉嫩的 (quite tender), 酥脆 (crispy), and 真的好吃
(really delicious), and the sentiment intensities (i)
are expressed as valence and arousal scores (v#a)
with v, a ∈ [1, 9].

2.2 MAC Model Architecture

Figure 2 illustrates the MAC model architecture
for the dimABSA task. This model integrates
multiple generative AI agents that collaborate to
perform the subtasks required for dimABSA. The
agents involved in this process include DM, AD,
AC, OD, OC, CD, CC, and various IE agents.
The DM agent manages the overall collabora-

tion, reading input sentences, generating results,
and coordinating the other agents. The AD agent
detects all sentiment aspects in a given sentence,
while the AC agent evaluates the performance of
AD and provides constructive feedback. The OD
agent detects sentiment opinions associated with
each aspect, and the OC agent evaluates the perfor-
mance of OD, offering feedback. The CD agent
classifies each aspect into predefined categories,
and the CC agent evaluates the performance of CD,
ensuring accuracy and consistency.
The 8 sentiment intensity estimators in theMAC

model reflect distinct human characters, grounded
in psychological and linguistic theories. Accord-
ing to the Big Five personality traits model (John
et al., 1999), human personalities can be catego-
rized into dimensions such as openness, consci-
entiousness, extraversion, agreeableness, and neu-
roticism, each influencing how individuals per-
ceive and react to emotional stimuli. Additionally,
the circumplex model of affect (Russell, 1980) pro-
vides a framework for understanding emotions in
a valence-arousal space. Integrating these perspec-
tives ensures the model captures a broad range
of human emotional responses, enhancing its ro-
bustness and generalizability. Specifically, the IE
agents estimate sentiment intensities analytically
(IEA), empathetically (IEE), critically (IEC), op-
timistically (IEO), realistically (IER), pessimisti-
cally (IEP), balanced (IEB), and intuitively (IEI).
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Figure 2: MAC Model Architecture. This diagram illustrates the MAC prediction process, involving agents DM,
AD, AC, OD, OC, CD, CC, and intensity estimators (IEA, IEE, IEC, IEO, IER, IEP, IEB, IEI). Inputs and outputs
of subtasks T1, T2, and T3 are depicted, with T1 connecting to OD and T2&T3 connecting to AD. Outputs are
generated by DM + AVG, showing the entire prediction process. JSON-formatted messages flow between agents,
managed by DM.

The input for subtask T1 is processed by the OD
agent, as it already contains the aspect (a). In con-
trast, the input for subtasks T2 and T3, which only
contain the sentence (s), is processed by the AD
agent. Outputs of T1, T2, and T3 are generated
by the bottom agent DM + AVG, showing that all
final outputs are predicted through the entire pro-
cess, with variations only in their format.
Symbolic messages in JSON format are ex-

changed among these neural generative AI agents,
as depicted in Figure 2, ensuring a transparent and
rational approach to solving the dimABSA task.
Critic agents provide feedback messages (m) indi-
cating suggested results for aspects (ã), categories
(c̃), and opinions (õ), while the original results
from detector agents do not include these symbols.
This new paradigm of Neuro-Symbolic AI not only
addresses the dimABSA problem but also provides
a general framework for solving key phrase de-
tection, multi-class classification, and regression
tasks.

3 Experimental Results

3.1 Experimental Setup
The dimABSA task provides a dataset with 3,000
training examples, each manually annotated with
aspect terms, aspect categories, opinion terms, and
sentiment intensities. There are also two test sets,
each containing 2,000 examples for subtask T1 and

subtasks T2&T3. The detailed annotation guide-
lines and data splits are described in the official
summary paper of the dimABSA task (Lee et al.,
2024).
For T1, the evaluation metrics includeMean Ab-

solute Error (MAE) tomeasure the accuracy of pre-
dicted v and a scores, and Pearson Correlation Co-
efficient (PCC) to assess the correlation between
predicted and actual values. For T2&T3, Preci-
sion, Recall, and F1-score assess the accuracy of
the extracted triplets (a, o, i) and quadruples (a, c,
o, i). Detailed experimental setup can be found in
Appendix A.

3.2 Experimental Results

We report our experimental results in Tables 1 and
2, where V, A, and VA represent results related to
Valence, Arousal, and both Valence and Arousal,
respectively. Due to format issues, only the results
of T2 are officially ranked, while the results of T1
and T3 were post-processed and evaluated through
the post-evaluation process and are provided for
reference. Detailed result comparisons with other
participating teams are available in the summary
paper (Lee et al., 2024).

3.3 Result Analysis

We demonstrate the transparency and rationality of
the MAC model through the analysis of agent col-
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Subtask V-MAE V-PCC A-MAE A-PCCA
T1post 0.4706 0.9266 0.4618 0.6745

Table 1: Experimental Results for dimABSA subtask 1.

Subtask V-P V-R V-F1 A-P A-R A-F1 VA-P VA-R VA-F1
T2 25.64 28.24 26.88 29.31 32.28 30.72 14.97 16.49 15.69
T3post 23.85 26.19 24.97 27.68 30.40 28.98 14.15 15.54 14.81

Table 2: Experimental Results for dimABSA subtasks 2 and 3, in percentage.

laborations based on the running example provided
in Section 2.1. For a detailed analysis, please refer
to Appendix B.
Given the input restaurant review sentence, the

AD agent detects aspect terms (a) 牛排 (steak) and
外皮 (crust), consistent with the ground truth. The
AC agent evaluates AD’s performance, provides
critical feedback, and suggests results (̃r) with feed-
back messages (m).
Once AD and AC reach a consensus, DM for-

wards it to the OD agent to detect opinion terms (o).
The OC agent then evaluates OD’s performance,
pointing out that 好吃 (delicious) should be 真的
好吃 (really delicious), aligning with the ground
truth. DM forwards the consensus to the CD agent
to classify aspect terms into predefined categories
(c), and the CC agent evaluates CD’s performance
and concurs with its output.
Finally, DM forwards the consensus to 8 IE

agents, each with distinct character traits, to esti-
mate sentiment intensities and average their out-
puts as the consensus intensity (i). The final predic-
tion, shown below, correctly identifies aspects, cat-
egories, and opinions, and provides intensity val-
ues close to the ground truth.
{

"s": same_as_above,
"r": [

{"a": "牛排", "c": "食物#品質",
"o": "蠻粉嫩", "i": "6.06#5.56"},

{"a": "外皮", "c": "食物#品質",
"o": "酥脆卡滋卡滋", "i": "6.71#6.22"},

{"a": "牛排", "c": "食物#品質",
"o": "真的好吃", "i": "7.19#6.72"},

]
}

4 Conclusion

In this paper, we proposed a MAC model for the
dimABSA task, representing a new paradigm of
Neuro-Symbolic AI. Our approach employs multi-
ple generative AI agents, each specializing in dif-
ferent subtasks, ensuring a robust and transparent

workflow. The MAC model operates in a transpar-
ent and rational manner, demonstrated by its accu-
rate identification of aspects, categories, opinions,
and sentiment intensities. By incorporating agents
with distinct character traits, we mimic the senti-
ment receptions of different individuals, enhanc-
ing the model’s effectiveness. Additionally, the
use of generative AI agents with few-shot learn-
ing enables MAC to easily generalize to out-of-
domain data.
Future work will focus on addressing the hal-

lucination problem within the Neuro-Symbolic AI
framework, improving reliability and consistency
of outputs, and extending the model’s applicability
to other domains.

Limitations

This study presents several limitations that should
be considered. Firstly, few-shot learning with only
20 examples may not capture the full variability
and nuances of the data, potentially leading to
less robust models compared to those fine-tuned
with the entire dataset. While fine-tuning with the
entire dataset could improve task-specific perfor-
mance, it may reduce the generalization ability of
the agents, making them less adaptable to unseen
data or different domains. Future research could
investigate hybrid learning approaches that inte-
grate the strengths of both few-shot and full dataset
methods to enhance model robustness and general-
izability.
Although the critic multi-agent collaboration

(MAC) framework effectively mitigates error
propagation, the sequential nature of the model
could still lead to cumulative errors if initial detec-
tions are flawed. Future efforts could focus on de-
velopingmore sophisticated error correction mech-
anisms and exploring alternative architectures that
reduce the dependency on initial accuracy, thereby
further minimizing the risk of error propagation.
Utilizing advancedmodels like GPT-4o requires
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substantial computational resources, which might
not be accessible to all researchers or practition-
ers. Additionally, the cost of calling the GPT-4o
API may be a limitation for refining the agents
or the MAC framework. Future research could
explore fine-tuning more recent open-source large
language models, such as LLaMA-3 (Meta, 2024)
and Phi-3 (Abdin et al., 2024), as cost-effective
alternatives. Fine-tuning these models could mit-
igate the financial and computational constraints
while maintaining high performance and accessi-
bility.
Despite efforts to ensure transparency, the com-

plexity of the multi-agent system might make it
challenging to interpret individual agent decisions
and their contributions to the overall output. En-
hancing model interpretability remains a crucial
area for future work, potentially through improved
visualization techniques and the development of
methods to clearly attribute specific decisions to
individual agents within the system.
Furthermore, the scalability of the proposed

method to other languages, domains, or larger
datasets has not been fully explored and might
present additional challenges. Future research
could test the scalability and adaptability of the
MAC framework across various languages, do-
mains, and dataset sizes to evaluate its broader ap-
plicability and performance.
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A Detailed Experimental Setup

This section details the comprehensive templates
utilized for various agents in our study, along with
methods for hyper-parameter configuration and
sample selection strategies. The templates stan-
dardize procedures and outputs, ensuring consis-
tency and reproducibility across different experi-
ments.
Below are the templates for different agents, in-

cluding detection agents and critic agents. Each
template specifies the agent’s name, task descrip-
tion, input and output formats, and examples. The
JSON formats ensure structured input data and out-
put results. For critic agents, additional instruc-
tions on identifying potential errors and providing
feedback are included.
Agent Name: {AgentName}
Task Description: {TaskDescription}
1. Read the input in the following JSON

format: {JSONInput}
2. Assess and identify {AgentTargets}.
3. Output the results strictly in the

following JSON format: {JSONOutput}
Examples:
[{Example}]

Agent Name: {CriticAgentName}
Task Description: {CriticTaskDescription}
1. Read the input in the following JSON

format:{CriticJSONInput}
2. Identify potential {ErrorTypes}.
3. Provide feedback and suggestions in the

following JSON format: {CriticJSONOutput}
Examples:
[{CriticExample}]

The JSON formats for inputs and outputs can be
found in Appendix B, with sample strings replaced
by symbols: ⟨s⟩ for sentence, ⟨a⟩ for aspect, ⟨c⟩
for category, ⟨o⟩ for opinion, and ⟨i⟩ for intensity.
For critic JSON, critic strings are represented as
⟨ã⟩, ⟨c̃⟩, ⟨õ⟩, and ⟨̃i⟩. The message from the critic
agent is denoted as ⟨m⟩.
Samples for few-shot learning are selected ran-

domly from the training dataset and fixed using
a seed value of 41. This modified stratified sam-
pling method respects the original distribution of
different aspect categories and ensures the inclu-
sion of all aspect categories. Additionally, the

“NULL” aspect is included, which is unique to the
dimABSA task. All agents share this common set
of samples. The GPT-4o (gpt-4o-2024-05-13)
model with the above system messages is used
with the default temperature and top-p values as
hyper-parameters.

B Detailed Result Analysis

This section analyzes the results from the MAC
model, focusing on transparency, rationality, and
error analysis.
We demonstrate the transparency and rationality

of the MACmodel by analyzing the collaborations
among the agents based on the running example
provided in Section 2.1. The collaborative mes-
sages are JSON-formatted as shown in Figure 2,
and we use the same format with English transla-
tions for clarity and analysis purposes.
{

"s": "這牛排外面裹著一層麵包粉看起來蠻粉嫩的，吃下去外皮
酥脆卡滋卡滋真的好吃。",

e_s: "This steak is coated with a layer of
breadcrumbs on the outside, making it
look quite tender. When you bite into
it, the crust is crispy and crunchy
and really delicious.",

"r": [
{"a": "牛排"},
{e_a: "steak"},
{"a": "外皮"},
{e_a: "crust"}

]
}

The AC agent evaluates the performance of AD
and provides critical feedback, with suggested re-
sults (̃r) and feedback message (m), as follows.
{

"s": same_as_above,
"r": same_as_above,
"r̃": [

{"ã": "牛排"},
{e_ã: "steak"},
{"ã": "外皮"},
{e_ã: "crust"}

],
"m": "Correctly identified aspects."

}

Since AD and AC have reached a consensus,
DM forwards this consensus to the OD agent to
detect opinion terms (o), as follows.
{

"s": same_as_above,
"r": [

{"a": "牛排", "o": "蠻粉嫩"},
{e_a: "steak", e_o: "quite tender"},
{"a": "外皮", "o": "酥脆卡滋卡滋"},
{e_a: "crust", e_o: "crispy and crunchy"},
{"a": "牛排", "o": "好吃"},
{e_a: "steak", e_o: "delicious"}

93

https://doi.org/10.18653/v1/2021.acl-short.64
https://doi.org/10.18653/v1/2021.acl-short.64


]
}

The OC agent evaluates the performance of OD
and critically points out that the opinion term 好

吃 (delicious) should be 真的好吃 (really delicious),
which aligns with the ground truth.
{

"s": same_as_above,
"r": same_as_above,
"r̃": [

{"ã": "牛排", "õ": "蠻粉嫩"},
{e_ã: "steak", e_õ: "quite tender"},
{"ã": "外皮", "o": "酥脆卡滋卡滋"},
{e_ã: "crust", e_õ: "crispy and crunchy"},
{"ã": "牛排", "õ": "真的好吃"},
{e_ã: "steak", e_õ: "really delicious"}

],
"m": "Incomplete opinion: '好吃' should be '
真的好吃'."

m_e: "Incomplete opinion: 'delicious' should
be 'really delicious'."

}

DM then forwards the consensus to the CD
agent to classify the aspect terms into predefined
categories (c), as follows.
{

"s": same_as_above,
"r": [

{"a": "牛排", "c": "食物#品質",
"o": "蠻粉嫩"},

{e_a: "steak", e_c: "food#quality",
e_o: "quite tender"},

{"a": "外皮", "c": "食物#品質",
"o": "酥脆卡滋卡滋"},

{e_a: "crust", e_c: "food#quality",
e_o: "crispy and crunchy"},

{"a": "牛排", "c": "食物#品質",
"o": "真的好吃"},

{e_a: "steak", e_c: "food#quality",
e_o: "really delicious"}

]
}

The CC agent evaluates the performance of CD
and concurs with its output, as follows.
{

"s": same_as_above,
"r": same_as_above,
"r̃": [

{"ã": "牛排", "c̃": "食物#品質",
"õ": "蠻粉嫩"},

{e_ã: "steak", e_c̃: "food#quality",
e_õ: "quite tender"},

{"ã": "外皮", "c": "食物#品質",
"õ": "酥脆卡滋卡滋"},

{e_ã: "crust", e_c̃: "food#quality",
e_õ: "crispy and crunchy"},

{"ã": "牛排", "c̃": "食物#品質",
"õ": "真的好吃"},

{e_ã: "steak", e_c̃: "food#quality",
e_õ: "really delicious"}

],
"m": "Correctly classified categories."

}

Finally, DM forwards the consensus to 8 IE
agents, each with distinct character traits, to esti-
mate sentiment intensities and average their out-
puts as the consensus intensity (i). We use super-
scripts to denote intensity predictions given by the
IE agents with distinct character traits, as follows.
{

"s": same_as_above,
"r": [

{"a": "牛排", "c": "食物#品質",
"o": "蠻粉嫩", "i": "6.06#5.56",
"i^A": "6.00#5.50", "i^E": "6.00#5.00",
"i^C": "6.00#5.75", "i^O": "6.00#6.00",
"i^R": "6.50#5.75", "i^P": "5.50#5.00",
"i^B": "6.00#5.50", "i^I": "6.50#6.00"},

{"a": "外皮", "c": "食物#品質",
"o": "酥脆卡滋卡滋", "i": "6.71#6.22",
"i^A": "6.75#6.00", "i^E": "6.50#6.00",
"i^C": "6.75#6.25", "i^O": "7.00#7.00",
"i^R": "7.20#6.50", "i^P": "5.75#5.50",
"i^B": "6.75#6.00", "i^I": "7.00#6.50"},

{"a": "牛排", "c": "食物#品質",
"o": "真的好吃", "i": "7.19#6.72",
"i^A": "7.00#6.50", "i^E": "7.00#6.50",
"i^C": "7.00#6.50", "i^O": "8.00#8.00",
"i^R": "8.00#7.00", "i^P": "6.00#5.75",
"i^B": "7.00#6.50", "i^I": "7.50#7.00"},

]
}

Analyzing the final predictions reveals a no-
table discrepancy in the opinion term 酥脆卡滋

卡滋 (crispy and crunchy) predicted by the OD
agent compared to the ground truth 酥脆 (crispy).
This term was justified as reasonable by the OC
agent, highlighting the variability in sentiment
perception among humans, which AI agents re-
flect. Conversely, the OC agent correctly crit-
icized another OD prediction, where 好吃 (deli-
cious) was adjusted to 真的好吃 (really delicious),
aligning with the ground truth. These observa-
tions suggest that critic multi-agent collaboration
effectively mitigates the error propagation prob-
lem, which is more prevalent in sequential models.
However, accurately mimicking the sentiment per-
ception of a group of human beings, as reflected in
the dimABSA data annotations, remains challeng-
ing. This issue could be mitigated by further fine-
tuning the agents with the entire training dataset,
although this approach is costly and may reduce
the generalization capability of the agents.
The valence and arousal intensities predicted

by the IE agents with distinct character traits also
exhibit variability. These differences underscore
the subjective nature of sentiment analysis, influ-
enced by individual perspectives. The deviations
between the IE agents’ predictions and the ground
truth values illustrate the difficulty in accurately
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mimicking the diversity of sentiment perception in
human beings.

95



Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), pages 96–101
August 16, 2024 c©2024 Association for Computational Linguistics

YNU-HPCC at SIGHAN-2024 dimABSA Task: Using PLMs with a Joint
Learning Strategy for Dimensional Intensity Prediction

Zehui Wang, You Zhang*, Jin Wang, Dan Xu, and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, China

Contact: wangzehui@stu.ynu.edu.cn, yzhang0202@ynu.edu.cn

Abstract
The dimensional approach can represent more
fine-grained emotional information than dis-
crete affective states. In this paper, a pre-
trained language model (PLM) with a joint
learning strategy is proposed for the SIGHAN-
2024 shared task on Chinese dimensional
aspect-based sentiment analysis (dimABSA),
which requires submitted models to provide
fine-grained multi-dimensional (Valence and
Arousal) intensity predictions for given aspects
of a review. The proposed model consists of
three parts: an input layer that concatenates
both given aspect terms and input sentences;
a Chinese PLM encoder that generates aspect-
specific review representation; and separate lin-
ear predictors that jointly predict Valence and
Arousal sentiment intensities. Moreover, we
merge simplified and traditional Chinese train-
ing data for data augmentation. Our system
ranked 2nd place out of 5 participants in sub-
task 1-intensity prediction. The code is publicly
available at https://github.com/WZH5127/
2024_subtask1_intensity_prediction.

1 Introduction

Aspect-based sentiment analysis (ABSA) (Pontiki
et al., 2014, 2015, 2016) is used to identify the sen-
timent polarity regarding specific aspects within
a sentence. In recent years, ABSA tasks have
gradually extended into diverse subtasks, including
aspect sentiment triplet extraction (ASTE) (Chen
et al., 2022; Xu et al., 2021; Zhao et al., 2022;
Zhang et al., 2023) and aspect sentiment quadruple
prediction (ASQP) (Hu et al., 2022a; Wang et al.,
2023; Zhou et al., 2023; Zhang et al., 2021). In con-
trast to these tasks, which consider affective states
as discrete classes (positive, neutral, and nega-
tive), the dimensional approach provides more fine-
grained emotional information (Lee et al., 2022).

Dimensional sentiment analysis represents affec-
tive states as continuous numerical values in multi-

*Corresponding author.
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(a) Valence and Arousal Spaces

柠檬酱也不会太油，塔皮对我而言稍软。 柠檬酱#塔皮

(柠檬酱, 5.67#5.5 )(塔皮, 4.83#5.0 )

aspect intensity

(b) An example of intensity prediction

Figure 1: The diagram of Valence and Arousal space
and dimABSA.

ple dimensions, such as Valence and Arousal space
(Yu et al., 2016), as illustrated in Figure 1(a). The
Valence dimension indicates the degree of positive
or negative sentiments, while the Arousal dimen-
sion refers to the degree of calmness or excitement.
Valence and Arousal are represented by continu-
ous real-valued scores ranging from 1 to 9, with
lower scores indicating stronger negative or calm
sentiments, higher scores indicating stronger pos-
itive or excited sentiments, and mid-range scores,
such as 5, indicating neutral states. Combining
aspect-based and multi-dimensional sentiment anal-
ysis, a shared task of Chinese dimensional ABSA
shared task (dimABSA) (Lee et al., 2024) is pro-
posed in SIGHAN-2024, which primarily includes
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intensity prediction, triplet extraction, and quadru-
ple extraction. In subtask 1 intensity prediction,
given a sentence and an aspect, the system is re-
quired to predict the Valence and Arousal intensi-
ties of the sentence regarding the aspect. For in-
stance, in the sentence shown in Figure 1(b), there
are two aspects, “柠檬酱”(lemon sauce) and “塔
皮”(tart crust), with required two-dimensional (Va-
lence#Arousal) intensity predictions of 5.67#5.5
and 4.83#5.0, respective.

Recently, pre-trained language models (PLMs)
(Devlin et al., 2018; Li et al., 2020; Hu et al.,
2022b) have achieved significant success in var-
ious natural language processing (NLP) tasks, in-
cluding sentiment analysis. For instance, using
Chinese-based PLMs such as BERT-base-Chinese
and BERT-wwm-ext (Cui et al., 2021) for inten-
sity prediction on Chinese EmoBank (Lee et al.,
2022) has yielded superior results compared to tra-
ditional methods. However, when these methods
tackle dimABSA tasks, they continue to encounter
challenges in (1) integrating traditional and simpli-
fied Chinese for robust review representation and
(2) capturing internal relatedness across multiple
dimensions for a comprehensive understanding of
semantics.

To address these issues, we utilized whole-word
masking (wwm) (Cui et al., 2021; Pandey et al.,
2022) PLM of BERT-wwm-ext with a joint learn-
ing strategy for dimensional intensity prediction in
ABSA. The model consists of the input layer, PLM
encoder, and dimensional linear layer (dimLinear).
Initially, we concatenate one aspect term and the
review sentence as model sequence input. Then,
we utilize BERT-wwm-ext as the PLM encoder to
generate robust text representation. Finally, the
dimLinear layer contains separate linear predictors
that jointly predict Valence and Arousal sentiment
intensities. Moreover, we merge traditional and
simplified Chinese training samples into an aug-
mented training set for generalized optimization.
In experiments, we found that the integrations be-
tween two types of Chinese corpora and the joint
optimization of multiple dimensions resulted in bet-
ter performance. Consequently, our team ranked
2nd out of 5 participants in subtask 1 of the shared
dimABSA task.

The remainder of this paper is structured as fol-
lows: Section 2 describes the architecture of our
model in detail. Section 3 presents extensive exper-
iments, analysis, and results. Finally, conclusions
and future work are discussed in Section 4.
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Figure 2: The overview of model architecture.

2 System Description

In this section, we primarily describe the architec-
ture of our model. As depicted in Figure 2, the
model comprises three main components: input
layer, PLM encoder, and dimLinear layer.

2.1 Input Layer
Both an aspect a and a review text x are first
tokenized into discrete tokens, denoted by a =
{a1, a2, ..., aNa} and x = {x1, x2, ..., xNx}, re-
spectively, where Na and Nx represent the length
of the aspect and the review. To feed both the
aspect and the review into models, we concate-
nate the aspect and the review tokens, denoted as
x̃ = {[CLS],a, [SEP],x, [SEP]}, where [CLS]
and [SEP] are special tokens for syntactic separa-
tion.

2.2 Chinese PLM Encoder
To learn the hidden aspect-specific review represen-
tation h, we use the Chinese PLM of BERT-wwm-
ext to encode the concatenated input sequence for-
mally:

r = f(x̃; θBERT−wwm−ext) ∈ RN×d (1)

where f(·) represents the encoder propagation;
θBERT−wwm−ext is the trainable parameters initial-
ized from a pre-trained checkpoint and fine-tuned
for the specific task; and N = (Na+Nx+3) and
d indicates the input length and hidden dimension-
ality, respectively.

Similar to BERT families, we take as the final
review representation the first token representation,
i.e., h = r[CLS] ∈ Rd.
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E0001:S001, 猪肉太油太腻，鸡蛋比较硬。, 猪肉#猪肉#鸡蛋, 5.50#5.70 5.67#5.5 4.83#5.0

猪肉太油太腻，鸡蛋比较硬。, 猪肉, 5.59, 5.6

猪肉太油太腻，鸡蛋比较硬。, 鸡蛋, 4.83, 5.0

ID sentence aspect intensity avg valence avg arousal

preprocess

Figure 3: An example of data preprocessing.

2.3 Dimensional Intensity Prediction
To predict the intensities of Valence v ∈ R1 and
Arousal a ∈ R1, we use the dimLinear that con-
tains two linear projections to estimate p(v|h) and
p(a|h) simultaneously. This multi-task learning
strategy could facilitate the model in learning ro-
bust review representation. The prediction is as
follows:

v = dimLinearv(h)
a = dimLineara(h)

(2)

where each dimLinear_(·) is implemented via two
stacked fully connected layers.

During model optimization, we employ mean
absolute error (MAE) as the cost function to
maximize the likelihood of model performance
pθ(v, a|a,x) in an end-to-end manner.

3 Experimental Results

In this section, we present the comparative results
of the proposed methods.

3.1 Datasets
Throughout the competition, we utilized datasets
exclusively provided by the organizers of the
shared dimABSA task. These datasets were for-
mally partitioned into Train, Dev, and Test sets.
Since golden labels were not provided for partici-
pants, an additional Dev* set was created by ran-
domly sampling 10% of the Train sample to aid in
model selections.

Furthermore, the dataset encompassed tradi-
tional and simplified Chinese versions, the only
difference being the language. To enhance the gen-
eralization performance of our models, we aug-
mented the Train set by integrating both versions.
For more detailed statistics on the datasets, please
refer to Table 1.

3.2 Evaluation Metrics
To evaluate the performance of participant systems
for Subtask 1, the organizers furnished MAE and

Dataset # samples Max length
Train 6050 56

Merged-Train 12100 56
Dev 100 40

Dev* 1210 46
Test 2000 59

Table 1: Detailed statistics of the datasets.

the Pearson Correlation Coefficient (PCC) as eval-
uation metrics.

• MAE

MAE =
1

n

n∑

i=1

|p̂i − pi| (3)

where p̂i and pi respectively denoted the ith
actual value and predicted value, n is the num-
ber of test samples.

• PCC

PCC =
1

n− 1

n∑

i=1

(
p̂i − µ̂

σ̂
)(
pi − µp

σp
) (4)

where µ̂ and σ̂ respectively represent the mean
value and the standard deviation of all predic-
tions, while µp and σp respectively represent
that of golden labels. A lower MAE and a
higher PCC indicate more accurate prediction
performance.

3.3 Implementation Details
Data preprocessing. We observed that certain
samples in the Train set contained multiple inten-
sity values for a single aspect, reflecting different
opinions, as illustrated in Figure 3. As Subtask
1 only concerns the overall sentiment towards an
aspect in a review, we computed the average in-
tensity across various opinions to derive an overall
sentiment score.
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Model
Dev* Test

Valence Arousal Valence Arousal

MAE↓ PCC↑ MAE↓ PCC↑ MAE↓ PCC↑ MAE↓ PCC↑

BERT-base-chinese 0.222 0.951 0.280 0.817 0.299 0.911 0.318 0.767
BERT-wwm 0.221 0.956 0.277 0.822 0.298 0.912 0.319 0.766

RoBERTa-wwm-ext 0.241 0.954 0.294 0.808 0.306 0.913 0.327 0.766
MacBERT-wwm-ext 0.253 0.936 0.296 0.803 0.312 0.905 0.327 0.761

BERT-wwm-ext (Ranked 2nd) 0.227 0.952 0.284 0.814 0.294 0.917 0.318 0.771
BERT-wwm-ext† 0.247 0.948 0.283 0.803 0.311 0.910 0.323 0.748
BERT-wwm-ext‡ 0.249 0.934 0.300 0.787 0.311 0.904 0.318 0.760

Table 2: Comparative Dev* and Test results for subtask 1. Bold figures meant the best performance regarding
various metrics.

Hyperparameters. The maximum length of the
longest sentence in a batch sample was the max-
imum. We employed the base version of BERT-
wwm-ext as the backbone model. Specifically, the
model consisted of 12 transformer layers with a
hidden representation dimensionality (d) of 768
(Vaswani et al., 2017). For optimization, we uti-
lized the Adam optimizer with a linear warmup
schedule. The base learning rate was set to 3e-5,
with a batch size of 32.
Baselines. We implemented several baseline mod-
els to evaluate the performance of BERT-wwm-ext
in dimensional prediction. Initially, we employed
various PLMs as our backbones, including BERT-
base-chinese, BERT-wwm, RoBERTa-wwm-ext,
and MacBERT-wwm-ext (Cui et al., 2021). Sub-
sequently, we introduce two variants of models:
(1) BERT-wwm-ext†, which independently pre-
dicted Valence and Arousal intensities, and (2)
BERT-wwm-ext‡, trained solely on the traditional
Chinese-based Train set.

3.4 Result and Analysis
As depicted in Table 2, our proposed system’s
comparable Dev* and Test results against several
baselines in terms of MAE and PCC were re-
ported. With different PLMs as backbones, mod-
els achieved varying performances. In contrast to
RoBERTa and MacBERT, Chinese-based BERT
families achieved relatively lower MAE and higher
PCC. This performance discrepancy could be at-
tributed to the utilization of a next-sentence pre-
diction task during the pretraining phase of BERT
PLMs. This task’s alignment with our input struc-
ture, which combines aspect and review texts,
likely facilitated the model in better understand-
ing the relationship between aspects and sentences

during the fine-tuning phase.
In our settings, BERT-wwm performed relatively

better than BERT-Chinese in Dev* and on par in
Test. This is because the adopted wwm strategy
could enhance Chinese sentence modeling. In con-
trast to BERT-wwm, BERT-wwm-ext leveraged a
larger pretraining corpus to acquire more compre-
hensive language knowledge, demonstrating better
generalization in the Test set.

Furthermore, we conducted ablation studies to
examine the effect of our joint learning strategy.
Without the joint optimization of Valence and
Arousal dimensions, the performance of BERT-
wwm-ext† degraded, and so did BERT-wwm-ext‡
when only the traditional Chinese version was uti-
lized as the Train set. These phenomena under-
scored the effectiveness of our joint learning strat-
egy in facilitating robust aspect-specific review rep-
resentation.

In conclusion, our proposed methods attained
the best Test scores in both MAE and PCC metrics,
which ranked 2nd place out of 5 participants. This
result highlights the competitiveness and effective-
ness of our system in the shared subtask 1.

4 Conclusions

This paper presented our system developed for the
SIGHAN-2024 shared Task dimABSA. Our exper-
imental results in subtask 1 demonstrated that our
proposed model achieved significant performance
in the dimensional intensity prediction of ABSA.
As a result, our team ranked 2nd place in subtask
1.

Future works will explore incorporating our
model with the existing dimensional sentiment
analysis corpus and investigating a unified model
handling multiple targets in dimABSA.
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Limitations

Although our proposed system enhances the qual-
ity of dimensional intensity prediction, there are
still several limitations. First, we have only vali-
dated the effectiveness of the joint learning strategy
for intensity prediction and have not tested it for
fine-grained aspect extraction. Second, our cur-
rent approach uses traditional PLMs as backbones.
In the future, we plan to explore the use of large-
scale PLMs, such as ChatGPT and LLaMA, for
dimABSA tasks.

Acknowledgments

This work was supported by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grant Nos. 61966038 and 62266051, and
Caiyun Postdoctoral Foundation under Grant No.
C615300504090.

References
Yuqi Chen, Chen Keming, Xian Sun, and Zequn Zhang.

2022. A Span-level Bidirectional Network for As-
pect Sentiment Triplet Extraction. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4300–4309, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-Training with Whole Word
Masking for Chinese BERT. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
29:3504–3514.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of Deep
Bidirectional Transformers for Language Understand-
ing. arXiv preprint arXiv:1810.04805.

Mengting Hu, Yike Wu, Hang Gao, Yinhao Bai, and
Shiwan Zhao. 2022a. Improving Aspect Sentiment
Quad Prediction via Template-Order Data Augmen-
tation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 7889–7900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yibo Hu, MohammadSaleh Hosseini, Erick Sko-
rupa Parolin, Javier Osorio, Latifur Khan, Patrick
Brandt, and Vito D’Orazio. 2022b. ConfliBERT:
A Pre-trained Language Model for Political Conflict
and Violence. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5469–5482, Seattle, United States.
Association for Computational Linguistics.

Lung-Hao Lee, Jian-Hong Li, and Liang-Chih Yu. 2022.
Chinese EmoBank: Building Valence-Arousal Re-
sources for Dimensional Sentiment Analysis. Trans-
actions on Asian and Low-Resource Language Infor-
mation Processing, 21(4):1–18.

Lung-Hao Lee, Liang-Chih Yu, Suge Wang, and Jian
Liao. 2024. Overview of the SIGHAN 2024 shared
task for Chinese dimensional aspect-based sentiment
analysis. In Proceedings of the 10th SIGHAN Work-
shop on Chinese Language Processing. Association
for Computational Linguistics.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the Sentence
Embeddings from Pre-trained Language Models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Amit Pandey, Swayatta Daw, Narendra Unnam, and
Vikram Pudi. 2022. Multilinguals at SemEval-2022
Task 11: Complex NER in Semantically Ambiguous
Settings for Low Resource Languages. In Proceed-
ings of the 16th International Workshop on Semantic
Evaluation (SemEval-2022), pages 1469–1476, Seat-
tle, United States. Association for Computational
Linguistics.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud María Jiménez-Zafra, and Gülşen Eryiğit.
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Abstract
This paper describes our system and findings
for SIGHAN-2024 Shared Task Chinese Di-
mensional Aspect-Based Sentiment Analysis
(dimABSA). Our team CCIIPLab proposes an
Contrastive Learning-Enhanced Span-based
(CL-Span) framework to boost the perfor-
mance of extracting triplets/quadruples and
predicting sentiment intensity. We first em-
ploy a span-based framework that integrates
contextual representations and incorporates ro-
tary position embedding. This approach fully
considers the relational information of entire
aspect and opinion terms, and enhancing the
model’s understanding of the associations be-
tween tokens. Additionally, we utilize con-
trastive learning to predict sentiment intensities
in the valence-arousal dimensions with greater
precision. To improve the generalization abil-
ity of the model, additional datasets are used
to assist training. Experiments have validated
the effectiveness of our approach. In the offi-
cial test results, our system ranked 2nd among
the three subtasks. Our code is publicly avail-
able at https://github.com/tongzeliang/
SIGHAN2024.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is an im-
portant task in Natural Language Processing (NLP),
and is beneficial for many downstream tasks, such
as emotional conversation generation (Wei et al.,
2019; Liu et al., 2022) and recommendation system
(Zhao et al., 2023; Wang et al., 2023). However,
previous work has focused primarily on discrete
sentiment polarity, with little attention given to the
Valence-Arousal (VA) space. This dimensional
approach represents affective states as continuous
numerical values across multiple dimensions, pro-
viding more fine-grained sentiment information.

To address this issue, the SIGHAN-2024 shared
task formulates three subtasks that challenge partic-
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蔬菜是给的蛮新鲜，⽽且份量也不少。

Subtask Input Output

Intensity Prediction

Triplet Extraction

Quadruple Extraction

⻝物#品质
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( The vegetables are fresh and the portions are generous )

(food#quality)
: ⻝物#份量与款式

(food#portion and style)
:

Figure 1: Illustration of three dimABSA subtasks. As-
pect terms, opinion terms and categories are highlighted
in red, blue and green, respectively. The terms “val”
and “aro” represent the valence and arousal intensity of
affective states, respectively, both ranging from 1 to 9.

ipants to develop ABSA systems based on dimen-
sional sentiment information (Lee et al., 2024). As
Figure 1 shows, the three subtask can be illustrated
as follows:

• Subtask 1: Intensity Prediction. Predict the
valence-arousal ratings for a given sentence
and its specific aspect.

• Subtask 2: Triplet Extraction. Extract all
sentiment triplets (aspect, opinion, intensity)
from a given sentence.

• Subtask 3: Quadruple Extraction. Extract
all sentiment quadruples (aspect, category,
opinion, intensity) from a given sentence.

As an extension of the ABSA task, dimABSA
becomes notably challenging due to the follow-
ing two difficulties: 1) Multiple Aspect-Opinion
Pairing. In sentences with multiple aspects and
opinions, determining which opinion corresponds
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Figure 2: The distribution of valence-arousal ratings,
where intensity ratings ranging from 1 to 9 are seg-
mented into equal interval groups.

to which aspect becomes particularly challenging.
To mitigate this problem, several efforts (Wu et al.,
2020; Chen et al., 2022b; Liang et al., 2023) have
been made, but they are not comprehensive for
modeling the relationship between tokens, which
is significant in the aspect-opinion pairing process
(Chen et al., 2022a). 2) Imbalanced Dataset. As
illustrated by Figure 2, the number of samples with
neutral sentiment intensity is much greater than
those with extreme sentiment intensity for both the
valence and arousal dimensions, which leads to bi-
ased predictions from the model. Although there
are some methods for addressing data imbalance
like Re-Sampling (RS) (Zhou et al., 2020; Zhang
and Pfister, 2021), most of them improve the perfor-
mance of sparsely labeled samples at the expense
of densely labeled samples (Zhang et al., 2023),
leading to suboptimal results and and cannot be
seamlessly migrated to dimABSA tasks.

In this paper, we develop a Contrastive
Learning-Enhanced Span-based Framework for the
dimABSA task to address the aforementioned chal-
lenges. Firstly, given the excellent performance
of span-based methods in various NLP tasks (Xu
et al., 2021), we explicitly generate span represen-
tations for all possible aspect and opinion spans.
To comprehensively capture the relational infor-
mation between spans, we integrate the contextual
representations and incorporate Rotary Position
Embedding (RoPE) (Su et al., 2024), which facili-
tates improved semantic understanding. Secondly,
as self-supervised learning can improve robustness
to data imbalance (Li et al., 2022), we employ con-
trastive learning to optimize feature representations
in regression tasks. This approach adjusts the dis-

tance between samples in the embedding space
according to their target values and subsequently
leverages this feature to predict sentiment intensity.

Extensive experiments show that our method per-
forms well across all three subtasks. On the official
leaderboard, the Mean Absolute Error (MAE) for
valence and arousal in subtask 1 ranks 2nd and 1st,
respectively. The Pearson Correlation Coefficient
(PCC) for valence and arousal in subtask 1 both
rank 3rd. The F1 scores for triplet and quadruple
extraction in Subtasks 2 and 3 both rank 2nd.

The paper is structured as follows: Section 2 pro-
vides a concise review of related work. In Section
3, we outline our proposed system. Section 4 cov-
ers the experimental details, including the dataset,
setup, results, and discussions. Section 5 analyzes
the effectiveness of contrastive learning and fur-
ther examines the performance of our methods in
low-resource settings. Finally, Section 6 presents a
brief conclusion.

2 Related Work

2.1 ABSA Tasks

ABSA tasks, which aim to analyze sentiment from
a fine-grained perspective, include three funda-
mental subtasks: Aspect Term Extraction (ATE)
(Xu et al., 2018; Ma et al., 2019; Yang et al.,
2020), Opinion Term Extraction (OTE) (Wan et al.,
2020; Veyseh et al., 2020), and Aspect Sentiment
Classification (ASC) (Tian et al., 2021; Wang
et al., 2021a; Zhou et al., 2021). In recent years,
research has increasingly focused on composite
ABSA tasks, which integrate multiple basic tasks.
Peng et al. (2020) introduced the Aspect Sentiment
Triplet Extraction (ASTE) task, and they proposed
a two-stage pipeline model to independently extract
aspect-opinion-sentiment triplets. Subsequently,
some end-to-end methods (Fei et al., 2021; Liang
et al., 2023) were also applied to this task. Fol-
lowing this advancement, Zhang et al. (2021) in-
troduced the Aspect-Sentiment Quad Prediction
(ASQP) task, addressing it through the Seq2Seq
generative modeling paradigm. However, these
works primarily focus on discrete sentiment polar-
ity, making it challenging to perceive subtle senti-
ment differences when predicting continuous senti-
ment intensity.

2.2 Contrastive Learning

Contrastive Learning methods learn feature rep-
resentations by contrasting positive pairs against
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negative pairs, and have widely used in many down-
stream tasks, such as recommendation systems
(Zou et al., 2022; Wang et al., 2022), knowledge
graphs (Fang et al., 2022; Xu et al., 2023), etc..
Recent research has started to utilize contrastive
learning to address the long-tail distribution prob-
lem in image classification (Wang et al., 2021b;
Xuan and Zhang, 2024), aiming to obtain improved
feature representations. This prompts us to utilize
contrastive learning in the dimABSA task to tackle
the challenge of imbalanced datasets.

3 Methodology

3.1 Overview

Problem Statement. Let s = {wi}n and A =
{aj}m be a sentence and a predefined set of as-
pects, where n and m represents the length of s
and the number of aspects contained in s (A is only
provided in subtask 1). The goal of subtask 1 is to
predict the sentiment intensity valj , aroj ∈ [1, 9]
for each aspect aj ∈ A. The object of subtask
2 and 3 is to extract a set of sentiment triplets
T = {(a, o, val-aro)m}

|T |
m=1 and quadruples Q =

{(a, o, c, val-aro)m}
|Q|
m=1, where a, o and c repre-

sent aspect term, opinion term and category.
Architecture. As Figure 3 demonstrates, our sys-
tem contains three components: 1) the Aspect-
Opinion Pairing Module identifies aspect terms
and opinion terms from the original sentence, and
establishes their relationships to form valid aspect-
opinion pairs, 2) the Sentiment Scoring Module
assesses the sentiment intensity based on the origi-
nal sentence and the extracted aspect-opinion pairs,
3) the Category Prediction Module conducts cat-
egory classification utilizing the original sentence
and the extracted aspect-opinion pairs. Each mod-
ule is trained independently, and each subtask is
accomplished through the collaboration of differ-
ent modules. This pipeline structure enhances the
flexibility and scalability of the system, allowing
different processing steps to be optimized and ad-
justed independently.

3.2 Aspect-Opinion Pairing Module

This module identifies relevant aspects and their
corresponding opinions within the sentence and
accurately pairs them. As Figure 4 shows, this
foundational step is crucial for subsequent anal-
ysis and prediction, ensuring that each aspect is
matched with its opinion, forming the basis for
further inference.

A
spect-O

pinion Pairing

 Category Classifier

 Sentiment Scoring

Predefined Aspect

(Opinion Retrieval)

Sentence

...

: Subtask 1
: Subtask 2
: Subtask 3

Input

Input (Only for Subtask 1)

Figure 3: Architecture of our system. Arrows of differ-
ent colors indicate the computational processes specific
to each corresponding subtask.

Sentence Encoder. We use MacBERT (Cui et al.,
2021) to generate contextual word representations
by,

Ĥ = ĥcls, {ĥj}n, ĥsep = MacBERT({wi}n)
(1)

where ĥj is the contextual embedding of word wj .
We then integrate RoPE into the token representa-
tion via an additional multi-head attention layer,

H = MultiHead (Q,K,V) (2)

= ||Zz=1Attention
(
Ri

θW
z
qĤ, Rj

θW
z
kĤ,Wz

vĤ
)

(3)

Z is the number of attention heads, W z
q ,W

z
k

and W z
v are trainable parameter of the zth head of

attention. Note that the rotational position encoding
matrix should vary for different positions in the
sequence, here we use Ri

θ and Rj
θ for simplicity.

Aspect and Opinion Extraction. We use SP =
{spi,j | 0 ≤ j − i ≤ l} to represent all possible
spans in s, where i and j represent the start and
end positions in s respectively, and the maximum
length of span spi,j is l. We define the representa-
tion of span spi,j as,

spi,j = [hi;hj ] (4)

where the semicolon represents concatenation.
Next, we employ a fully connected layer to evalu-

ate the validity of each span spi,j , assigning a label
distribution ye ∈ {Aspect, Opinion, Invalid},

pAi,j , p
O
i,j , p

IV
i,j = softmax

(
Wespi,j + be

)
(5)

where We, be are trainable parameters.
Inspred by Xu et al. (2021), to mitigate the com-

plexity inherent in the subsequent calculation pro-
cess, we retain a specified proportion of spans for
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Figure 4: The overall framework of our Aspect-Opinion Pairing Module. Initially, the encoder derives base
contextual representations for the input sentence. Subsequently, we integrate Rotary Position Embedding (RoPE)
into the token representations to facilitate enhanced discourse comprehension. Following this, aspect terms and
opinion terms are extracted based on the RoPE-enhanced representations. Finally, we identify valid aspect-opinion
pairs from the extracted aspect and opinion terms.

both the aspect and the opinion candidate set, se-
lecting those with the highest scores as determined
by Equation 5. The refined sets of aspects and opin-
ions can be denoted as AT = {. . . , spA

i,j , . . .} and
OT = {. . . , spO

i,j , . . .}, respectively, each com-
prising nr elements, where r ∈ [0, 1] indicates the
proportion of retained elements.
Aspect-Opinion Pairing. After acquiring the as-
pect and opinion candidate sets from the previous
stage, we proceed by pairing them in all possible
combinations, resulting in the following represen-
tation,

fa,b,c,d =
[
spA

a,b; sp
O
c,d;Cb,c

]
(6)

Cb,c =Max-Pooling ([hb+1 : hc−1]) (7)

Cb,c represents the contextual information of spa,b

and spc,d. Subsequently, we employ a fully con-
nected layer to process the representation of each
fa,b,c,d. This layer evaluates the validity of each
aspect-opinion pair, assigning a label distribution
yg ∈ {V alid, Invalid}.

pVa,b,c,d, p
IV
a,b,c,d = softmax (Wgfa,b,c,d + bg) (8)

where Wg, bg are trainable parameters.
Training. The training target is to minimize the
cross-entropy loss of the extraction and pairing
tasks.

L = αLe + βLg (9)
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味道真的不错 [SEP] 味道 [SEP] 不错
(Tastes really good [SEP] Tastes [SEP] good)

⻥⾁新鲜 [SEP] ⻥⾁ [SEP] 新鲜
(The fish is fresh [SEP] fish [SEP] fresh)

猪⾁很柴 [SEP] 猪⾁ [SEP] 很柴
(The pork is tough [SEP] pork [SEP] tough)

: Aspect-Specific Representation

valence:6.5

valence:3.83

valence:6.62

[SEP] : Separator Signal
: Positive Instance

+

-
-

        : Negative Instance+ -
        : Contrastive Loss

Figure 5: The overall framework of the Sentiment Scor-
ing Module employs a contrastive loss, which ensures
that samples with similar regression labels share similar
features in the embedding space, while samples with
differing labels are positioned further apar.

Le =−
∑

spi,j∈SP
logP

(
y∗e | pei,j

)
(10)

Lg =−
∑

spa,b∈AT,spc,d∈OT

logP
(
y∗g | pga,b,c,d

)

(11)

Here, y∗e and y∗g represents the ground-truth label
of the extraction and pairing tasks for spi,j and
fa,b,c,d, respectively.

3.3 Sentiment Scoring Module
In this section, we employ contrastive learning to
enhance aspect-specific representations and predict
sentiment intensity for each aspect in the valence-
arousal space, as illustrated in Figure 5.
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Aspect Specific Representation. In this part,
we first utilize MacBERT as encoder to generate
aspect-specific representation for each aspect:

uj =< {wi}n, [SEP], {aj}t̂, [SEP], {oj}t̃ >
(12)

Hj = MacBERT(uj) (13)

where t̂ and t̃ are lengths of the aspect aj and its
corresponding opinion oj . Note that in the case of
multi-aspect sentences, this module is employed
multiple times, with each iteration focusing on one
aspect. The aspect-specific feature representations
is then obtained by max pooling,

vj = Max-Pooling (Hj) (14)

Contrastive Learning. After generating aspect-
specific representations, most prior studies directly
employ these representations for downstream tasks.
Nonetheless, the performance is constrained by
imbalanced datasets, resulting in suboptimal out-
comes. To address this limitation, we incorporate
contrastive learning to enhance feature optimiza-
tion. Let {vi}G be defined as the set of all repre-
sentations within a batch, and G denote the number
of these representations, we first translate them
for contrastive loss through a MLP combined with
ℓ2-normalization,

ui = ℓ2-norm (MLP (vi)) (15)

In the absence of category labels, we establish two
thresholds, δ1 and δ2, to facilitate the selection of
positive and negative sample pairs respectively,

< i, j >=

{
+ if |y∗i − y∗j | ≤ δ1

− if |y∗i − y∗j | ≥ δ2
(16)

where y∗i , y∗j represent the ground-truth of the senti-
ment intensity. Therefore, through the above rules,
we can construct a positive set Pi and a negative
set Ni for each representation ui. The contrastive
loss is calculated as follows,

LCL = − 1

G

G∑

i=1

∑

uj∈Pi

log
esim(ui,u

+
j )/τ

∑
uk∈Ni

esim(ui,u
−
k )/τ

(17)
Training. The sentiment intensity was calculate by
the aspect-specific representations {vi}G through
a single linear layer, and the total loss can be calcu-
lated as follow,

L =αLR + (1− α)LCL (18)

LR =
1

G

G∑

i=1

||y∗i − fθ (vi) || (19)
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Figure 6: Architecture of the Category Prediction Mod-
ule.

where fθ denotes the linear projection. Note that
the Sentiment Scoring Module is deployed twice
within the system, with two identical components
operating in parallel to independently extract va-
lence and arousal features for regression prediction.
This design allows each encoder to specialize in a
specific emotional dimension, optimizing for the
unique characteristics of each dimension and re-
ducing feature interference during the contrastive
learning process.

3.4 Category Prediction Module

This part employs the same method as the Sen-
timent Scoring Module to obtain aspect-specific
representations vi. As Figure 6 shows, these repre-
sentations are subsequently passed through a fully
connected layer with a softmax activation function,
producing probability distributions across all cate-
gories,

pi = softmax (Wpvi + bp) (20)

The training loss is formulated as the cross-entropy
loss between the ground-truth and the predicted
label distributions for all aspects,

LCE = − 1

N

N∑

i=1

log (y∗i | pi) (21)

where y∗ represent the ground-truth label.

3.5 Deployment Order

Table 1 illustrates the computational sequence of
each component in the model across the three sub-
tasks. All three subtasks necessitate an initial phase

106



Task 1 Task 2 Task 3
Aspect-Opinion Pairing ✓ ✓ ✓

Opinion Retrieval ✓ ✗ ✗

Category Prediction ✗ ✗ ✓

Sentiment Scoring ✓ ✓ ✓

Table 1: The computational sequence of each compo-
nent within the model across the three subtasks.

Dataset Sentence-Level Aspect-Level

Sgl-Senti Mul-Senti All Null All

train 4165 1885 6000 169 8354
test1 1460 540 2000 - 2658

test2,3 - - 2000 - -

Table 2: Dataset statistics. “Sgl-Senti” and “Mul-Senti”
indicate the number of sentences expressing sentiment
toward single or multiple aspects, respectively. “NULL”
signifies that the aspect entity is omitted in sentence.

of aspect-opinion extraction and pairing. In Sub-
task 1, the Opinion Retrieval (OR) Module is em-
ployed, meaning that during sentiment intensity
regression, we retrieve the corresponding opinion
extracted in the aspect-opinion pair module for
each predefined aspect, as this is a critical feature
for both valence and arousal predictions. In cases
where extraction or pairing fails, “NULL” is used
to fill the missing opinion term.

4 Experiment

4.1 Dataset and Setup
We evaluate our model on the official dataset of
the SIGHAN-2024 shared task (Lee et al., 2024),
which uses Simplified Chinese characters. Dataset
statistics are shown in Table 2. To enhance the
model’s ability to discern subtle sentiment nuances
when predicting continuous sentiment intensity,
we incorporated the Chinese EmoBank (EB) (Lee
et al., 2022) as an auxiliary training resource. We
fine-tuned the Sentiment Scoring Module on this
supplementary dataset using the methodology out-
lined in Section 3.3, subsequently employing the
fine-tuned parameters to initialize the model for the
ensuing task training.

The Aspect-Opinion Pairing Module is trained
for 30 epochs with a batch size of 16, and the other
modules are trained for 10 epochs with a batch
size of 128. AdamW optimizer (Loshchilov and
Hutter, 2018) is adopted with a learning rate 2e-5
and weight decay 1e-2 for model training. The two
thresholds δ1 and δ2 used in contrastive learning
are set to 0.5 and 2 respectively. The maximum
span length l is set as 10. We select the best model

weights for testing based on performance on the
validation set. MAE and PCC are evaluation met-
rics for subtask 1, while the F1 score is used as the
evaluation metric for subtasks 2 and 3.

4.2 Baseline

Since no existing method is specifically designed
for dimABSA, we re-implemented Span-ASTE
(Xu et al., 2021) and STAGE (Liang et al., 2023),
which are high-performing span-based systems
closely related to the task, and used them as our
baseline.

4.3 Main Results

Table 3 presents the results of out method in the
final test set. Observations are: 1) Our purposed
model outperforms the baseline, and achieves rela-
tively good results in the final rankings, with one
metric ranking 1st, seven metrics ranking 2nd, and
two metrics ranking 3rd. The performance im-
provement of our model primarily stems from a
more powerful pre-training model, richer relational
information for aspect-opinion pairing, and more
robust feature representation for sentiment scoring.
2) Predicting sentiment intensities in the arousal
dimension is significantly more challenging than
in the valence dimension. In subtask 1, all models
exhibit higher MAE in the arousal dimension com-
pared to the valence dimension. In subtask 2 and
3, the F1 score based on arousal is about 5% lower
than the F1 score based on valence. We infer that
this complexity arises because predicting the level
of arousal requires a comprehensive assessment of
the overall context, tone, and other nuanced factors,
which introduces corresponding challenges in the
data annotation and training process.

4.4 Ablation Study

We also conduct an ablation study to verify the ef-
fectiveness of our proposed method. The results
are shown in Table 3. Observations are: 1) For
the Aspect-Opinion Pairing Module, w/o CR and
w/o RoPE mean that we remove the contextual
representation and rotational position embedding
during the computation. Without the enhancement
of relational features between spans and spans, the
model’s performance slightly degrades. 2) For the
Sentiment Scoring Module, w/o OR indicates that
the opinion term has been removed from the in-
put, and w/o CL indicates that the contrastive loss
has been omitted during the training process. As
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Models
Subtask 1 Subtask 2 Subtask 3

V-MAE V-PCC A-MAE A-PCC V-F1 A-F1 VA-F1 V-F1 A-F1 VA-F1
Span-ASTE♮ - - - - 0.473 0.458 0.310 - - -

STAGE♮ - - - - 0.491 0.468 0.324 - - -
CL-Span♮ 0.320 0.900 0.321 0.767 0.562 0.517 0.385 0.540 0.500 0.375
CL-Span† 0.302 0.910 0.314 0.767 0.565 0.519 0.391 0.547 0.505 0.379
CL-Span◦ 0.294(2) 0.916(3) 0.309(1) 0.766(3) 0.573(2) 0.522(2) 0.403(2) 0.555(2) 0.507(2) 0.389(2)

CL-Span◦w/o-OR 0.327 0.913 0.354 0.761 0.523 0.484 0.371 0.511 0.470 0.359
CL-Span◦w/o-CL 0.311 0.912 0.331 0.764 0.548 0.511 0.380 0.542 0.503 0.377
CL-Span◦w/o-EB 0.319 0.912 0.340 0.767 0.539 0.501 0.374 0.535 0.487 0.364

CL-Span◦w/o-RoPE - - - - 0.565 0.514 0.391 0.547 0.510 0.379
CL-Span◦w/o-CR - - - - 0.564 0.518 0.391 0.545 0.504 0.378

Table 3: Main results and ablation results on the test set. “◦”, “†” and “♮” indicates that the context encoder is
MacBERT-base, RoBERTa-base (Cui et al., 2020) and BERT-base (Kenton and Toutanova, 2019) in Chinese version
respectively. Note that “w/o” indicates the removal of the corresponding component from the model. The numbers
in brackets represent the ranking of the metric in the official leaderboard.

a result, the model’s performance drops dramati-
cally, indicating that the opinion term is crucial for
predicting sentiment intensity and that contrastive
loss guides the model to obtain a more appropriate
feature distribution when the dataset is imbalanced.
3) w/o EB indicates that the additional data from
Chinese EmoBank was not used during training,
resulting in deteriorated model performance. This
verifies that Chinese EmoBank provides valuable
supplementary information when the training data
is insufficient. In summary, each module of our
method significantly contributes to the overall per-
formance on the dimABSA task.

5 Analysis

5.1 Effect of Contrastive Learning

To further verify the effectiveness of contrastive
learning, we visualize the sample features with and
without it, as shown in Figure 7. Models without
contrastive loss struggle to capture the underlying
continuous information in the data, resulting in
fragmented and disordered representations. Con-
versely, features derived through contrastive learn-
ing preserve a coherent semantic structure, ensur-
ing that semantically similar target values remain
proximate in the feature space. Therefore, we in-
fer that the improvement in effect comes from the
neat and sequential feature representation brought
by contrastive learning, which makes the feature
space more discriminative and has stronger gen-
eralization ability in unknown data. At the same
time, through contrastive learning, even if there
are fewer samples with labels in certain intervals,
the model will still learn the feature representa-

tion of these samples because they are frequently
used for comparison during training. This method
helps to balance the model’s attention to different
labels, thereby alleviating the problem of imbal-
anced datasets.

5.2 Low-Resource Scenario

As a challenging task, dimABSA faces significant
issues related to data scarcity. To address this, we
investigated the impact of contrastive learning un-
der various training data conditions. As depicted
in Figure 8, the model utilizing contrastive learn-
ing consistently achieves lower MAE values, espe-
cially as the dataset size diminishes. Furthermore,
the slower increase in MAE for the contrastive
learning model indicates that contrastive learning
enhances the model’s robustness and generalization
capabilities, allowing it to maintain performance
even under low-resource conditions.

5.3 Case Study

Figure 9 presents some case studies of this sys-
tem, where aspect terms are highlighted in red and
opinion terms in blue. Observations are: 1) In
cases (a) and (b), the complete system achieved
optimal results in the majority of sentiment inten-
sity predictions. Notably, even for test data with
sparse training data distribution, such as values like
“7.62” and “2.17”, CL-Span consistently outper-
formed other methods, underscoring its robustness
in accurately predicting less frequent valence and
arousal values. 2) In case (c), our proposed CL-
Span successfully pairs all aspect terms with their
corresponding opinion terms. In contrast, Span-
ASTE fails to recognize the pair (“onion”, “caught
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Valence - w/o CL

(a) Valence - w/o CL

Valence - w CL

(b) Valence - CL

Arousal - w CL

(c) Arousal - w/o CL

Arousal - w CL

(d) Arousal - CL

Arousal - w CL
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Figure 7: Visualization of learned aspect-specific representations of different methods on the validation set of
dimABSA. The features are reduced to two dimensions using TSNE (Van der Maaten and Hinton, 2008), with the
sentiment intensity ranging from 1 to 9. The color gradient from blue to red represents the increasing intensity of
sentiment, where blue indicates the lowest intensity (1) and red indicates the highest intensity (9).
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Figure 8: Comparison of the MAE for valence and
arousal predictions by models with contrastive learn-
ing (red) and without contrastive learning (yellow) at
different data usage ratios.

my eye”), and the STAGE model overlooks the pair
(“onion”, “wasn’t pungent at all”). We attribute
the superior performance of our model to the in-
tegration of contextual representations and RoPE,
which enhances the semantic understanding and
connectivity between aspect and opinion terms.

6 Conclusion

This paper describes our system for the dimABSA
task. We develop a Contrastive Learning-Enhanced
Span-based Framework, which integrates contex-
tual representations and RoPE into feature repre-
sentation to enhance semantic understanding. Ad-
ditionally, we employ contrastive learning to opti-
mize feature representations. Our system demon-
strates significant effectiveness, achieving a 2nd
place ranking across three subtasks.

Limitations

This section discusses some improvements that can
be made in future work. 1) The pipeline model
structure used in this study divides the process-
ing steps into independent modules, allowing each

(b)

Sentence:

Golden (val-aro):
CL-Span:
w/o CL:
w/o EB:

让 我 眼 前 ⼀ 亮 的 是 洋 葱 ， 吃 起 来 很 甜 并 且 完 全 都 不 呛 。

What really caught my eye was the onion ; it tasted sweet and wasn't pungent at all   .

Golden (Pair):
CL-Span:

Span-ASTE:
STAGE:

(onion, caught my eye) (onion, sweet) (onion, wasn't pungent at all)

Sentence:

(c)

(a)

Sentence:

Golden (val-aro):
CL-Span:
w/o CL:
w/o EB:

猪 排 油 腻 感 很 ⾼ ， 吃 太 多 会 想 吐 。

Pork chops are very greasy and eating too much will make you feel like vomiting .

3.50#5.00(Pork chops, greasy) 2.17#7.00(Pork chops, feel like vomiting)

3.42#5.13

3.65#5.37

3.73#5.21

2.26#6.97

2.52#6.85

3.01#6.88

多 样 且 超 级 美 味 的 蔬 菜 料 理 。

Various and super delicious vegetarian dishes .

6.75#6.12(vegetarian dishes, various) 7.62#7.25(vegetarian dishes, super delicious)

6.80#6.14

6.72#6.01

6.54#6.05

7.55#7.21

7.01#6.96

6.93#6.80

Figure 9: Example cases with golden standard labels
alongside the predictions from our model compared
with other baseline models. The bold numbers indicate
the relatively optimal results.

module to be developed, tested, and optimized sep-
arately. However, it also introduces the issue of
error propagation, where errors in earlier stages
can affect subsequent modules. In future work, we
will focus on minimizing the impact of error prop-
agation or consider testing an end-to-end model
paradigm. 2) In the Sentiment Scoring Module,
our system employs two MacBERT encoders to
separately extract valence and arousal features for
independent regression prediction. This approach
reduces feature interference during the contrastive
learning process and better captures the unique
characteristics of each dimension. However, this
results in the parameters of this module doubling
to 204M. We will consider other encoding strate-
gies instead of simply deploying two MacBERT
separately.
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Abstract

The DimABSA task requires fine-grained senti-
ment intensity prediction for restaurant reviews,
including scores for Valence and Arousal di-
mensions for each Aspect Term. In this study,
we propose a Coarse-to-Fine In-context Learn-
ing(CFICL) method based on the Baichuan2-
7B model for the DimABSA task in the
SIGHAN 2024 workshop. Our method im-
proves prediction accuracy through a two-stage
optimization process. In the first stage, we
use fixed in-context examples and prompt tem-
plates to enhance the model’s sentiment recog-
nition capability and provide initial predictions
for the test data. In the second stage, we encode
the Opinion field using BERT and select the
most similar training data as new in-context ex-
amples based on similarity. These examples in-
clude the Opinion field and its scores, as well as
related opinion words and their average scores.
By filtering for sentiment polarity, we ensure
that the examples are consistent with the test
data. Our method significantly improves predic-
tion accuracy and consistency by effectively uti-
lizing training data and optimizing in-context
examples, as validated by experimental results.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) (Pontiki
et al., 2014; 2015; 2016) is a critical NLP research
topic that aims to identify the aspects of a given
entity and analyze the sentiment polarity associated
with each aspect. ABSA involves predicting tuples
of sentiment elements for a given text, with four
main elements constituting the focus of ABSA re-
search: aspect term (a), aspect category (c), opinion
term (o), and sentiment polarity (s)(Zhang et al.,
2022).

Early studies on ABSA primarily focused on sin-
gle sentiment elements such as aspect term (Liu
et al., 2015; Ma et al., 2019), aspect category (Zhou

*Corresponding author

et al., 2015), or sentiment polarity (Wang et al.,
2016; Chen et al., 2017). However, recent research
has introduced compound ABSA tasks involving
multiple associated elements. These include As-
pect Sentiment Triplet Extraction (ASTE) (Peng
et al., 2020; Yuan et al., 2023; Chen et al., 2021;
Mao et al., 2021; Wu et al., 2020; Xu et al., 2020;
Zhang et al., 2020), which extracts three elements
in a triplet—aspect/target term, opinion term, and
sentiment polarity.

Furthermore, Aspect Sentiment Quadruple Pre-
diction (ASQP)(Zhang et al., 2021; Cai et al., 2021;
Gao et al., 2022; Mao et al., 2022; Peper and Wang,
2022; Zhou et al., 2023) extends ASTE by includ-
ing an additional aspect category, thus constructing
a quadruple. In contrast to representing affective
states as discrete classes (i.e., polarity), there is
also a dimensional approach that represents affec-
tive states as continuous numerical values, such as
in the valence-arousal (VA) space (Russell, 1980),
providing more fine-grained emotional information
(Lee et al., 2022). For example, in the sentence
“独家的鲔鱼抹酱超好吃。”, the corresponding
elements are “鲔鱼抹酱” (aspect term), “食物#品
质” (aspect category), “超好吃” (opinion term),
and “7.5#7.25” (valence#arousa score).

Resently, large language models (LLMs)(Brown
et al., 2020; Touvron et al., 2023) have shown an
impressive few-shot ability on several NLP tasks.
To expect LLMs to perform better on few-shot
tasks, in-context learning (ICL)(Dong et al., 2022)
paradigm is becoming a flourishing research direc-
tion. This paradigm can generate a prediction of the
test input by conditioning on few-shot input-output
examples (also known as in-context examples or
demonstrations), without requiring any updates to
parameters. Previous studies (Liu et al., 2022; Min
et al., 2022) found that LLMs are highly sensi-
tive to the choice of in-context examples. One
typical strategy for retrieving helpful in-context ex-
amples is to leverage the overall semantic similar-
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ity between the candidate examples and test input.
Further research has shown that retrieving highly
relevant examples across multiple dimensions has
achieved significant performance improvements in
multi-domain ABSA tasks(Yang et al., 2024).

Supervised Fine-Tuning (SFT) is a method that
involves further training a pre-trained model using
a labeled dataset to achieve better performance on
specific tasks. In-context learning helps the model
understand the task by providing a few examples
during inference, but its performance is often lim-
ited by the selection and number of examples. SFT,
on the other hand, directly trains on a large amount
of labeled data, allowing the model to deeply under-
stand various aspects of the task, thereby exhibit-
ing higher accuracy and consistency in practical
applications and achieving good performance on
specific tasks(Zhang et al., 2024).

Our study addresses the DimABSA task at the
SIGHAN 2024 workshop by proposing a two-stage
context learning method based on the Baichuan2-
7B(Yang et al., 2023) model to improve the accu-
racy of fine-grained sentiment intensity prediction
for restaurant reviews. Our work consists of two
main stages: In the first stage, we use fixed con-
text examples to train the model, enhancing its
ability to recognize sentiment elements. In the sec-
ond stage, we utilize the Chinese BERT(Devlin
et al., 2018) to encode the Opinion field and se-
lect the most similar training data as new context
examples based on similarity calculations, thereby
further improving the model’s prediction accuracy
and granularity. Experimental results show that our
method significantly enhances the model’s perfor-
mance in both valence and arousal dimensions and
effectively reduces sentiment polarity bias. Over-
all, our approach provides an efficient solution for
the DimABSA task and offers valuable insights for
the optimization of future fine-grained sentiment
analysis models.

2 Background

The Chinese Dimensional Aspect-Based Sentiment
Analysis (dimABSA)(Lee et al., 2024) shared task
is part of the SIGHAN 2024 workshop1. This
task focuses on providing fine-grained sentiment
intensity predictions for each extracted aspect of a
restaurant review. The four sentiment elements are
defined as follows:

Aspect Term (A): Denotes an entity indicating

1https://dimabsa2024.github.io

the opinion target. If the aspect is omitted and not
mentioned clearly, "NULL" is used to represent
the term. Aspect Category (C): Represents a pre-
defined category for the explicit aspect within the
restaurant domain. The categories are based on the
SemEval-2016 Restaurant dataset (Pontiki et al.,
2016) and include twelve categories, each split into
an entity and attribute using the symbol “#”. Opin-
ion Term (O): Describes the sentiment words or
phrases related to the aspects. Sentiment Inten-
sity (I): Reflects the sentiments using continuous
real-valued scores in the valence-arousal dimen-
sions. Valence indicates the degree of pleasant-
ness (positive or negative feelings), while arousal
indicates the degree of excitement or calmness.
Both dimensions use a nine-degree scale, where
1 denotes extremely high-negative or low-arousal
sentiment, 9 denotes extremely high-positive or
high-arousal sentiment, and 5 denotes neutral or
medium-arousal sentiment. This task aims to evalu-
ate the capability of automatic systems for Chinese
dimensional ABSA and is divided into three sub-
tasks:

Subtask 1: Intensity Prediction: Focuses on pre-
dicting sentiment intensities in the valence-arousal
dimensions. Given a sentence and a specific as-
pect, the system should predict the valence-arousal
ratings. Subtask 2: Triplet Extraction: Aims to ex-
tract sentiment triplets composed of three elements
(aspect, opinion, intensity) from a given sentence.
Subtask 3: Quadruple Extraction: Aims to extract
sentiment quadruples composed of four elements
(aspect, category, opinion, intensity) from a given
sentence.

Our team chose to participate in the more chal-
lenging second and third subtasks, and we achieved
third place in the evaluation task.

3 System Overview

We use Baichuan2-7B as the base model and pro-
pose a two-stage context learning method to im-
prove prediction accuracy in the DimABSA task.
This method incrementally optimizes the model
output through preliminary and refined prediction
stages, fully utilizing the information in the training
data. Our framework is shown in Figure 1.

Baichuan2(Yang et al., 2023) is a Chinese and
English bilingual language model. It achieved
the best performance among models of the same
size on standard benchmarks(C-Eval(Huang et al.,
2024), MMLU(Hendrycks et al., 2020)).
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Figure 1: The architecture of our system. The figure illustrates a two-stage in-context learning method based on
the Baichuan2-7B model to improve prediction accuracy in the DimABSA task. In the first stage, fixed in-context
examples (Fixed ICL) are used to process training data. The model’s sentiment recognition ability is enhanced
through a prompt template, and initial predictions are made for the test data. In the second stage, the Opinion field is
encoded using BERT, and the most similar training data is selected as new in-context examples based on similarity.
These examples include the Opinion field and its scores, as well as related opinion words and average scores.
Sentiment polarity filtering ensures that the in-context examples are consistent with the test data. Finally, these
new in-context informations are input into the model along with the test data for re-prediction, yielding optimized
quadruple results.

3.1 Fixed In-context Learning Stage

In the first stage, we utilize a few-shot learning
method to process the training data. Specifically,
we prepare three fixed context examples for each
training sample and input these examples along
with the training data into the model. This approach
allows the model to learn task-related features from
limited context information. After training, we use
the trained model to predict the test data and obtain
preliminary quadruplet results (aspect, category,
opinion, intensity).

3.2 Example Retrieval Enhancement Stage

The objective of the second stage is to further en-
hance the model’s prediction accuracy through sim-
ilarity calculation and context example optimiza-
tion. First, we use a BERT model to encode the
Opinion field of each data label and calculate the
cosine similarity between the Opinion encoding
of each test data and that of each training data.
The similarity calculation results are used to select
the three most similar training data as new con-
text examples. These examples include not only
the Opinion fields and their scores but also related
opinion words and their average scores, providing
more detailed reference information.

To prevent significant bias in emotional polar-
ity, we filter candidate examples based on the Va-
lence scores predicted in the first stage, ensuring
that the selected context examples are consistent
with or similar to the current test data in terms of

emotional polarity. Then, we input the new context
examples along with the test data into the model for
re-prediction, ultimately obtaining the optimized
quadruplet prediction results.

This two-stage method significantly improves
the model’s prediction performance. The prelimi-
nary prediction in the first stage lays the foundation
for the refined prediction in the second stage. The
second stage, through similarity calculation and
context example optimization, further enhances the
accuracy and granularity of the prediction results.
The overall method not only fully utilizes the infor-
mation in the training data but also effectively re-
duces the impact of emotional polarity bias through
careful filtering and context construction.

4 Experimental Setup

4.1 Dataset
The DimABSA dataset provided by the evaluation
organizers includes 6000 training samples, 100 vali-
dation samples, and 2000 test samples of restaurant
reviews. These data provide a substantial founda-
tion for model training, validation, and final eval-
uation. The innovation of this evaluation task lies
in the requirement to assign scores for valence and
arousal dimensions to each aspect term, which is
also the main challenge of the task.

We conduct a detailed examination of the sam-
ple distribution in these two dimensions and the
correlation between the scores. Figure 2 shows
the sample distribution for the valence and arousal

114



Figure 2: The distribution of valence and arousal scores of train dataset

Figure 3: The distribution of continuous real-valued
scores in the valence-arousal dimensions

dimensions, respectively. It can be seen that there
are more samples with low valence scores (4-5)
and more samples with high valence scores (6-7).
The majority of arousal scores are concentrated
between 5 and 7, with fewer samples at extreme
values. Figure 3 shows the scatter plot of valence
and arousal scores, illustrating the relationship be-
tween these two dimensions.

Through our analysis, we find that the distribu-
tion characteristics of this dataset align with those
of The Chinese EmoBank (Lee et al., 2022), a
dimensional sentiment resource. The reasonable
distribution of valence and arousal dimensions pro-
vides authentic and effective data support for model
training, helping the model to make accurate predic-
tions under different levels of emotional intensity.

4.2 Implementation Details

We use Baichuan2-7B as our base model. During
training, we use a batch size of 4 and a gradient

accumulation step size of 4. We further employ the
Adam optimizer with a learning rate of 8× 10−5.
The training employs the LoRA efficient tuning
method with precision set to fp16. We conduct the
training on an NVIDIA V100 GPU.

4.3 Evaluation Metrics

First, the valence and arousal values are rounded
to an integer. Next, a triplet/quadruple is regarded
as correct if and only if the three/four elements
and their combination match those in the gold
triplet/quadruple. On this basis, we calculate the
Precision, Recall, and F1-score as the evaluation
metrics, defined as the following equations.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

where TP, FP, and FN denote true positives,
false positives, and false negatives, respec-
tively. Precision is defined as the percentage
of triplets/quadruples extracted by the system
that are correct. Recall is the percentage of
triplets/quadruples present in the test set found by
the system. The F1-score is the harmonic mean of
precision and recall. All metrics range from 0 to 1.
A higher Precision, Recall, and F1 score indicate
more accurate performance. A system’s overall
ranking is based on the F1 score. The higher the
F1 score, the better the system performance.
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method V-Quat-F1 A-Quat-F1 VA-Quat-F1
4 shot+Prompt1 0.53 0.38 0.27
4 shot+Prompt2 0.54 0.46 0.32
4 shot+Instruction Tuning 0.61 0.47 0.32
Coarse-to-Fine ICL+Instruction Tuning 0.62 0.51 0.38

Table 1: Evalution dataset results for quadruple extraction task

task V-F1 A-F1 VA-F1
Triplet Extraction 0.542 0.507 0.389
Quadruple Extraction 0.522 0.489 0.376

Table 2: The result of test dataset for triplet and quadruple extraction

4.4 Evaluation Results

Each metric for the valence and arousal dimen-
sions is calculated and ranked either independently
or in combination. Precision is defined as the per-
centage of triplets/quadruples extracted by the sys-
tem that are correct. Recall is the percentage of
triplets/quadruples present in the test set found by
the system. The F1-score is the harmonic mean of
precision and recall. All metrics range from 0 to 1.
A higher Precision, Recall, and F1 score indicate
more accurate performance.

Previous research has shown that within certain
limits, the performance of large language models
improves with an increasing number of context
examples. Considering computational constraints,
we fine-tune Baichuan2-7B using four manually
selected context examples. The selection criteria
aim to ensure that examples are diverse and rep-
resentative of the most common features in the
dataset, thereby optimizing model performance to
the greatest extent.

Additionally, adjustments to the prompt template
significantly impact model performance. We use
ChatGPT to optimize the logic and content quality
of the prompt templates, emphasizing specific task
characteristics and common pitfalls to further refine
the templates. The initial template (prompt1) and
the optimized template (prompt2) will be shown
in the appendix. Experimental results indicate that
the optimized prompt2 improves performance by
five percentage points.

Instruction-tuning is a method to enhance the
model’s understanding of task instructions, thereby
improving its generalization ability in specific tasks.
Based on the above strategy for prompt adjustment,
we design ten task templates for the model to ran-
domly choose from, aiming to help the model com-

prehensively understand the task. After incorporat-
ing instruction-tuning, the V-Quat-F1 and A-Quat-
F1 scores of the model’s predictions improve, but
the VA-Quat-F1 score shows no significant change.
This suggests that while the model’s understand-
ing of valence and arousal dimensions improves
individually, it does not adequately address the con-
sistency between these two dimensions.

Given the challenge of this task, which re-
quires scoring aspect sentiment in two dimen-
sions—particularly the more difficult arousal di-
mension—we further optimize context examples
using initially predicted test set label information
and provide the model with more granular word-
level standard score information. Specifically, in
the second stage, we use an example retrieval
method to find 3 to 5 context examples for each
data sample and provide more than three word-
level standard score examples. By providing dual-
granularity information (sentence-level context ex-
amples and word-level standard scores), the predic-
tion scores for both valence and arousal dimensions
improve further. More importantly, the consistency
between these two dimensions also significantly im-
proves, with the VA-Quat-F1 score reaching 0.38.
Detailed experimental results on the validation set
are shown in Table 1.

Finally, the test results on the test set are shown
in Table 2. For the triplet extraction task, we ignore
the "category" aspect and adopt the same strategy,
achieving good results as well. This further vali-
dates the effectiveness and broad applicability of
our method.

4.5 Case Study

As shown in figure 4, after adopting the optimized
examples, the reference for the term "my love"
in the predictions becomes more precise. Initially,
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Figure 4: Case Study

when using fixed examples, the valence and arousal
scores for "my love" are 6.5 and 6.0, respectively.
Although these scores reflect a certain level of emo-
tional intensity, they are not entirely accurate. By
employing optimized examples in the second phase,
we provide more relevant context. In the optimized
example, the sentence "This salad is really my
love." corresponds to valence and arousal scores of
7.50 and 7.25, respectively. These scores capture
the emotional nuances more effectively. Consid-
ering this more fitting example, we re-predict the
scores for "Homemade hummus is my love," result-
ing in adjusted valence and arousal scores of 7.0
and 7.0. These revised scores are more reasonable,
demonstrating that using optimized context exam-
ples can significantly improve the accuracy and
consistency of predictions, thereby better meeting
the demands of fine-grained sentiment analysis.

5 Conclusion

This study proposes a two-stage context learning
method based on the Baichuan2-7B model for the
DimABSA task at the SIGHAN 2024 workshop.
The task requires fine-grained sentiment intensity
prediction for restaurant reviews.

In the first stage, we enhance the model’s senti-
ment element recognition ability using fixed con-
text examples. In the second stage, we utilize
BERT to encode the Opinion field and select the
most similar training data based on similarity cal-
culation as new context examples. These relevant
examples improve the accuracy of sentiment inten-
sity prediction.

Experimental results show that our two-stage
method significantly enhances the accuracy and
granularity of predictions. The method effectively
utilizes training data and reduces sentiment polarity
bias.

Overall, our approach provides an efficient solu-
tion for the DimABSA task and offers valuable in-
sights for optimizing future models for fine-grained
sentiment analysis.

Limitations

Although our proposed method demonstrates
significant performance improvements in the
DimABSA task, there are still some limitations.
First, our method focuses on enhancing the accu-
racy of sentiment intensity prediction, without fur-
ther optimization for the Aspect field and its Cat-
egory. Second, the success of the second stage is
relatively dependent on the accuracy of the simi-
larity measure between the Opinion field and the
training data, and the issue of error propagation
requires further analysis and discussion. Addition-
ally, our method has high computational resource
demands, especially when performing large-scale
data training and optimization. This could limit its
practicality and widespread adoption in real-world
applications.
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A Appendix

Prompt 1: 执行一项情感四元组提取任务。
给定一个句子，提取句子中所有的情感四元
组(方面、类别、观点、强度)，用"\n"分隔不
同的四元组。

每个四元组中的“方面”是句子中被评价对
象的特定方面或特征，如果省略了该方面而
没有明确提及，使用“NULL”来表示该术语。
”类别“是预定义的12种类别之一，根据常识判
断。预定义类别：餐厅#概括、餐厅#价格、
餐厅#杂项、食物#价格、食物#品质、食物#份
量与款式、饮料#价格、饮料#品质、饮料#份
量与款式、氛围#概括、服务#概括、地点#概
括。 ”观点“是对方面的情感词或短语。 ”强
度“指效价-唤醒的二维情绪强度，其中效价代
表情绪体验的整体愉悦程度(高兴-不高兴)，
唤醒代表情绪的强度水平(平静-兴奋)，每个指
标的范围应为 1.0 到 9.0。在效价和唤醒维度
上的值为 1 表示极度负面和低唤醒情感，相
反，9表示极度正面和高唤醒情感，5表示中
性和中等唤醒情感。精确到小数点后两位，效
价-唤醒值以#分隔。
示例如下： examples
请对于句子：
给出输出：
Prompt 1 in English: Extract sentiment quads.

Given a sentence, extract all sentiment quads (as-
pect, category, opinion, intensity) in the sentence,
separated by "\n".

In each quad, the "aspect" is the specific
aspect or feature of the object being evaluated
in the sentence. If the aspect is omitted or not
explicitly mentioned, use "NULL" to represent the
term. The "category" is one of the predefined 12
categories, determined based on common sense.
The predefined categories are: Restaurant#General,
Restaurant#Price, Restaurant#Miscellaneous,
Food#Price, Food#Quality, Food#Portion and
Style, Drink#Price, Drink#Quality, Drink#Portion
and Style, Ambience#General, Service#General,
Location#General. The "opinion" is the sen-
timent word or phrase describing the aspect.
The "intensity" refers to the two-dimensional
emotion intensity of Valence-Arousal, where
valence represents the overall pleasantness of
the emotional experience (happy-unhappy), and
arousal represents the intensity level of the emotion
(calm-excited). Each indicator ranges from 1.0
to 9.0. A value of 1 on the valence and arousal
dimensions indicates extremely negative and low
arousal emotions, respectively, while 9 indicates
extremely positive and high arousal emotions, and
5 indicates neutral and medium arousal emotions.
Values should be precise to two decimal places,
with valence and arousal values separated by #.

Example: examples
For the sentence:
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Provide the output:

Prompt 2: 执行一个情感四元组提取任务。
给定一个句子，从中提取所有情感四元组，其
中包括方面、类别、观点和强度，并用"\n"分
隔不同的四元组。
每个四元组包括以下要素： “方面”指的是
句子中被评价对象的具体方面或特征。如果
没有明确提及方面，则使用“NULL”表示。
“类别”是根据常识判断的预定义类别之一，
共有12种。预定义类别包括：餐厅#概括、餐
厅#价格、餐厅#杂项、食物#价格、食物#品
质、食物#份量与款式、饮料#价格、饮料#品
质、饮料#份量与款式、氛围#概括、服务#概
括、地点#概括。 “观点”是对被评价对象特定
方面的情感词或短语。 “强度”表示情感的效
价和唤醒，分别代表情绪体验的整体愉悦程度
（高兴-不高兴）和情绪的强度水平（平静-兴
奋）。效价和唤醒的范围是1.0到9.0，其中1表
示极度负面和低唤醒情感，9表示极度正面和
高唤醒情感，5表示中性和中等唤醒情感。效
价和唤醒值以#分隔，精确到小数点后两位。
输出格式应严格按照以下示例的格式： (方面,
类别,观点,强度)每个四元组在括号内，不要
输出无关信息。 观点是最细粒度的情感词，
需要为每一个提取出的观点生成相应的四元
组。
示例如下： examples
请对于句子：
给出输出：
Prompt 2 in English: Execute a task of extracting

sentiment quadruples. Given a sentence, extract all
sentiment quadruples from it, including aspect, cat-
egory, opinion, and intensity, and separate different
quadruples with "\n".

Each quadruple includes the following elements:
"Aspect" refers to the specific aspect or feature

of the evaluated object in the sentence. If the
aspect is not explicitly mentioned, use "NULL" to
represent it. "Category" is one of the predefined
categories judged based on common sense. There
are 12 predefined categories: Restaurant#General,
Restaurant#Prices, Restaurant#Miscellaneous,
Food#Prices, Food#Quality, Food#Style and Op-
tions, Drinks#Prices, Drinks#Quality, Drinks#Style
and Options, Ambience#General, Service#General,
and Location#General. "Opinion" is the emotional
word or phrase regarding the specific aspect of
the evaluated object. "Intensity" represents the
valence and arousal of the emotion, where valence
indicates the overall pleasantness of the emotional
experience (happy-unhappy) and arousal indicates

the intensity level of the emotion (calm-excited).
The range of valence and arousal is from 1.0 to
9.0, where 1 indicates extremely negative and low
arousal emotion, 9 indicates extremely positive
and high arousal emotion, and 5 indicates neutral
and moderate arousal emotion. The valence and
arousal values are separated by # and precise to
two decimal places. The output format should
strictly follow the format of the following example:
(aspect, category, opinion, intensity). Each
quadruple should be enclosed in parentheses, and
do not output any irrelevant information. Each
opinion is the most granular emotional word, and a
corresponding quadruple should be generated for
each extracted opinion.

Example: examples
Given the sentence:
Provide the output:
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Abstract

Aspect-based sentiment analysis (ABSA) is
a fine-grained sentiment analysis task, which
aims to extract multiple specific sentiment ele-
ments from text. The current aspect-based sen-
timent analysis task mainly involves four basic
elements: aspect term, aspect category, opinion
term, and sentiment polarity. With the develop-
ment of ABSA, methods for predicting the four
sentiment elements are gradually increasing.
However, traditional ABSA usually only dis-
tinguishes between “positive”, “negative”, or
“neutral” attitudes when judging sentiment po-
larity, and this simplified classification method
makes it difficult to highlight the sentiment in-
tensity of different reviews. SIGHAN 2024
provides a more challenging evaluation task,
the Chinese dimensional ABSA shared task
(dimABSA), which replaces the traditional sen-
timent polarity judgment task with a dataset in
a multidimensional space with continuous sen-
timent intensity scores, including valence and
arousal. Continuous sentiment intensity scores
can obtain more detailed emotional information.
In this task, we propose a new paraphrase gener-
ation paradigm that uses generative questioning
in an end-to-end manner to predict sentiment
intensity quadruples, which can fully utilize
semantic information and reduce propagation
errors in the pipeline approach.

1 Introduction

Traditional Aspect-based sentiment analysis
(ABSA) can extract four specific emotional
elements from the text: 1) Aspect term, which
is a specific aspect in the sentence, generally a
word or phrase expressed in the text, and may not
exist; 2) Aspect category, the category involved
by the aspect term, usually a predefined set of
categories; 3) Opinion term, the expression of a
specific emotional view on an aspect; 4) Sentiment
polarity, the emotional tendency towards a certain
aspect. For example, for the review “The pizza

at this restaurant is delicious, but the service
is terrible.”, the ABSA task can extract two
emotional quadruples: (pizza, food type, delicious,
positive) and (service, service attitude, terrible,
negative).

The Chinese dimensional ABSA shared task
(dimABSA) (Lee et al., 2024) dataset is a collection
of comments extracted by organizers from online
catering industry social media platforms. After re-
moving HTML tags and multimedia tags, the text
was split into multiple sentences. A selection of
these sentences was then manually annotated with
aspect term, aspect category, opinion term, and
sentiment intensity. For sentiment intensity, the
organizers used the valence and arousal provided
by the “Chinese EmoBank” (Lee et al., 2022;Yu
et al., 2016) to represent emotional states as con-
tinuous numerical values in a multidimensional
space. Using valence-arousal as sentiment inten-
sity, this method provides more detailed emotional
information. The “Chinese EmoBank” is a man-
ually annotated Chinese emotional dictionary. In
it, valence describes the positivity or negativity
of emotions, ranging continuously from negative
(such as sadness, anger) to positive (such as hap-
piness, excitement). Valence is often seen as the
“pleasantness” of an emotional experience and is
a standard for assessing the quality of emotional
experiences. Arousal, on the other hand, refers to
the level of excitement of an emotion. It reflects
the intensity of an individual’s physiological and
psychological response to an emotional stimulus.
Arousal is also a continuous range, from very low
(such as boredom, tiredness) to very high (such as
surprise, panic). In the “Chinese EmoBank”, both
valence and arousal are measured on a scale from
1 to 9. In the sentiment intensity of the dimABSA
dataset, valence and arousal are separated by a ’#’.

The dimABSA task provides three subtasks:
Subtask 1: For a given sentence and its aspect term,
predict the sentiment intensity of the aspect term
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in the comment; Subtask 2: For a given sentence,
extract the aspect term and opinion term from the
comment and predict the sentiment intensity; Sub-
task 3: For a given sentence, extract the aspect
term, aspect category, and opinion term from the
comment and predict the sentiment intensity. In
this task, we have implemented Subtask 3, where
the system could extract all sentiment quadruples
(aspect, category, opinion, intensity). For example,
for the comment “This bowl of ramen is super in-
vincibly thunderously bad.”, the final extraction of
the sentiment intensity quadruple would be: (ra-
men, food#quality, super invincibly thunderously
bad, 2.00#7.88).

This work processes the dataset provided by the
dimABSA task and proposes a new paraphrase gen-
eration paradigm. It replaces the traditional sen-
timent polarity judgment task in ABSA with the
judgment of sentiment intensity: valence#arousal,
using the T5 pre-trained model (Raffel et al., 2020)
that unifies natural language processing tasks into
text-to-text tasks. Through fine-tuning training, it
accomplishes the task of extracting sentiment inten-
sity quadruples. Experiments demonstrate that our
newly proposed paraphrase generation paradigm
achieves good performance in predicting sentiment
intensity quadruples. Our contributions are sum-
marized as follows: 1) We propose transforming
the dimABSA task into a paraphrase generation
problem and introduce a new paraphrase genera-
tion paradigm, allowing us to fully utilize semantic
information while predicting sentiment intensity
quadruple in one shot; 2) Our model has been ex-
perimentally validated to perform excellently in
extracting aspect term, aspect category, and opin-
ion term.

2 Related Work

With the emergence of pre-trained language mod-
els like BERT, research in ABSA has made sig-
nificant progress. Sun et al. (2019) proposed a
method based on pre-trained language models, uti-
lizing models like BERT to extract the subjects
and aspects from online comments, and employ-
ing multi-task learning to determine their senti-
ment polarity. This was the first method for ABSA
based on pre-trained language models and is rep-
resentative of methods based on transfer learning.
Li et al. (2019) were the first to apply BERT to
end-to-end ABSA tasks, achieving the best results
at the time with a simple linear classifier. Subse-

quently, composite ABSA tasks began to develop.
Researchers proposed various end-to-end models
for extracting multiple sentiment elements, capable
of handling multiple subtasks in sentiment analy-
sis tasks, such as Aspect Term Extraction (ATE)
and Aspect Sentiment Classification (ASC). This
integrated approach reduced error propagation and
improved overall performance. Liu et al. (2021)
adopted the Seq2Seq modeling paradigm to extract
aspect category and sentiment polarity, based on
pre-trained generative models, using natural lan-
guage sentences to represent the desired output for
Aspect Category Sentiment Analysis (ACSA) tasks.
Peng et al. (2020) proposed a two-stage pipeline
method for extracting aspect term, opinion term,
and sentiment polarity to address the Aspect Sen-
timent Triplet Extraction (ASTE) task; Wan et al.
(2020) introduced the Target-aspect-sentiment joint
detection task for aspect-based sentiment analysis
(TASD), aimed at simultaneously predicting aspect
category, aspect term, and sentiment polarity.

The Aspect Sentiment Quad Prediction (ASQP)
task aims to extract the four sentiment elements of
a specific sentence at once, revealing a more com-
prehensive and complete aspect-level sentiment
structure. Zhang et al.(2021) proposed a Para-
phrase Generation paradigm to solve the ASQP
task in English. This approach generates natural
language sentences from sentiment quadruples us-
ing pre-established templates, making the gener-
ated natural language sequence the target sequence,
which forms a mapping relationship with the orig-
inal review sentence. Zhang et al. transformed
the original quad element prediction task into a
text generation problem, which was then solved
using a sequence-to-sequence (Seq2Seq) approach.
Compared to the pipeline method, the Seq2Seq
approach can reduce the cumulative propagation
error caused by accuracy errors at each step in
the pipeline, and since the subtasks of ASQP are
usually expressed as token-level or sequence-level
classification problems, the Seq2Seq approach can
make full use of semantic information.

3 Methodology

3.1 Problem Statement

Subtask 3 of the dimABSA task involves extracting
a sentiment intensity quadruple (a, c, o, i) from a
given sentence, which corresponds to aspect term,
aspect category, opinion term, and sentiment inten-
sity, respectively. The aspect term in the original
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comment sentence may not exist, and when it is
absent, ‘NULL’ is used as the aspect term. The
aspect category in the original comment are prede-
fined, and the dimABSA task divides comments
on different aspects of the catering industry into
twelve categories, each with one entity and one
attribute corresponding to the aspect term. The
aspect term can be directly extracted from the com-
ment. Sentiment intensity is divided into valence
and arousal.

The dimABSA task dataset provides 6050 train-
ing entries, 2000 test entries, and 100 validation
entries.

3.2 ASQP Task
To highlight the main content of the sentiment
quadruple, Zhang et al.’s paraphrase generation
task linearizes the sentiment quadruple Q =
(c, a, o, p) into a natural sentence as follows:

Pc(c) is Pp(p) becausePa(a) is Po(o)

Herein,Pz(·) belongs to the mapping function
of z ∈ {c, a, o, p}, which maps the sentiment el-
ement z from its original format into natural lan-
guage form. In the sentiment quadruple, c and o
are already in natural language form. As for the
sentiment polarity, its mapping is as follows:

Pp(p) =





great if p = positive

ok if p = neutral

bad if p = negative

(1)

Aspect term may not exist in the original sen-
tence, in which case they are considered as an im-
plicit aspect term ‘NULL’; otherwise, they are in
natural language form. Their mapping method is
as follows:

Pa(a) =

{
it if a = NULL

a otherwise
(2)

When Zhang et al. handle Seq2Seq learning, for
a given sentence x, the encoder first converts it into
a contextualized encoded sequence e. Then, the
decoder simulates the conditional probability dis-
tribution of the target sentence y given the encoded
input representation: Pθ(y|e), which is parameter-
ized by θ.

At the i-th time step, the output yi of the decoder
is based on the encoded input sequence e and the
previous output y<i, where y<i : yi = fdec(e, y<i),
and fdec(·) represents the computed value of the

decoder. To obtain the probability distribution of
the next token, the following softmax function is
applied:

Pθ(yi+1|e, y<i+1) = softmax(W T yi) (3)

Here, W maps the predicted value yi to a logit
vector, which is defined as the logarithmic odds
ratio of an event occurring versus not occurring. It
can be used to calculate the probability distribution
over the entire vocabulary set. The formula is as
follows:

logit(P ) = log(
P

1− P
) (4)

Training with the T5 pre-trained model can
achieve the initialization of pre-trained parameter
weights θ, and further fine-tune the input-target
pairs, thus maximizing the probability distribution
Pθ(y|e):

max
θ logPθ(y|e) =

n∑

i=1

logPθ(yi|e, y<i) (5)

where n is the length of the sequence target y.

3.3 DimABSA as Paraphrase Generation
Regarding the ‘Sentence’, ‘Aspect’, ‘Category’,
‘Opinion’, and ‘Intensity’ aspects in the dimABSA
task dataset, the data format is processed into the
following format:

Sentence[[A1, C1, O1, I1], ...[An, Cn, On, In]]

We propose a new paraphrase generation
paradigm to handle the task of Chinese sentiment
intensity quadruple extraction, for a given sentence
tuple pair (x,Q), with the goal of generating a target
pair of sentences in Chinese natural language (x,y),
the sentiment intensity quadruple is linearized into
a natural sentence as follows:

PC(C) valence is PI(I − v) arousal

is PI(I − a) becausePA(A) is PO(O)

Wherein,Pz(·) is the mapping function z ∈
{C,A,O, I}, which transforms sentiment ele-
ments from their original format into natural lan-
guage form. In the sentiment intensity quadru-
ple, the aspect category (C) and opinion term (O)
are already in natural language form. The aspect
term (A) may not exist in the original sentence, in
which case it is considered an implicit aspect term
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Figure 1: An example of sentence tuple pairs generating
sentence target pairs.

‘NULL’, otherwise, it is directly regarded as natural
language form. Its mapping method is as follows:

PA(A) =

{
it if a = NULL

a otherwise
(6)

The sentiment intensity (I) will be directly re-
tained as a scoring standard in the natural language
generated after paraphrase generation, representing
the valence and arousal ratings for the given aspect
term. The final target sentence y generated can
form a mapping relationship with the original com-
ment sentence x, which is then directly fine-tuned
using the T5 pre-trained language model. When
there are multiple sentiment intensity quadruples
Q in a sentence x, the separator [SSEP] is used to
divide the multiple target sentences generated. Fig-
ure 1 shows an example of paraphrase generation.

4 Experiment

4.1 Experiment Details

The mt5-base (Xue et al., 2021) is a model pro-
posed by Google, pre-trained on the mC4 corpus,
and includes 101 languages, including Chinese. In
this work, the t5-base-chinese pre-trained model
is selected as the task model. The t5-base-chinese
is based on mt5-base, retaining only Chinese and
English for pre-training. Fine-tune training on T5-
base-Chinese. Both training and evaluation batch
sizes are set to 16; gradient_accumulate_steps is
set to 1, the learning rate is set to 3e-4, and the
number of training rounds is set to 10.

4.2 Main Results

Organizers use accuracy, recall, and F1-score to
evaluate the model. The higher these three metrics,
the better the model’s performance. A quadruple
is regarded as correct if and only if the four ele-
ments and their combination match those in the
gold quadruple. Table 1 shows the scores of the
three metrics: accuracy, recall, and F1-score, for
valence and arousal in this work.

A total of 7 teams submitted, and the published
F1-scores for valence, arousal, and valence-arousal
are as shown in Table 2. Our work is ranked fifth.

At the same time, this work also trained a T5
pre-trained model without using the paraphrase
generation paradigm, to comparatively evaluate the
model’s ability to extract aspect term, aspect cate-
gory, and opinion term in sentiment triplets. The
test model, which does not use paraphrase gener-
ation, directly maps the golden triplets containing
aspect term, aspect category, and opinion term as
the target sequence, forming a mapping with the
original comment sentence. The final test model
outputs predicted triplets for the input comments.
After manually removing some problematic test
data, the performance of this test model and the
task model on 900 test data in terms of accuracy, re-
call rate, and F1-score for the aforementioned three
types of sentiment elements is shown in Table 3.

4.3 Error Analysis

When the model processes some more complex
natural language sentences, it outputs some prob-
lematic target sentences: 1) ‘The watermelon and
strawberries are very fresh and delicious.’, this sen-
tence in chinese contains two aspect terms and two
opinion terms. Both opinion terms are expressions
of sentiment for the two aspect terms, and there
is no conjunction between the two opinion terms.
The model has difficulty correctly matching aspect
terms with opinion terms for comments that have
multiple aspect terms and opinion terms without
direct conjunctions, resulting in the repeated output
of the same target sentence: ‘Food#quality valence
is 6.75 arousal is 6.25 because watermelon is deli-
cious’. When a conjunction is added between the
two opinion terms, the model’s output is normal; 2)
Due to the diversity of Chinese language forms, the
model struggles to process some idioms or longer
comments. In the output of target sentences, it will
manifest as the target sentence not conforming to
the rules of paraphrase generation paradigms, such
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Precision Recall F1-score
Valence 0.484 0.480 0.482
Arousal 0.441 0.437 0.439

V-A 0.333 0.330 0.331

Table 1: The scores of the model’s valence, arousal, and
valence-arousal on accuracy, recall, and F1-score.

Team Valence-F1 Arousal-F1 V-A-F1
HITSZ-HLT 0.567 0.526 0.417
CCIIPLab 0.555 0.507 0.389
ZZU-NLP 0.522 0.489 0.376

SUDA-NLP 0.487 0.444 0.336
JN-NLP (ours) 0.482 0.439 0.331

BIT-NLP 0.470 0.434 0.329
USTC-NLP 0.438 0.437 0.312

Table 2: The F1-scores of the participating teams in
valence, arousal, and valence-arousal.

as the absence of a certain sentiment element in the
target sentence, or the appearance of multiple set-
ting words from paraphrase generation paradigms
in one target sentence, such as ‘valence is’, ‘arousal
is’, etc. The model still has limitations in the above
examples.

5 Conclusions

The goal of dimABSA subtask 3 is to extract sen-
timent intensity quadruples from online review
sentences in the catering industry, including as-
pect term, aspect category, opinion term, and the
valence-arousal representing sentiment intensity.
This work proposes a new paraphrase generation
paradigm, utilizing the dataset provided by the
dimABSA task, and ultimately achieves a model
based on the T5 pre-trained model fine-tuned for
training. This model uses the new paraphrase gen-
eration paradigm to facilitate Seq2Seq learning,
transforming sentiment intensity quadruples into
natural language target sentences, forming a map-
ping relationship with the review sentences. The
model can generate an output sentence according
to the paraphrasing rules for the input sentence, and
the sentiment intensity quadruples can be obtained
by processing the output sentence. By comparing
the performance of this work’s model with the test
model in extracting triples of aspect term, aspect
category, and opinion term, it is evident that this
work’s model performs better.

Model precision recall F1-score
test model 0.434 0.395 0.414

JN-NLP (ours) 0.462 0.470 0.466

Table 3: Comparison of the test model and our model
in terms of accuracy, recall, and F1-score on predicting
sentiment triplets.

Limitations

After training the model with the paraphrase gen-
eration paradigm we proposed, it can complete the
task of extracting the sentiment intensity quadru-
ples. However, the model still has limitations in
predicting sentiment intensity. When a comment
contains multiple aspect terms, the model may pre-
dict the same score for the sentiment intensity of
multiple aspect terms. Moreover, due to the com-
plexity of the Chinese language, the model may
generate incorrect target sentences for some Chi-
nese comments.
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Abstract

Aspect-Based Sentiment Analysis (ABSA) is
an important subtask in Natural Language Pro-
cessing (NLP). More recent research within
ABSA have consistently focused on conducting
more precise sentiment analysis on aspects, i.e.,
dimensional Aspect-Based Sentiment Analy-
sis (dimABSA). However, previous approaches
have not systematically explored the use of
Large Language Models (LLMs) in dimABSA.
To fill the gap, we propose a novel In-Context
Learning (ICL) structure with a novel aspect-
aware ICL example selection method, to en-
hance the performance of LLMs in dimABSA.
Experiments show that our proposed ICL struc-
ture significantly improves the fine-grained sen-
timent analysis abilities of LLMs. Our code is
publicly available at: https://github.com/
Maydayflower/dimABSA-ICL.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) has
been a significant research topic in Natural Lan-
guage Processing (NLP). The goal of ABSA is to
identify specific aspects within a sentence and de-
termine the corresponding sentiment polarity (pos-
itive, neutral, or negative) for each aspect (Zhang
et al., 2023b). This is different from traditional
sentiment analysis (SA) that provides an overall
sentiment prediction for the sentence. ABSA has
been extensively studied, resulting in numerous
effective algorithms.

However, human emotions are inherently con-
tinuous rather than discrete, involving two finer-
grained dimensions of sentiment, including valence
and arousal Russell (1980). As illustrated in Figure
1, the valence dimension represents the degree of
pleasure or displeasure sentiment, while the arousal
dimension indicates the intensity of the sentiment.
In this two-dimensional space, all emotions can
be precisely represented. For instance, an emotion

*Corresponding author.

with a valence of 7 and an arousal of 7 would be
closer to delighted, whereas a valence of 1 and
an arousal of 9 would signify a very intense nega-
tive sentiment. Extending the traditional SA and
ABSA to the two-dimensional space of sentiment
has led to Dimensional Sentiment Analysis (DSA)
and Dimensional Aspect-Based Sentiment Analy-
sis (dimABSA).
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Abstract

Predicting valence-arousal ratings for
words and phrases is very useful for con-
structing affective resources for dimen-
sional sentiment analysis. Since the exist-
ing valence-arousal resources of Chinese
are mainly in word-level and there is a
lack of phrase-level ones, the Dimension-
al Sentiment Analysis for Chinese Phrases
(DSAP) task aims to predict the valence-
arousal ratings for Chinese affective word-
s and phrases automatically. In this task,
we propose an approach using a densely
connected LSTM network and word fea-
tures to identify dimensional sentiment on
valence and arousal for words and phrases
jointly. We use word embedding as major
feature and choose part of speech (POS)
and word clusters as additional features to
train the dense LSTM network. The eval-
uation results of our submissions (1st and
2nd in average performance) validate the
effectiveness of our system to predict va-
lence and arousal dimensions for Chinese
words and phrases.

1 Introduction

Sentiment analysis is an important task in opinion
mining for both academic and business use. Tra-
ditional sentiment analysis approaches mainly in-
tend to identify the positive or negative sentiment
polarities of text. This field has been widely re-
searched and has many effective approaches based
on rules or statistical methods. However, analyz-
ing only the polarities of sentiments is rough and
can’t differ sentiment distinctions in fine-grained.
In order to go further in fine-grained sentiment
analysis, some approaches were proposed to ad-
dress this problem in more categories or in real-

value, such as dimensional sentiment analysis. E-
valuating sentiment in valence-arousal (VA) space
was first proposed by Ressel (1980). As shown in
Figure 1, the valence dimension represents the de-
gree of positive or negative sentiment, while the
arousal dimension indicates the intensity of sen-
timent. Based on this two-dimensional represen-
tation, any affective state can be represented as a
point in the VA coordinate plane by determining
the degrees of valence and arousal of given word-
s (Wei et al., 2011; Malandrakis et al., 2011; Yu
et al., 2015; Wang et al., 2016) or texts(Kim et al.,
2010; Paltoglou et al., 2013).

Arousal

Valence

I

High-Arousal,

Positive-Valence

II

High-Arousal,

Negative-Valence

III

Low-Arousal,

Negative-Valence

IV

Low-Arousal,

Positive-Valence

high

low

neutral positivenegative

Tense

Angry

Frustrated

Depressed

Bored

Tired Calm

Relaxed

Content

Happy

Delighted

Excited

Figure 1: Two-dimensional valence-arousal space.

External VA resources like lexicons are neces-
sary to VA sentiment evaluation. However, there
is a lack of these resources especially for Chinese,
and it’s usually difficult to construct them man-
ually. Thus in order to get large scale lexicons
in a reasonable cost, the objective of the shared
task DSAP is to automatically acquire the valence-
arousal ratings of Chinese affective words and
phrases. Some typical approaches to word-level
VA rating task are based on statistical observation-
s like linear regression (Wei et al., 2011) and ker-
nel function (Malandrakis et al., 2011). Howev-
er, these methods deeply rely on the affective lex-

47

Figure 1: Valence-Arousal space. The picture is origi-
nally from (Yu et al., 2016).

As a recently emerging yet largely under-
investigated task, dimABSA aims to conduct finer-
grained sentiment analysis by assigning corre-
sponding valence and arousal values to each aspect
in a sentence, as illustrated in Figure 2. Despite
various DSA methods have been developed, which
are mainly based on lexicons at the word-level or
phrase-level, there is a lack of extensive and sys-
tematic studies on the aspect-level dimABSA. This
paper aims to fill the gap. Inspired by the success
of Large Language Models (LLMs) on the aspect-
level sentiment analysis tasks (Wang et al., 2023;
Zhang et al., 2023a; Yang et al., 2024), we pro-
pose an in-context learning (ICL) framework for
dimABSA and evaluates its effectiveness on three
mainstream LLMs: qwen-plus (Bai et al., 2023),
GPT-3.5 (OpenAI, 2023) and GPT-4 (Achiam et al.,
2023). The main contributions of this paper are as
follows:
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(1) This paper is the first to explore the performance
of LLMs on the dimABSA task. (2) This paper pro-
poses an ICL framework for the dimABSA task,
which is facilitated by a novel sample selection
method. Experimental results demonstrate that our
method significantly improves the performance of
LLMs on the dimABSA task.

“沙拉蛮普通的。”

Aspect 沙拉(salad)

Valence 4.8

Arousal 4.8

“这款沙拉真是我的爱。”

Aspect 沙拉(salad)

Valence 7.5

Arousal 7.25

Aspect 肉质(meat)

Valence 4.0

Arousal 6.17

“肉质带点酸味。”

Aspect 柠檬塔(lemon tart)

Valence 4.88

Arousal 5.38

“柠檬塔则是偏酸一点的。”

c) “The meat has a slightly sour flavor.”

a) “The salad was pretty plain.”

d) “The lemon tart is a little on the sour side.”

b) “This salad is truly my love.”

Figure 2: Some examples of dimABSA task demon-
strate that when the same aspect is described differently,
the aspect can have different valence and arousal. Simi-
larly, when different aspects receive similar evaluations,
they can also have different valence and arousal.

2 Related work

2.1 Aspect-based Sentiment Analysis

Early ABSA research is focused on the assessment
of single sentiment elements. However, with ad-
vancements in the field, ABSA has evolved to in-
clude a growing number of sub-tasks, such as As-
pect Sentiment Triplet Extraction (ASTE) (Zhang
et al., 2020, 2022) and Aspect Sentiment Quad Pre-
diction (ASQP) (Cai et al., 2021; Mao et al., 2022).
A more recently emerged area is Dimensional
Aspect-Based Sentiment Analysis (dimABSA),
which introduces two scalar dimensions to more
accurately describe sentiment.

2.2 Dimensional Aspect-Based Sentiment
Analysis

Russell proposed a two-dimensional space for more
precise emotion modeling, as illustrated in Figure
1. One dimension describes the intensity ranging
from pleasant to unpleasant (i.e., Valence), while
the other captures the intensity from calm to ex-
cited (i.e., Arousal). Based on this model, human
emotional states can be represented in a more accu-
rate manner (Bradley and Lang, 1999; Malandrakis
et al., 2011). Researchers have incorporated this
two-dimensional VA space into sentiment analysis,
leading to the development of Dimensional Senti-
ment Analysis (DSA).

Existing research on DSA is heavily based on
lexicons. In the field of Chinese research, the most
commonly used lexicon is the Chinese EmoBank
proposed by Lee et al., which includes 5,512 sin-
gle words, 2,998 multi-word phrases, 2,582 single
sentences, and 4,969 multi-sentence texts. Con-
sequently, current DSA methods have primarily
focused on the word-level (Wei et al., 2011) and
phrase-level (Wu et al., 2017), neglecting high-
level emotional features. Lee et al. proposed the
task of dimensional aspect-based sentiment analy-
sis (dimABSA), extending DSA to the aspect-level.
Our work primarily focuses on this task.

2.3 In-Context Learning

In recent years, Large Language Models (LLMs)
have demonstrated remarkable performance across
various NLP downstream tasks, and have shown ex-
cellent In-Context Learning (ICL) capabilities. ICL
refers to the ability of LLMs to be applied directly
to downstream tasks by adding a few examples
to the prompt, without the need for parameter up-
dates (Dong et al., 2023). Demonstration designing
is a crucial component in constructing an in-context
learning structure. Although the capabilities of
LLMs in sentiment analysis have been widely stud-
ied (Lian et al., 2023; Wang et al., 2023; Yang et al.,
2024), there has been no research exploring the im-
pact of ICL on the dimensional ABSA abilities of
LLMs. In this paper, we propose an ICL frame-
work, demonstrating through experiments that our
ICL framework significantly enhances the senti-
ment analysis capabilities of LLMs.

3 Methodology

In this section, we introduce the task definition and
the components of our proposed ICL structure.

3.1 Task definition

Given a n-word sentence s = {w1, w2, ..., wn},
the output of dimABSA is y = {(A1, v1#a1),
(A2, v2#a2), ..., (Ax, vx#ax)}, where Ai denotes
the representation of an aspect and x represents the
number of aspects in the sentence. vi denotes the
valence value of the aspect Ai, ranging from 1 to 9,
with 1 representing unpleasant and 9 representing
pleasant. ai denotes the arousal value of Ai, also
ranging from 1 to 9, with 1 representing calm and
9 representing excited.
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Figure 3: The framework of our proposed ICL method.

3.2 Semantic Similarity Sample Selector (S4)

To select the most helpful samples for the
dimABSA task, inspired by (Liu et al., 2021), we
choose samples from the training set that are seman-
tically closest to the test samples and use them as
examples in the prompt. Given the specific nature
of the dimABSA task, we believe that directly com-
puting the semantic similarity of two sentences is
inadequate. Instead, the aspect present in the sam-
ples should also be considered. The same descrip-
tion can represent different sentiment orientations
for different aspects. For instance, the word "sour"
typically does not convey negative sentiment when
describing a lemon, but when referring to spoiled
meat, it strongly indicates a negative sentiment.

Therefore, in our approach, we consider the as-
pect’s presence in the sentence when calculating
similarity, leading to an aspect-aware semantic sim-
ilarity measure.

First, we use BERT (Devlin et al., 2019) to ob-
tain the representation Ti of the text for calculating
semantic similarity. BERT is also used to obtain
the representation Ai of the aspect. The process
of obtaining Ti and Ai from a sentence Si and an
aspect a is as follows:

Ti = BERT (Si),Ai = BERT (a) (1)

Then we use Cosine similarity to calculate the
semantic similarity between two sentences Sp and
Sq. The formula is as follows:

simt = cosine(Tp, Tq) =
Tp · Tq

∥Tp∥ · ∥Tq∥
(2)

Next, we take into consideration the aspects con-
tained in the sentences. Assuming the test sample

and the target sample in the training dataset contain
m and n aspects respectively, we will calculate the
similarity between each pair of aspects across the
test sample and the target sample using Equation
3, and ultimately select the highest similarity value
for the final computation.

sima = max
i∈{1,2,...,m}
j∈{1,2,...,n}

AiAj

∥Ai∥∥Aj∥
(3)

We believe that the presence of semantically sim-
ilar aspects in two samples indicates that these re-
views were likely given in similar contexts to some
extent.

The overall aspect-aware similarity between two
samples is ultimately computed, as shown in Equa-
tion 4, where α0 and α1 are trade-off parameters1.

sim(St, Si) = α0 · simt(Tt, Ti) + α1 · sima(At,Ai) (4)

We select N samples from the training set with
the highest aspect-aware similarity scores to the test
sample for use in subsequent prompt construction.
Considering the impact of context length on the
performance of LLMs, we set N to 10 in this paper.

3.3 In-context Learning Structure
The prompt we construct comprises a detailed de-
scription of the task, including the meanings of
Valence, Arousal and Aspect, the input format, the
required processing of the input, and the output
format. Additionally, depending on various set-
tings, the prompt may also include different sample
examples for the LLMs to learn from. Figure 3
illustrates the prompt construction process of our
proposed ICL framework.

1In our experiment, α0 and α1 are both set to 0.5.
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Zero-shot setting. To demonstrate the effec-
tiveness of our method, we first test the sentiment
analysis capabilities of LLMs in a zero-shot set-
ting. In the zero-shot setting, the prompt does not
include additional examples for the LLMs to learn
from. The prompt content is: [Please analyze the
following sentence: test sample].

Few-shot setting with Random Selection. In
NLP downstream tasks, the zero-shot setting often
fails to achieve satisfactory results. Consequently,
a common approach is to randomly select some ex-
amples for prompt construction. However, the sam-
ples chosen through this method often lack task rep-
resentativeness, leading to limited improvements
in the capabilities of LLMs.

Few-shot setting with S4. To address the lack of
effective ICL frameworks in the dimABSA domain,
we have proposed a Semantic Similarity Sample
Selector (S4) for sample selection, detailed in Sec-
tion 3.2. After obtaining samples through the S4,
we construct the prompt in the following format: [I
now provide these examples for you to learn from:
Sample 1, Label 1; Sample 2, Label 2;...; Sample
N, Label N. Please learn how to analyze from these
examples, and then analyze the following sentence:
Test Sample].

4 Experiments

4.1 Experimental Settings

4.1.1 Dataset

In this task we use the dataset provided by the
organizer which contains 3000 sentences. Each
sentence contains one or more aspects, and each
of these aspects is annotated with corresponding
valence and arousal values from 1-9.

4.1.2 Evaluation Metrics

To compare the sentiment analysis capabilities of
different models, we use two metrics, Mean Abso-
lute Error (MAE) and Pearson Correlation Coeffi-
cient (PCC), to indicate the performance of differ-
ent models. The formulas for these two metrics are
shown in Equation 5 and Equation 6, where ai ∈ A
represents the ground truth value, and pi ∈ P rep-
resents the model prediction result. µA and µP de-
note the arithmetic mean of A and P, respectively.
σ denotes the standard deviation.

MAE =
1

n

n∑

i=1

|ai − pi| (5)

The smaller MAE value, the better quality of the
model’s predictions.

PCC =
1

n− 1

n∑

i=1

(
ai − µA

σA
)(
pi − µP

σP
) (6)

A larger PCC value indicates a better quality of the
model’s predictions.

4.2 Main Results
The evaluation results of our proposed ICL struc-
ture are presented in Table 1. Among all the re-
sults, the GPT-4o model utilizing our proposed ICL
framework achieved the best performance on the V-
MAE, V-PCC, and A-PCC metrics. The qwen-plus
model with our proposed ICL framework, slightly
outperformed GPT-4o on the A-MAE metric. Ex-
perimental results show that our proposed method
significantly improves the sentiment analysis capa-
bility of LLMs.

V-MAE V-PCC A-MAE A-PCC
qwen-plus† 0.697 0.713 0.911 0.300
qwen-plus w. RS 0.541 0.845 0.718 0.345
qwen-plus w. S4 0.542 0.891‡ 0.480‡ 0.495‡
GPT3.5† 0.600 0.882 0.524 0.515
GPT3.5 w. RS 0.460 0.858 0.501 0.490
GPT3.5 w. S4 0.392‡ 0.890‡ 0.500‡ 0.528‡
GPT4o† 0.552 0.838 0.676 0.453
GPT4o w. RS 0.409 0.870 0.500 0.510
GPT4o w. S4 0.391‡ 0.900‡ 0.485‡ 0.606‡

Table 1: Comparison between LLMs with different set-
tings, where † indicates that the LLM is using a zero-
shot setting, RS denotes Random Select and S4 denotes
our proposed ICL Structure. ‡indicates that our method
is significantly better than zero-shot setting and Random
Select with p-value < 0.05 based on t-test.

5 Conclusions

This paper explores the enhancement of LLMs for
the dimABSA task through ICL. We have designed
a sample selection method called Semantic Sim-
ilarity Sample Selector (S4) and used it to select
samples for prompt construction. Experimental
results indicate that our proposed ICL framework
significantly improves the performance of LLMs
for the dimABSA task.

Limitations

The primary limitation of our proposed approach
lies in its reliance on proprietary LLMs, which may
pose challenges for reproducibility. To achieve op-
timal results, we did not conduct experiments on
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mainstream open-source LLMs such as LLaMA2
and LLaMA3. However, the experimental results
on proprietary LLMs demonstrate that our pro-
posed method is significantly effective. In future
work, we plan to extend our experiments to include
a broader range of LLMs to develop a more perfor-
mant and generalized approach.
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Abstract

Prompting is an alternative approach for uti-
lizing pre-trained language models (PLMs) in
classification tasks. In contrast to fine-tuning,
prompting is more understandable for humans
because it utilizes natural language to inter-
act with the PLM, but it often falls short in
terms of accuracy. While current research pri-
marily focuses on enhancing the performance
of prompting methods to compete with fine-
tuning, we believe that these two approaches
are not mutually exclusive, each having its
strengths and weaknesses. In our study, we
depart from the competitive view of prompting
versus fine-tuning and instead combine them,
introducing a novel method called F&P. This
approach enables us to harness the advantages
of Fine-tuning for accuracy and the explainabil-
ity of Prompting simultaneously. Specifically,
we reformulate the sample into a prompt and
subsequently fine-tune a linear classifier on top
of the PLM. Following this, we extract verbal-
izers according to the weight of this classifier.
During the inference phase, we reformulate the
sample in the same way and query the PLM.
The PLM generates a word, which is then sub-
ject to a dictionary lookup by the verbalizer
to obtain the prediction. Experiments show
that keeping only 30 keywords for each class
can achieve comparable performance as fine-
tuning. On the other hand, both the prompt and
verbalizers are constructed in natural language,
making them fully understandable to humans.
Hence, the F&P method offers an effective and
transparent way to employ a PLM for classifi-
cation tasks.

1 Introduction

Prompting (Heinzerling and Inui, 2021) is a novel
method for adapting pre-trained language models
(PLMs) to downstream classification tasks (Brown
et al., 2020; Zhao et al., 2024). Generally, a prompt
typically consists of a sample, a task description,

* Equal contribution.

and a reserved blank. PLM is required to generate
an appropriate word to fill in this blank based on the
task description and the sample. A verbalizer then
assigns a class to this word, finalizing the sample’s
classification. For example,

I like this movie. The sentiment is .

is a manual prompt designed for sentiment analysis.
A typical verbalizer uses a lookup table to deter-
mine the class to which the predicted word should
belong (Schick and Schütze, 2021; Hu et al., 2021;
Webson and Pavlick, 2021; Ding et al., 2022). In
this manner, a classification task is transformed
into a language modeling task, aligning with the
pre-training tasks of PLMs.

Compared with fine-tuning, prompting methods
are more transparent to humans as the prompt con-
sists of real words and is more explainable than
a classifier with numerous parameters. However,
prompting methods exhibit a lower performance
than fine-tuning (Shin et al., 2020; Jiang et al.,
2020). Because of the context sensitivity inher-
ent to PLMs, their responses to identical queries
exhibit inconsistencies when prompted in varying
ways. Simply altering the wording of prompts,
or even making minor lexical adjustments, can re-
sult in performance variations of up to 20% (Jiang
et al., 2020). To this end, a series of studies (Liu
et al., 2021; Zhong et al., 2021; Qin and Eisner,
2021; Wang et al., 2022; Li and Liang, 2021; Wang
et al., 2023; Li et al., 2023) delved into methods for
formulating effective prompts. They believed that
prompts are not necessarily composed of real words
and proposed a novel approach called "prompt tun-
ing," wherein a set of k trainable vectors is em-
ployed as prompts, rather than conventional natural
language, e.g.,

I like this movie. v1, · · · , vk .

These methods greatly enhance the capabilities of
prompts, yielding performance comparable to or
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even surpassing that of fine-tuning. However, it
is noteworthy that prompts become less explain-
able for humans. Despite the absence of explicit
research on the connection between explainability
and performance, current efforts inadvertently pri-
oritize performance over explainability when devel-
oping capable prompts. We believe that the relation-
ship between explainability and performance is not
mutually exclusive. It is feasible to enhance prompt
performance while simultaneously taking into ac-
count their explainability. In this work, we depart
from the competition paradigm between prompt-
ing and fine-tuning. Instead, we integrate both
techniques and propose a novel method F&P that
attains performance on par with Fine-tuning, while
preserving the outstanding explainability inherent
to Prompting methods.

Specifically, referring to the prompting method,
we create a task description for each classification
task and leave a blank space for the PLM to make
predictions. We concatenate such a task descrip-
tion at the end of each sample, forming a prompt.
Next, we refer to the fine-tuning, by adding a linear
layer on top of the PLM to classify its output. It is
worth mentioning that traditional fine-tuning meth-
ods often replace the Language Model Head with
a linear layer, whereas we add an additional linear
layer on top of the Language Model Head. There-
fore, the linear layer classifies the word distribution
predicted by the PLM rather than word embed-
dings. Furthermore, in contrast to classifying sen-
tence representations, such as [CLS], we classify
the word distribution output from the blank space in
the model. After the fine-tuning, the weights of the
linear layer represent the significance of words for
each class. To create a verbalizer, we sort all words
in the vocabulary based on these weights and select
the top-k words for each class. Then we remove the
linear layer. During inference, given the new sam-
ple, we construct the prompt in the same way and
input it into the PLM. The PLM’s predicted word
is then associated with a class based on the ver-
balizer. In this approach, we replace the classifier
with a prompt and a verbalizer, yielding two key
advantages. Firstly, both the prompt and verbalizer
employ real, easily understandable words, making
the classification process transparent to humans.
This contrasts with the use of complex classifiers,
which often obscure the classification process. Sec-
ondly, this approach avoids introducing additional
parameters to the PLM, allowing us to maintain
the original PLM size. Consequently, it can be ap-

plied to prob the linguistic knowledge embedded in
the PLM, a crucial technique to explain the PLM
(Tenney et al., 2019; Li et al., 2022).

2 Related Work

Fine-tuning represents the predominant method
for customizing PLMs to specific downstream
tasks. However, these tasks often diverge signifi-
cantly from the cloze test used during the PLM’s
pre-training phase. For instance, RoBERTa (Liu
et al., 2019) demonstrates proficiency across vari-
ous tasks such as text classification, and sequence
labeling. However, its pre-training task is a cloze
test. The disparity between pre-training tasks and
downstream applications is believed by researchers
to hinder the optimal utilization of PLMs’ knowl-
edge (Han et al., 2021). This gap poses challenges,
notably the propensity for PLMs to exhibit overfit-
ting on limited training samples post fine-tuning,
particularly when data availability is constrained.
Therefore, addressing this gap is crucial to fully
harnessing the potential of PLMs across diverse
applications and ensuring robust performance in
practical scenarios.

Prompt-based methods have been introduced
as a strategic bridge between pre-training and
fine-tuning stages in NLP. According to Petroni
et al. (2019), these methods leverage the rela-
tional knowledge inherently encoded within PLMs,
thereby demonstrating their efficacy in various
tasks. Additionally, Brown et al. (2020) substanti-
ated that the expansive knowledge encoded within
large-scale PLMs is substantial enough to execute
tasks effectively without necessitating parameter
tuning. Furthermore, these methods enhance the
usability of PLMs across different tasks by append-
ing supplementary descriptions and examples in a
cloze-style format, aligning each downstream task
consistently with the structure of the pre-training
tasks. This standardization not only facilitates
smoother transitions between stages but also opti-
mizes task performance. Recent studies have under-
scored the competitive advantages of prompt-based
methods, showing that they can achieve compara-
ble or superior performance compared to traditional
fine-tuning approaches (Gao et al., 2021; Qin and
Eisner, 2021; Zhong et al., 2021; Zhu et al., 2022;
Li et al., 2021; Chen et al., 2022; Wang et al., 2023).
Moreover, they have demonstrated remarkable effi-
cacy in scenarios requiring minimal training data,
such as few-shot or zero-shot settings. This adapt-
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PLM

[CLS] I like this movie. The sentiment is [MASK]. [SEP]  

Weight-Only Linear Classifier

good

positive
negative

Cross-entropy Loss

class 0

class 1

0: negative, adverse
…

1: positive, favorable
…

Verbalizer

[CLS] It’s too boring. The sentiment is [MASK]. [SEP]  PLM “adverse” Verbalizer 0

Fine-tune

Inference

Weight: W

Figure 1: The upper part illustrates the process of fine-tuning the whole model and constructing the verbalizer from
the classifier’s weight. The lower part shows the inference process with a tuned PLM and the verbalizer.

ability underscores their potential to significantly
advance the field of NLP by making efficient use of
pre-existing model knowledge (Schick and Schütze,
2021; Puri and Catanzaro, 2019; Schick et al., 2020;
Zhang et al., 2021; Ben-David et al., 2022).

3 Methodology

Figure 1 illustrates the overview of F&P. A prompt
p is composed of three parts, including an input x,
a task description with k tokens t1, · · · , tk, and a
symbol of mask, i.e., p = [x, t1, · · · , tk, [MASK]].
Fed the prompt p, the PLM F(·) predicts the word
distribution for [MASK]:

F(p) = P ([MASK] = ti|p), ti ∈ V (1)

where V is the vocabulary that contains n unique
words ti. In practice, the PLM’s output is in the
format of a vector, i.e., F(p) ∈ Rn. We add a
weight-only linear classifier on top of the PLM to
project F(p) into C classes, i.e.,

y = W T softmax(F(p)) (2)

where W ∈ Rn×C . We use the cross-entropy loss
as the objective and fine-tune the model until con-
verge. After fine-tuning, each column of the clas-
sifier’s weight, i.e., W T

i ∈ Rn, can represent how
significant a word is to the class i. We rank and
select top-k words from the vocabulary with the
highest weight in W T

i as the mapping to the class
i, i.e.,

Mi : i← {tj |j ∈ top-k
j

([W T
ij ]1≤j≤n)} (3)

where tj is the j-th token in the PLM’s vocabu-
lary. We gather all mappings of classes to con-
struct a lookup table as the verbalizer M =
{M1, · · · ,MC}.

In the inference, the input is wrapped into a
prompt p̂ in the same way and processed by the
PLM following the equation 1. The token in the ver-
balizer with the largest probability is the predicted
word, i.e., t∗ = argmaxP ([MASK] = ti|p̂), ti ∈
M. The final prediction is made by looking up the
verbalizer,M(t∗).

4 Experiments

4.1 Experiment Setting

4.1.1 Datasets
We conducted experiments on two benchmarks,
GLUE(Wang et al., 2018) and CLUE (Xu et al.,
2020).

• General Language Understanding Evalua-
tion (GLUE) benchmark comprises nine nat-
ural language understanding tasks. These in-
clude single-sentence tasks like CoLA and
SST-2, similarity and paraphrasing tasks such
as MRPC, STS-B, and QQP, and natural lan-
guage inference tasks including MNLI, QNLI,
RTE, and WNLI.

• Chinese Language Understanding Evalua-
tion (CLUE) is a community-driven, open-
ended project that combines nine tasks, cov-
ering well-established single-sentence and
sentence-pair classification tasks, as well as
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LLM Checkpoints
BERT-base bert-base-cased
BERT-large bert-large-cased
RoBERTa-base roberta-base
OpenAI GPT openai-gpt
BERT-wwm-ext-base chinese-bert-wwm-ext
RoBERTa-wwm-ext-base chinese-roberta-wwm-ext
RoBERTa-wwm-ext-large chinese-roberta-wwm-ext-large

Table 1: PLMs involved in the experiments and the
corresponding checkpoints.

machine reading comprehension, all based on
original Chinese text.

The dataset split schema adheres to the same con-
figuration as the benchmark.

4.1.2 PLMs
All experiments are conducted with four PLMs
including BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), OpenAI GPT (Radford et al.,
2018), and the Chinese version of BERT and
RoBERTa (Cui et al., 2020). We provide the de-
tailed version of checkpoints in Table 1.

4.1.3 Baseline Methods
We compare three methods to tune PLMs:

• Fine-tuning (FT) refers to the process of re-
placing the Language Model Head of a the
PLM with a linear classifier and subsequently
updating the entire model. The input for this
linear classifier is the sentence representation
generated by the PLM.

• Fine-tuning and Prompting (F&P) is our
method presented in the section 3.

• Fine-tuning and AUTOPROMPT (F&AP).
AUTOPROMPT (Shin et al., 2020) is a method
to search prompts automatically. We consider
it an enhancement tool for identifying high-
performing prompts. We employ it to dis-
cover six trigger words, denoted as t1, · · · , t6,
within the training dataset to replace the man-
ual prompt. Subsequently, we repeat the same
procedures as described in F&P.

4.1.4 Hyperparameter
For all of the experiment, We use Adam (Kingma
and Ba, 2014) as the optimizer with the following
parameters: β1 = 0.9, β2 = 0.999, ϵ = 1e − 6.
Besides that, we consider a hyperparameter grid
search for each task, with weight decay ∈ {1e −
5, 1e−4, 1e−3} and learning rates ∈ {1e−5, 2e−

5, 3e−5}, with an exponential warmup for the first
8% of steps followed by a linear decay to 0.

4.2 Main Results

4.2.1 The verbalizer can be regarded as a
classifier after denoising.

F&P does not introduce any extra parameters to the
PLM. But from Table 2, it achieves performance
that is comparable to, or even superior to, fine-
tuning, which involves the incorporation of an extra
linear classifier.

For example, when using BERT-base, employ-
ing just 5 words per class can effectively substitute
a classifier that typically requires over 22 million
parameters. Despite this reduction in complexity,
the model experiences only a marginal decrease
in performance, approximately 0.22%. Interest-
ingly, in certain scenarios, there is even a notice-
able improvement; for instance, the accuracy of
BERT-large on MNLI-mm rises from 85.25% to
86.82%. This phenomenon can be explained from a
denoising standpoint. In contrast to a conventional
weight-only classifier, the verbalizer, by focusing
on a select set of words, tends to omit informa-
tion associated with words carrying lower weights.
Moreover, it simplifies the prediction process by
treating all selected words equally in determining
the outcome, thereby potentially enhancing clar-
ity and reducing noise in the decision-making pro-
cess. This selective attention mechanism not only
streamlines the model but also serves as an effec-
tive denoising filter, enhancing overall performance
in certain tasks.

We fine-tune the BERT-base model on the SST-
2 dataset using the F&P method. Through this
process, we extracted the weights of the linear
classifier and proceeded to visualize the difference
between the weights assigned to the two classes,
specifically denoted as W1 − W0. Moreover, to
underscore the efficacy of our approach, we also
visualized the verbalizer generated by F&P in a
manner similar to the weight comparison, demon-
strating its effectiveness in enhancing classification
accuracy.

In Figure 2, the left side appears disorderly,
with words displaying uniform weights and lack-
ing meaningful differentiation. These words are
primarily noise rather than informative features.
Conversely, the right side shows the word weights
after ranking and selection, resulting in the removal
of most of the words. Although this process might
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PLM Method CoLA SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE WNLI Avg.

BERT-
base

FT. 57.35 93.42 90.03 84.36 84.54 83.22 90.81 70.86 74.41 81.00
F&P.(5) 57.52 93.63 89.18 83.20 83.12 82.26 91.25 71.82 75.01 80.78
F&AP.(5) 62.52 94.10 92.52 88.53 84.18 83.35 92.91 73.14 76.75 83.11 (+2.11)

BERT-
large

FT. 61.90 93.62 88.57 85.50 86.13 85.25 93.65 71.16 75.31 82.34
F&P.(10) 62.74 93.27 89.34 84.14 86.04 87.31 93.92 72.53 77.04 82.93
F&AP.(10) 63.92 94.50 90.97 87.44 86.27 86.82 95.13 73.82 76.77 83.96 (+1.62)

RoBERTa-
base

FT. 68.15 95.71 91.15 89.12 90.11 90.02 94.36 85.92 90.00 88.28
F&P.(30) 67.63 94.95 90.33 88.20 89.40 89.18 93.10 84.90 89.53 87.47
F&AP.(30) 68.42 96.62 91.51 91.05 90.25 91.65 95.82 86.66 91.47 89.27 (+0.99)

OpenAI
GPT

FT. 37.18 93.50 87.55 69.17 81.65 80.20 84.35 63.74 72.73 74.45
F&P.(5) 46.17 93.46 89.14 76.60 81.23 81.42 83.70 66.28 73.08 76.79
F&AP.(5) 50.12 93.90 90.27 77.84 82.54 82.15 84.53 67.81 73.88 78.12 (+3.67)

Table 2: Results on the development set of GLUE benchmark. F1 score (%) is the metric used for MRPC and
QQP, Matthew’s Correlation for CoLA, and Accuracy (%) for the other tasks. The number in the bracket indict the
number of words selected for each class for the verbalizer. , e.g., [10] means select top-10 words from each class.
The number in red represents the improvements of F&AP over the fine-tuning.

involve some loss of information obtained from
the training dataset, it significantly enhances the
verbalizer’s overall generality and effectiveness.

4.2.2 Prompts improve the distinctiveness of
the model’s output.

The performance analysis of F&AP revealed an
improvement of approximately 2% compared to
fine-tuning alone, suggesting that fine-tuning pro-
cedures may not fully exploit the inherent capabil-
ities of PLMs. The inclusion of a prompt in the
form of "The sentence is [MASK]." serves to con-
strain the output range of the PLM by introducing
a fixed component within the context. This prompt
requires the PLM’s predictions to align with the
given context, thereby encouraging the model to
emphasize specific attributes crucial to the task dur-
ing the fine-tuning process. This approach offers
a method to enhance classification performance
through context adjustment, complementing rather
than contradicting traditional fine-tuning method-
ologies.

4.2.3 Verification on Chinese Dataset
We also validated the F&P method on CLUE, a Chi-
nese dataset. The experimental results are shown
in Table 3. Overall, the F&P method still outper-
formed traditional fine-tuning, with slight improve-
ments across multiple models and tasks. This con-
firms the effectiveness of our approach not only in
English but also in Chinese tasks.

However, the improvements on the Chinese
dataset were not as significant as those on the En-
glish dataset. We attribute this mainly to subopti-
mal prompt designs for Chinese tasks. Since the

AUTOPROMPT method was originally proposed for
English data, although there is no evidence sug-
gesting it only works for English, this experiment
shows limited improvement on Chinese datasets.
In the future, we will further tune this method to
find optimal Chinese prompts for each task.

4.3 Explain the Verbalizer

Traditional classifiers typically involve a multitude
of parameters whose complex interactions can ob-
scure the decision-making process, even when the
operations involved are purely linear. In contrast,
prompting the PLM, mapping and aligning their
outputs with specific classes through a verbalizer
offers a stark contrast in transparency for human
observers. As discussed by Molnar (2020), explain-
ability refers to the degree to which a person can
reliably anticipate the model’s predictions. In this
framework, the consistency of the verbalizer be-
comes paramount, ensuring a cohesive semantic
alignment with the assigned class labels. For in-
stance, if the term "favorable" is linked with the
"Negative" class, such discrepancies highlight a
breakdown in the verbalizer’s coherence with hu-
man comprehension, thereby compromising inter-
pretability.

4.3.1 Consistency Test Between Verbalizers
and Humans

We evaluate the explainability of verbalizers using
the SST-2 dataset, focusing on their consistency
with human perception. To facilitate this evalua-
tion, we utilize a manually curated list of sentiment
words sourced from Hu and Liu (Hu and Liu, 2004).
This curated list serves as a benchmark to assess
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PLM Method TENWS IFLYTEK CLUEWSC2020 AFQMC CSL OCNLI CMNLI Avg.

BERT-

base

FT 56.54 60.21 63.47 73.67 80.43 72.28 79.67 69.47

F&P.(10) 56.52 60.24 63.54 73.70 80.45 72.37 79.74 69.51

F&AP.(10) 57.67 61.00 64.19 74.12 80.75 73.22 80.46 70.20 (+0.73)

BERT-wwm

-ext-base

FT 56.81 59.33 62.50 74.00 80.65 74.41 80.38 69.73

F&P.(10) 56.90 59.28 62.49 74.02 80.61 74.31 80.39 69.71

F&AP.(10) 57.43 59.65 62.99 74.67 80.86 75.37 81.04 70.29 (+0.56)

RoBERTa-wwm

-ext-base

FT 56.88 60.30 72.13 73.97 81.07 74.66 80.44 71.35

F&P.(30) 56.87 60.23 72.12 73.95 81.10 74.68 80.46 71.34

F&AP.(30) 57.21 61.26 72.54 74.19 81.64 74.87 80.69 71.77 (+0.42)

RoBERTa-wwm

-ext-large

FT 58.55 62.90 81.37 76.61 82.21 78.28 82.19 74.59

F&P.(30) 58.45 62.87 81.43 76.57 82.18 78.22 82.19 74.56

F&AP.(30) 59.28 63.36 82.22 77.75 83.16 78.68 82.93 75.34 (+0.75)

Table 3: Results on the development set of CLUE benchmark. Accuracy (%) is the metric used for all tasks. The
number in the bracket indict the number of words selected for each class for the verbalizer. , e.g., [10] means select
top-10 words from each class. The number in red represents the improvements of F&AP over the fine-tuning.
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Figure 2: Denoise: left part shows all word weights, and
the right shows the word weight after selection.

how well the verbalizers’ vocabulary aligns with
human sentiment understanding.

For the selection of verbalizers, we employ the
F&P method, which identifies the top 50 words for
each sentiment class based on their relevance to
the dataset. The evaluation metric, depicted in the
left part of Figure 3, measures the overlap between
the manually curated word list and the verbalizer’s
selection, quantifying this as the "hit number."

Our findings indicate varying levels of consis-
tency across different PLMs. Notably, GPT demon-
strates higher consistency compared to RoBERTa-
base. For instance, RoBERTa-base incorrectly cate-
gorizes certain words like "addicted" and "odd" as
positive sentiments. This discrepancy partly stems
from how these models’ tokenizers segment words
into smaller units (e.g., "crazily" segmented into
["c, ##raz, ##ily"]), which may not align with the
intact sentiment words in the manual list, thus re-
ducing the hit number.

To address the challenges posed by tokenizers,
we undertook a detailed performance evaluation

comparing the effectiveness of the original verbal-
izer against a manually curated alternative. Our
approach involved meticulously identifying words
shared between a manually compiled list and the vo-
cabulary of the PLM. Subsequently, we employed
a ranking methodology, selecting the top 50 words
based on their classifier weights to establish the
most suitable verbalizer. The outcomes of this eval-
uation are visually depicted in the right-hand sec-
tion of Figure 3.

A smaller decrease in performance metrics indi-
cates a closer alignment between the original and
manually crafted verbalizers. Notably, the slight
reduction observed in the performance of the GPT
underscores the model’s ability to maintain consis-
tency and coherence with the verbalizer. This find-
ing suggests that the verbalizer employed by GPT
is inherently more transparent and interpretable,
despite the challenges posed by tokenization pro-
cesses.

4.3.2 Chinese Case Study

Table 4 provides real questions sampled from the
OCNLI dataset. The task in OCNLI requires de-
termining whether two given sentences are similar,
which is a binary classification task. We manually
constructed a template that includes two sentences
for evaluation, a task description, and a [MASK]
symbol. Models are tasked with predicting logits
at the [MASK] position. Ideally, the token corre-
sponding to the highest logit value should be ’yes’
or another positively oriented word.

The bottom part of Table 4 displays a verbalizer
obtained using the F&P method. We showcase 6 to-
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Case Study

Input Demonstration:

句子 1: 一月份跟二月份肯定有一个月份有。
Sentence 1: One of January or February definitely has.

句子 2: 肯定有一个月份有。
Sentence 2: There must be a month has.

问题: 他们语义上相似吗？
Question: Are they semantically similar? 

答案: [MASK]
Answer: [MASK]

Verbalizer:

1: 是，像，怡，##贴，忠，净
1: yes, like, joy, ##paste, loyal, clean

0: 变，敗，##糙，罢，讳，##难
0: change, defeat, ##rough, cease, taboo, ##difficult

Table 4: Case study with a Chinese case. The upper
part is a manual prompt provided to the model with
its English translation. The [MASK] position in this
prompt is reserved for the model to predict a logit. The
lower part shows a verbalizer obtained using the F&P
method, where 1 and 0 represent the positive and nega-
tive classes, respectively

kens for each class. Here, 1 represents the positive
class, indicating similarity between two sentences,
while 0 represents the negative class, indicating
dissimilarity. It can be observed that the words in
each class of the verbalizer generally correspond to
the polarity expressed by that class. For instance,
the list of words representing the positive class
includes yes, like, joy, ##paste, loyal, clean. Al-
though these tokens are not appropriate as answers
to the question ’Are they semantically similar?’,
their polarity aligns with human understanding.

4.4 Explain the PLM
Probing is an explainable task to detect the extent
of encoded knowledge in the PLM. Linear probing
(LP) (Conneau et al., 2018) is a method that only
fine-tunes the linear classifier on top of the PLM
on the downstream task. The predictive accuracy is
interpreted as the volume of the task-related knowl-
edge encoded in the PLM. However, during the
fine-tuning, linear classifiers also encode knowl-
edge, resulting in an overestimation in the probing
results (Cao et al., 2021; Zhang and Bowman, 2018;
Hewitt and Manning, 2019; Lasri et al., 2022).

As F&P does not include extra parameters, it
prevents learning from fine-tuning. We freeze the
PLM and only tune the linear classifier on top of
the PLM. Then we construct the verbalizer accord-
ing to the classifier’s weight. This variant method
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Figure 3: The left part shows how many words are
both in the manual list also selected by verbalizers, i.e.,
hit number. The right part compares the performance
of PLMs with the original verbalizer (grey) and the
verbalizer constructed by the manual list (green).

is called Probing after Prompting (P&P). We con-
ducted an experiment using the SST-2 dataset. We
used AUTOPROMPT as both a baseline (Auto) and
an enhancement to our approach (P&AP). The com-
parison results are presented in Tabel 5. The results
indicate that P&P surpasses linear probing on all
PLMs. This demonstrates that our method not only
prevents interference from the tuning, but also max-
imizes the PLM’s inherent potential. Furthermore,
when enriched with prompts generated by AUTO-
PROMPT, P&AP achieved an average improvement
of 7.92% over the linear probing method. The re-
sults show that combining prompting with probing
is a more effective way to stimulate the most poten-
tial of PLMs.

Model LP. Auto. P&P. P&AP.
BERT-base 82.47 80.87 85.39 91.65 (+9.18)
BERT-large 84.97 82.75 86.59 91.24 (+6.27)
RoBERTa-base 85.27 91.33 86.87 92.61 (+7.34)
OpenAI-GPT 83.85 87.21 88.78 92.73 (+8.88)
Avg. 84.14 85.54 86.91 92.06 (+7.92)

Table 5: The probing result on SST-2 dataset. The number
in red shows the improvements of F&AP over LP. We select
the top 100 words from each class for the verbalizer in this
experiment.

5 Conclusions

In this work, we propose an effective approach, re-
ferred to as F&P, which integrates fine-tuning and
prompting to adapt PLMs for classification tasks.
Our experimental results demonstrate that F&P
yields performance comparable to fine-tuning, by
employing prompts and verbalizers to replace the
conventional classifier. Importantly, these prompts
and verbalizers consist of real words that are easily
understandable by humans. Additionally, we pro-
pose a method for assessing the explainability of
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verbalizers and a variation for probing tasks. We
believe that F&P not only enhances classification
performance but also plays a pivotal role in demys-
tifying the inner workings of these models.

Limitations

We summarize the limitations in two points.
Despite the significant improvement in explain-

ability compared to traditional fine-tuning methods,
F&P does not show a significant improvement in
performance. This observation is frustrating be-
cause while it is important to understand and ex-
plain the decisions made by PLMs, ultimately, the
performance and accuracy of these models are cru-
cial for practical applications.

In this work, we did not discuss the effectiveness
of F&P on large language models (LLMs), though
LLMs are currently a prominent trend in the field.
Exploring the effects of F&P on LLMs would not
only provide valuable insights into the potential
benefits and drawbacks of using F&P in this context
but also guide future research and development in
a direction that aligns with the current trends and
demands of the industry.
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Abstract

Causal reasoning, a core aspect of human cogni-
tion, is essential for advancing large language
models (LLMs) towards artificial general in-
telligence (AGI) and reducing their propen-
sity for generating hallucinations. However,
existing datasets for evaluating causal reason-
ing in LLMs are limited by narrow domain
coverage and a focus on cause-to-effect rea-
soning through textual problems, which does
not comprehensively assess whether LLMs
truly grasp causal relationships or merely guess
correct answers. To address these shortcom-
ings, we introduce a novel benchmark that
spans textual, mathematical, and coding prob-
lem domains. Each problem is crafted to
probe causal understanding from four perspec-
tives: cause-to-effect, effect-to-cause, cause-
to-effect with intervention, and effect-to-cause
with intervention. This multi-dimensional eval-
uation method ensures that LLMs must ex-
hibit a genuine understanding of causal struc-
tures by correctly answering questions across
all four dimensions, mitigating the possibil-
ity of correct responses by chance. Further-
more, our benchmark explores the relation-
ship between an LLM’s causal reasoning per-
formance and its tendency to produce hallu-
cinations. We present evaluations of state-
of-the-art LLMs using our benchmark, pro-
viding valuable insights into their current
causal reasoning capabilities across diverse
domains. The dataset is publicly available
for download at https://huggingface.co/
datasets/CCLV/CausalBench.

1 Introduction

Causal reasoning, the ability to understand and
infer causal relationships between variables, is a
fundamental aspect of human cognition and plays
a crucial role in decision-making, problem-solving,
and learning (Pearl, 2009). For large language mod-
els (LLMs), causal reasoning refers to the ability
to accurately identify, represent, and reason about

causal relationships described in text, mathematical
equations, or code snippets (Pearl, 2009). Devel-
oping strong causal reasoning abilities in LLMs is
essential for progress toward artificial general intel-
ligence (AGI), as it enables models to understand
not just correlations but the underlying mechanisms
driving outcomes (Fridman and Pearl, 2022). This
understanding is crucial for making accurate pre-
dictions, generating insightful explanations, and
adapting to new situations, as core components of
AGI.

However, existing causal reasoning benchmarks
have several limitations that hinder their ability
to comprehensively evaluate the causal reasoning
capabilities of LLMs. First, current benchmarks
often focus on a single perspective of causal reason-
ing, such as cause-to-effect, lacking a multifaceted
assessment that considers effect-to-cause reason-
ing and the impact of interventions. This narrow
focus allows models to correctly answer causal
questions by chance without truly understanding
the underlying causal relationships (Kaushik et al.,
2020). Second, current benchmarks are primarily
text-based, lacking diversity in problem types, such
as mathematical and coding problems that can en-
capsulate causal dependencies. Incorporating these
diverse problem formats would enable a more ro-
bust evaluation of LLMs’ capacity to reason about
causality across various modalities. Third, the lim-
ited scale of existing benchmarks may not provide
a sufficiently comprehensive assessment of LLMs’
causal reasoning abilities due to the limited scale
of the benchmark dataset.

To address these limitations, we propose Causal-
Bench, a comprehensive benchmark for evaluating
the causal reasoning capabilities of LLMs. Causal-
Bench comprises four perspectives of causal rea-
soning for each scenario: cause-to-effect, effect-to-
cause, cause-to-effect with intervention, and effect-
to-cause with intervention. This multi-perspective
approach mitigates the potential for correct answers
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by chance and provides a more accurate evaluation
of LLMs’ understanding of causal relationships.
Moreover, CausalBench includes a diverse set of
problem types spanning textual, mathematical, and
coding domains, enabling a comprehensive assess-
ment of causal reasoning abilities across different
modalities. The benchmark consists of more than
60,000 problems and employs six evaluation met-
rics to measure LLMs’ causal reasoning perfor-
mance.

The major contributions of CausalBench are
three-fold: (1) evaluating four causal reasoning
perspectives per scenario to robustly assess causal
understanding, (2) incorporating a diverse prob-
lem set spanning math, code, and natural language
for cross-modal evaluation, and (3) implementing
strict quality control measures, including a causal
inference engine check and human expert review, to
ensure the benchmark’s validity and reliability. By
addressing the limitations of existing benchmarks,
CausalBench aims to provide a more comprehen-
sive and accurate evaluation of the causal reasoning
capabilities of LLMs, facilitating progress towards
AGI.

2 Dataset Construction Process and
Method

The construction of CausalBench involves three
key steps: manual generation of initial test cases,
scaling up using LLM such as GPT-4 Turbo, and
quality control through causal inference engines
together with human verification. Initially, we man-
ually create a set of test cases covering four aspects
of causal inference: (a) cause to effect, (b) effect
to cause, (c) cause to effect with intervention, and
(d) effect to cause with intervention to ensure a
comprehensive evaluation of causal reasoning ca-
pabilities from different perspective. To expand
the dataset, we then use GPT-4 Turbo with few-
shot prompting, leveraging the model’s ability to
generate additional test cases that adhere to the de-
sired format and cover the four causal inference
aspects. The few-shot prompts are designed to
guide GPT-4 Turbo in producing a diverse and ex-
tensive set of problems that maintain consistency
with the manually generated cases. Afterward, we
implement a quality control process involving vali-
dation through causal inference engines and review
by human experts. The causal inference engines
verify the logical consistency and correctness of the
generated test cases, while human experts review

and refine the dataset to maintain high standards of
quality and relevance.

2.1 Workflow Overview

2.2 Manual Analysis and Generation

For the text problems of our Benchmark, we ran-
domly selected 100 questions from the CLADDER
dataset (Choshen et al., 2022) and manually ana-
lyzed them to determine their category within (1)
inference from cause to effect, (2) effect to cause,
(3) cause to effect with intervention, or (4) effect to
cause with intervention. These perspectives repre-
sent different dimensions of causal reasoning: (1)
Cause to the effect: Given the cause, what is the
likelihood of the effect? (2) Effect to cause: Given
the effect, what is the likelihood of the cause? (3)
Cause to effect with intervention: If an interven-
tion is added to the causal relationship, given the
cause, what is the likelihood of the effect? and (4)
Effect to cause with intervention: If an intervention
is added to the causal relationship, given the effect,
what is the likelihood of the cause?

After categorizing the selected cases from the
CLADDER dataset, we expanded them by creating
additional questions for the other three perspectives.
For example, if a case was classified as “cause to
effect”, we generated corresponding questions for
“effect to cause”, “cause to effect with intervention”,
and “effect to cause with intervention” manually.

To correctly expand other perspective questions
and their ground truths, we visualized the relation-
ships between variables using causal diagrams and
analyzed these relationships by calculating con-
ditional probabilities. Causal diagrams represent
variables as nodes and causal relationships as di-
rected edges. For example, consider the following
hypothetical scenario:

Imagine a self-contained, hypothetical world
with only the following conditions, and without any
unmentioned factors or causal relationships: Par-
ents’ intelligence has a direct positive effect on par-
ents’ social status and child’s intelligence. Other
unobserved factors has a positive direct effect on
parents’ social status and child’s intelligence. If a
child is intelligent, would it be more likely that this
child had intelligent parents?

In this scenario, the causal diagram would have
four nodes: Parents’ intelligence, Parents’ social
status, Child’s intelligence, and Other unobserved
factors. There would be directed edges from
Parents’ intelligence to Parents’ social status and
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Figure 1: Workflow overview of the CausalBench dataset construction process.

Figure 2: Causal Graph Example

Child’s intelligence, from Other unobserved factors
to Parents’ social status and Child’s intelligence,
and from Parents’ social status to Child’s intelli-
gence. Conditional probabilities can be estimated
based on the causal graph.

Using the causal graph and conditional probabil-
ities, we can categorized the original questions as
effect-to-cause. The probability of the child being
intelligent given that the parents are intelligent is
higher than the probability of the child being intel-
ligent given that the parents are unintelligent, so
the ground truth is yes. Then extend the questions
to cover four perspectives by adjusting the ques-
tioning logic and incorporating interventions into
the causal path diagram, and calculate ground truth
for each questions.(examples are provided in the
Appendix)

Finally, we obtained 100 causal scenarios, with
400 causal questions. They serve as the foundation
for our few-shot prompting approach, providing
examples for GPT-4 Turbo on how to identify the
type of the initial question and generate additional
questions for the remaining perspectives. By using
these examples in a few-shot prompting setting, we
guide the model to generate additional perspective
questions with answers for all other causal scenar-
ios in the CLADDER dataset.

For coding and mathematical problems, we man-
ually created 100 code scenarios and 100 math sce-
narios, each containing causal relationships, and de-

signed four perspective questions for each scenario.
These questions addressed causal issues based on
the relationships described in the scenarios (ex-
amples are provided in the Appendix). We then
used causal graphs and conditional probabilities to
manually generate the ground truths and employed
few-shot prompts with GPT-4 Turbo to generate
additional code, math scenarios and questions with
corresponding answers.

In summary, the manual analysis and generation
process involved visualizing causal relationships
using causal diagrams and calculating conditional
probabilities for each scenario. We modified the
questioning approach and added interventions to ex-
pand each problem into four forms, covering cause-
to-effect, effect-to-cause, cause-to-effect with in-
tervention, and effect-to-cause with intervention,
and generated ground truths for each question. By
the end of this section, we had created 100 sets of
400 text-based questions with ground truths, 100
sets of 400 coding questions with ground truths,
and 100 sets of 400 math questions with ground
truths. These manually generated samples serve
as the foundation for our few-shot prompting ap-
proach, which utilizes GPT-4 Turbo to generate
additional test cases.

2.3 Scaling Up with LLMs

After manually generating and verifying an ini-
tial set of questions, we employed GPT-4 Turbo
to scale up the dataset. The scale-up process was
divided into three parts: text problems, coding prob-
lems, and mathematical problems.

For the text problems, we provided GPT-4 Turbo
with original CLADDER dataset(Choshen et al.,
2022) questions with manually expanded questions
along with their ground truths. By learning from
these samples, GPT-4 Turbo was tasked with read-
ing the remaining CLADDER scenarios (around
10,000 problems) and their corresponding ques-
tions, determining the question perspective, ex-
panding the scenario into the other three perspec-
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tives, and generating the associated ground truths.
This process ensures every text causal scenario
has four dimension questions and corresponding
ground truths.

In the case of coding problems, we supplied
GPT-4 Turbo with the 100 manually created code
examples containing causal relationships. Using
these examples as a foundation, GPT-4 Turbo gen-
erated an additional 2,000 code snippets, each in-
corporating causal relationships. For each newly
generated code snippet, GPT-4 Turbo created four
perspectives of questions and provided the corre-
sponding ground truths, ensuring a comprehensive
evaluation of causal reasoning in the context of
programming.

Similarly, for mathematical problems, GPT-4
Turbo was employed to generate 2,000 new mathe-
matical scenarios across various domains, such as
probability theory, mathematical statistics, differ-
ential equations, and complex analysis. For each
mathematical scenario, GPT-4 Turbo generated
four types of questions and their associated ground
truths, assessing the model’s ability to reason about
causal relationships in mathematical contexts.

By leveraging the capabilities of GPT-4 Turbo,
we were able to create a dataset across all three
problem categories. The text problems were aug-
mented by automatically generating additional
question perspectives and ground truths based on
the existing CLADDER scenarios. The coding
and mathematical problems were scaled up by hav-
ing GPT-4 Turbo create new scenarios containing
causal relationships and generate the correspond-
ing questions and ground truths. This scale-up pro-
cess resulted in a more comprehensive and diverse
dataset, enabling a thorough evaluation of causal
reasoning abilities in large language models across
various domains.

2.4 Quality Control

2.4.1 Causal Inference Engine Design

To ensure the accuracy and consistency of the
generated questions and answers, we developed a
causal inference engine. This engine utilizes causal
diagrams and conditional probabilities associated
with each question to compute the answers for all
questions. The causal inference engine serves as a
verification layer, comparing the answers generated
by the language model. If the answer generated by
the language model differs from the answer gener-
ated by the causal inference engine, the case will

be manually inspected, and the ground truth will be
generated by human experts. Here are the Causal
Inference Engine design details:

Input

• A causal scenario described in natural lan-
guage, code, or mathematical equations, in-
cluding causal relationships among variables,
known conditions, etc.

• A causal query, which is a question based on
causal scenario

Steps
Causal Graph Extraction:
For natural language scenarios, we identify vari-

ables and causal relationships, and construct causal
graphs (G := (V, E)) by implementing a pipeline
consisting of semantic parsing and coreference res-
olution modules. The semantic parsing module
first uses the Stanford Parser (Klein and Manning,
2003) to perform syntactic parsing and obtain the
sentence structure. Then, it applies Compositional
Semantics (Zettlemoyer and Collins, 2005) to re-
cursively map the syntactic parse tree to a logi-
cal form, based on the principle of compositional-
ity. The coreference resolution module uses tech-
niques such as the mention-pair model (Soon et al.,
2001) to determine which mentions refer to the
same entity, and merges the variables correspond-
ing to coreferent mentions. From the outputs of
the semantic parsing and coreference resolution
modules, the pipeline automatically extracts vari-
ables from nouns and noun phrases, and identifies
causal relationships indicated by verbs and con-
junctions expressing causality (Li and Mao, 2019).
Finally, the causal graph construction module takes
the extracted variables as nodes (V) and causal re-
lationships as directed edges (E) to automatically
build the causal graph (Pearl, 2009).

For code scenarios, we identify variables and
their dependencies, and construct causal graphs
by implementing a pipeline that analyzes the code
structure, control flow, and data flow. The pipeline
first uses a code parser, such as the ast module
(Python Software Foundation, 2023) in Python, to
generate an abstract syntax tree (AST). It then per-
forms control flow analysis using techniques like
control flow graphs (CFGs) (Allen, 1970) and pro-
gram dependence graphs (PDGs) (Ferrante et al.,
1987), and data flow analysis using def-use chains
(Harrold and Rothermel, 1994) and static single
assignment (SSA) form (Cytron et al., 1991), to
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identify execution paths, dependencies between
statements, and variable dependencies. These anal-
yses help automatically extract variables and their
relationships from the code structure. Finally, the
causal graph construction module takes the ex-
tracted variables as nodes (V) and their dependen-
cies as edges (E) to build the causal graph based
on the code semantics (Pearl, 2009), capturing the
causal relationships between variables and enabling
further reasoning and analysis.

For math scenarios, we identify variables and
their functional relationships, and construct causal
graphs by implementing a pipeline that parses and
analyzes the mathematical equations. The pipeline
first uses a math expression parser, such as the
SymPy library (Meurer et al., 2017) in Python, to
convert the equations into an abstract syntax tree
(AST) representation. It then traverses the AST
to identify variables and their functional relation-
ships, such as dependencies and algebraic oper-
ations, using techniques like symbolic differenti-
ation (Griewank and Walther, 2008) and expres-
sion simplification (Moses, 1971). These analyses
help automatically extract variables and their re-
lationships from the equation structure. Finally,
the causal graph construction module takes the
extracted variables as nodes (V) and their func-
tional relationships as directed edges (E) to build
the causal graph based on the equation semantics,
similar to the approach in (Pearl, 2009). The result-
ing causal graph captures the causal relationships
between variables in the mathematical equations,
enabling further reasoning and analysis.
Query Classification: Classify the causal query
into one of the three levels of the Ladder of Cau-
sation (Association, Intervention, Counterfactuals).
Formalize the query into the corresponding causal
language, as discussed in (Jin et al., 2023).
Estimand Derivation:

1. For text and math scenarios, we construct a
module that uses causal inference algorithms
(e.g., do-calculus (Pearl, 1995), counterfac-
tual inference formulas (Pearl et al., 2000)) to
derive the estimand based on the causal graph
and query type.

2. For code scenarios, we use program analysis
techniques (e.g., symbolic execution, data de-
pendency analysis, control flow analysis) to
derive the estimand based on the code struc-
ture and query type. This involve simulating
interventions on code variables and analyzing

the resulting program behavior.

Data Matching: Match the terms in the estimand
with the available data or constraints in the scenario
to obtain a computable estimand expression. Check
the completeness and consistency of the data. Raise
warnings or errors if critical data is missing. For
code scenarios, this involve executing the code with
specific inputs and observing the outputs. This step
is similar to the data matching phase in (Jin et al.,
2023).
Causal Effect Estimation:

1. Calculate the causal effect value based on the
estimand expression and the available data,
yielding the answer to the query.

2. For scenarios with unobserved confounders,
use instrumental variable estimation (Angrist
et al., 1996) or front-door adjustment (Pearl,
1995).

3. For code scenarios, this involve comparing
program behaviors under different interven-
tions.

This step is inspired by causal effect estimation
phase in (Jin et al., 2023).

Output
• Answer to the causal query, including the esti-

mated causal effect, confidence interval, and
key assumptions.

In a summary, our Causal Inference Engine extends
the original design presented in (Jin et al., 2023) by
incorporating domain-specific graph extraction and
estimand derivation techniques to handle causal in-
ference problems in text, code, and math scenarios.
The overall pipeline remains consistent with the
one described in (Jin et al., 2023), but the internal
methods are adapted to the specific structures and
semantics of each domain.

2.4.2 Quality Control Process
After expansion with GPT4-Turbo, we obtained
around 10000 x 4 text-based questions, 2000 x 4
math questions, and 2000 x 4 coding questions,
along with their GPT-4 Turbo generated answers.
To ensure the accuracy of the ground truth of each
questions, we employed a strict quality control pro-
cess as showing below:

We used the causal inference engine introduced
above to independently solve the problems and
generate its own set of answers. We compared the
answers generated by GPT-4 Turbo and the causal
inference engine. If two answers were the same,

147



we updated the answer as ground truth. If any
of the answers were inconsistent, we conducted
a manual analysis of the question and answers to
determine the correct answer and update ground
truth accordingly.

This multi-step quality control process, involv-
ing the use of causal inference engine and human
expert check, ensures that the final dataset contains
accurate and reliable questions and answers. The
manual review of inconsistent answers further en-
hances the quality of the dataset by addressing any
discrepancies or edge cases that the models may
encounter.

3 Benchmark Results

3.1 Baseline of Mainstream LLMs

We tested several state-of-the-art large language
models, including GPT-4, Claude-3, LLAMA-3,
and others, on our CausalBench. The evaluation
metrics included: Four-Type Questions Group Cor-
rection Rate, Overall Correction Rate (Ignore Ques-
tion Type), From Cause to Effect without Inter-
vention Correction Rate, From Effect to Cause
without Intervention Correction Rate, From Cause
to Effect with Intervention Correction Rate, and
From Effect to Cause with Intervention Correction
Rate. For each causal scenario, there are four ques-
tions: cause-to-effect without intervention, effect-
to-cause without intervention, cause-to-effect with
intervention, and effect-to-cause with intervention.
The Four-Type Questions Group Correction Rate
represents the proportion of scenario cases where
all four types of questions of one scenario are all
answered correctly by the large language models.
If any of the four questions of a scenario is an-
swered incorrectly, the scenario is considered to be
answered incorrectly by the LLM. The Overall Cor-
rection Rate (Ignore Question Type) is calculated
by dividing the total number of correctly answered
questions by the total number of questions, with-
out categorizing the questions by type and scenario.
The From Cause to Effect without Intervention Cor-
rection Rate is calculated by dividing the number of
correctly answered "From Cause to Effect without
Intervention" type questions by the total number
of this type of questions. Similarly, the From Ef-
fect to Cause without Intervention Correction Rate
is calculated by dividing the number of correctly
answered "From Effect to Cause without Interven-
tion" type questions by the total number of this type
of questions. The remaining two metrics, From

Cause to Effect with Intervention Correction Rate
and From Effect to Cause with Intervention Cor-
rection Rate, follow the same calculation method
as the previous two metrics, focusing on their re-
spective question types.

Here are the tables showing LLMs’ performance
on text, math, and code problems.

3.2 Test Result Summary
The evaluation results of state-of-the-art large lan-
guage models on CausalBench provide valuable
insights into their causal reasoning capabilities
across textual, mathematical, and coding problem
domains:

Overall, the models achieved higher correction
rates on mathematical problems compared to tex-
tual and coding problems. For instance, GPT-4
achieved an 88.7% overall correction rate on math
problems, while scoring 73.3% and 71.0% on text
and code problems, respectively. This suggests
that causal reasoning in mathematical contexts is
relatively easier for LLMs compared to natural lan-
guage and programming domains.

The Four-Type Questions Group Correction
Rate, which measures the proportion of scenarios
where all four reasoning perspectives are correctly
answered, was consistently lower than the Over-
all Correction Rate (Ignore Question Type) across
all problem types. For example, GPT-4 achieved a
61.4% Four-Type Questions Group Correction Rate
on math problems, compared to an 88.7% Overall
Correction Rate. This indicates that LLMs often
struggle to maintain a comprehensive understand-
ing of causal relationships when questioned from
multiple perspectives.

The introduction of interventions in the causal
scenarios led to mixed results in correction rates
across models and problem types. In the text do-
main, the correction rates slightly decreased for
most models when interventions were introduced.
However, in the math domain, the correction rates
generally improved with interventions. For in-
stance, GPT-4’s performance increased from 78.6%
to 91.7% on cause-to-effect questions with inter-
vention in math problems. In the coding domain,
the impact of interventions varied across models,
with some showing improvements and others ex-
hibiting a decline in performance.

Among the tested models, GPT-4 and Claude-
3 consistently outperformed other large language
models (LLMs) across most problem types and
reasoning dimensions, achieving the highest cor-
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Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

GPT-4 Turbo 36.9 73.3 74.4 71.2 73.8 73.7
Claude3-Opus 36.8 72.6 74.1 70.9 73.2 72.2
Mistral-7B 25.5 63.6 58.7 66.5 64.2 65.0
Llama3-70B 21.8 61.5 62.6 59.6 63.8 60.1
Llama2-7B 20.7 62.1 62.8 64.0 56.4 65.4
GPT-3.5 16.7 57.8 57.6 58.5 56.2 58.7
Gemma-7b-it 12.8 50.7 50.0 46.9 53.6 52.1
Bloomz 4.2 41.7 41.0 40.7 41.7 43.6
AquilaChat 1.9 31.1 28.7 32.4 33.1 30.4

Table 1: LLM Performance on Text Problems.

Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

Mistral-7B 62.0 87.2 78.9 85.6 85.3 98.9
GPT-4 Turbo 61.4 88.7 78.6 88.3 91.7 96.0
Claude3-Opus 54.6 85.9 74.7 87.1 86.5 95.4
Llama3-70B 40.8 80.7 56.8 86.8 82.0 97.1
Gemma-7b-it 38.3 79.2 50.4 82.8 91.1 92.0
AquilaChat 25.3 68.1 57.0 67.8 69.2 78.3
Bloomz 23.9 69.2 53.3 76.8 67.3 79.7
GPT-3.5 15.9 63.3 47.1 71.5 48.6 86.1
Llama2-7B 2.8 42.3 45.3 54.2 17.5 52.4

Table 2: LLM Performance on Problems.

Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

Llama3-70B 43.8 77.0 82.0 75.7 73.9 76.0
Claude3-Opus 39.6 71.3 78.6 71.3 68.7 66.5
GPT-4 37.2 71.0 80.6 67.5 73.2 62.5
Gemma 32.3 68.4 74.1 67.7 66.0 65.4
Mistral 31.4 66.8 67.5 68.3 61.3 70.2
GPT-3.5 25.0 64.5 71.9 65.4 59.8 60.6
Llama2-7B 22.6 61.9 79.0 45.5 76.3 46.8
Bloomz 17.5 52.4 49.6 56.8 46.4 56.8
AquilaChat 14.7 47.3 36.8 56.4 38.9 57.2

Table 3: LLM Performance on Code Problems.

rection rates. Mistral demonstrated strong per-
formance in mathematical problems but exhibited
shortcomings in code-related tasks. Conversely,
LLAMA-3 showed robust performance in code-
related problems but faced challenges with text and
mathematical tasks.

4 Correlation with Hallucination

To analyze the correlation between LLMs’ causal
reasoning ability and their hallucination rate, we re-
ferred to the LLMs’ performance on hallucination
datasets. The hallucination evaluation results were
obtained from the Hallucination Leaderboard, de-
veloped by Vectara (Hughes and Bae, 2023). This
leaderboard provides a comparison of LLM perfor-
mance in maintaining a low hallucination rate and
ensuring factual consistency when summarizing a
set of facts.

The hallucination evaluation process involves

measuring the hallucination rate, factual consis-
tency rate, answer rate, and average summary
length. These metrics provide a comprehensive
understanding of each model’s tendency to hallu-
cinate and its ability to maintain factual accuracy
(Hughes and Bae, 2023).

After comparing the LLMs’ performance on
CausalBench with their performance on the Hallu-
cination evaluation leaderboard provided by Vec-
tara on Huggingface (Hughes and Bae, 2023), we
found that models with stronger causal reason-
ing abilities tend to exhibit lower hallucination
rates. For instance, GPT-4 Turbo, LLAMA-3-
70B, and Mistral-7B, which demonstrated superior
performance on causal reasoning tasks, also had
low hallucination rates. In contrast, models like
Google Gemma-7b-it and LLAMA-2-7B, which
showed weaker performance on our CausalBench,
had higher hallucination rates of 7.5% and 5.6%,
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Model Hallucination
Rate

Factual
Consistency Rate

Answer
Rate)

Average Summary
Length (Words)

GPt-4 Turbo 2.5% 97.5% 100.0% 86.2
Llama3-70B 4.5% 95.5% 99.2% 68.5
Mistral 7B Instruct-v0.2 4.5% 95.5% 100.0% 106.1
Llama2-7B 5.6% 94.4% 99.6% 119.9
Claude3-Opus 7.4% 92.6% 95.5% 92.1
Google Gemma-7b-it 7.5% 92.5% 100.0% 113.0

Table 4: Performance of LLMs on the Hallucination Dataset.

respectively.
This trend indicates a potential link between

a model’s ability to understand and reason about
causal relationships and its likelihood of not pro-
ducing hallucinations. Further research is required
to explore this correlation in more depth and to
understand the underlying mechanisms driving this
relationship.

5 Impact and Limitations

5.1 Impact

For the first time, we innovatively propose four
types of questioning approaches for the same causal
scenario: cause-to-effect, effect-to-cause, cause-to-
effect with intervention, and effect-to-cause with
intervention. We also calculate the proportion of
cases where large language models correctly an-
swer all four types of questions for a given causal
scenario. This effectively avoids the situation
where large language models coincidentally answer
causal questions correctly without understanding
the causal relationships embedded in the causal
scenario, thereby improving the accuracy of the
dataset’s test results. By providing causal reason-
ing problems spanning multiple domains(text, code,
math), it addresses the limitations of existing causal
datasets and offers a more comprehensive and ro-
bust tool for assessing the causal reasoning abilities
of language models. The findings in this paper sug-
gest that models with stronger causal reasoning ca-
pabilities tend to exhibit lower hallucination rates,
providing a new perspective on exploring the re-
lationship between causal reasoning and reducing
hallucinations. CausalBench has the potential to
become a benchmark for driving progress in causal
reasoning in artificial intelligence.

6 Conclusion

In this paper, we present CausalBench, a com-
prehensive benchmark dataset for evaluating the
causal reasoning capabilities of large language
models. CausalBench innovatively proposes four

types of questioning approaches for each causal
scenario: cause-to-effect, effect-to-cause, cause-to-
effect with intervention, and effect-to-cause with
intervention. By calculating the proportion of cases
where models correctly answer all four question
types, CausalBench effectively assesses whether
LLMs truly understand the underlying causal rela-
tionships, mitigating the impact of models coinci-
dentally providing correct answers without causal
comprehension.

The dataset encompasses a diverse set of prob-
lems spanning textual, mathematical, and coding
domains, addressing the limitations of existing
causal reasoning benchmarks. Evaluated on Causal-
Bench, state-of-the-art LLMs demonstrate stronger
performance on mathematical problems compared
to textual and coding tasks. Notably, models with
superior causal reasoning abilities tend to exhibit
lower hallucination rates, suggesting a potential
link between the two capabilities.

Despite its contributions, CausalBench has sev-
eral limitations, including the need for expanded
domain coverage and deeper exploration of the in-
trinsic mechanisms connecting causal reasoning
and hallucination reduction. Future work will fo-
cus on addressing these limitations, further refining
the evaluation metrics, and providing insights to ad-
vance the development of causal reasoning abilities
in large language models. CausalBench serves as a
robust tool and an important step towards achieving
artificial general intelligence.

Limitations

CausalBench has several limitations that need to be
addressed in future work. These include the need
for further expanding the domain coverage, increas-
ing the scale of the dataset, incorporating causal
discovery tasks and exploring the intrinsic mecha-
nisms between causal reasoning and hallucinations
through more empirical studies.
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Abstract

In conversational AI, effectively employing
long-term memory improves personalized and
consistent response generation. Existing work
only concentrated on a single type of long-term
memory, such as preferences, dialogue history,
or social relationships, overlooking their in-
teraction in real-world contexts. To this end,
inspired by the concept of semantic memory
and episodic memory from cognitive psychol-
ogy, we create a new and more comprehen-
sive Chinese dataset, coined as PerLTQA, in
which world knowledge, profiles, social rela-
tionships, events, and dialogues are considered
to leverage the interaction between different
types of long-term memory for question an-
swering (QA) in conversation. Further, based
on PerLTQA, we propose a novel framework
for memory integration in QA, consisting of
three subtasks: Memory Classification, Mem-
ory Retrieval, and Memory Fusion, which
provides a comprehensive paradigm for mem-
ory modeling, enabling consistent and person-
alized memory utilization. This essentially al-
lows the exploitation of more accurate memory
information for better responses in QA. We
evaluate this framework using five LLMs and
three retrievers. Experimental results demon-
strate the importance of personal long-term
memory in the QA task1.

1 Introduction

Long-term memory is a crucial element in conversa-
tional communication, facilitate the consistent and
personalized response generation(Xu et al., 2021b;
Zhong et al., 2024). Previous studies, as shown in
Table 1, have explored its various aspects, such as
world knowledge(Kwiatkowski et al., 2019; Reddy
et al., 2019; Chen et al., 2020), profiles (Zhang
et al., 2018; Zheng et al., 2019; Xu et al., 2022),
social relationships, events (Jang et al., 2023), and

1Our code and dataset will be publicly released once ac-
cepted.

刘亮和他哥哥最近在家做什么呢？

Episodic Memory

刘亮和他哥哥一直在家组织每周学习小组和打游戏。
Liu Liang and his brother have been organizing a weekly study 

group and playing games at home recently.

刘亮和刘明在家组织每周学习小组。
Liu Liang and Liu Ming organize a weekly study group at home

Liu Liang and Li Hua play games at home.

刘亮和他哥哥刘明最近在家待在一起。
Liu Liang and his brother, Liu Ming, have been spending time at 

home together recently.

Semantic Memory

(‘Liu Liang’, ‘Friend’, ‘Li Hua’)

(‘Liu Liang’, ‘Brother’, ‘Liu Ming’) Liu Liang and Liu Ming organize a weekly 

study group at home.

1

2

3

4

1 2

3 4

1 3

(What have Liu Liang and his brother been doing at home recently?)

(‘刘亮’, ‘哥哥’, ‘刘明’)

(‘刘亮’, ‘朋友’, ‘李华’)

刘亮和刘明在家组织每周学习小组。

刘亮和李华在家玩游戏。

Retrieved memory Response

Figure 1: Example of external semantic and episodic
memory used for QA in conversation.

dialogue history (Zhong et al., 2024; Maharana
et al., 2024; Xu et al., 2021a; Chen et al., 2021).

However, existing research largely focused on
a single type of long-term memory, ignoring the
interaction of different types of memory, which are
crucial for consistent and personalized response
generation. As illustrated in Figure 1, with only
event memory, the model cannot recognize social
relationship brother in the query and fails to distin-
guish the event involving LiuMing. However, when
integrating semantic and episodic memory, not only
does it enhance the retrieval model (Izacard et al.,
2021) to recall social relationships LiuMing but
also aids generation model to accurately fuse the
event organize a weekly study group. Based on
the definition provided by cognitive psychology
(Eysenck and Keane, 2020), long-term memory is
categorized into semantic memory and episodic
memory. Semantic memory encompasses struc-
tured data, including world knowledge, profiles,
and relationships. In addition, episodic memory
captures personal histories such as events and dia-
logues, typically represented as lengthy text. Com-
bining these types of memory can enhance the
retrieval of accurate memory, thus improving re-
sponses to user queries.
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Dataset
Semantic
Memory

Episodic
Memory Goal

WK PRO SR DLG EVT
Natural-QA (Kwiatkowski et al., 2019) ✓ ✗ ✗ ✗ ✗ QA on Wikipedia
CoQA (Reddy et al., 2019) ✓ ✗ ✗ ✗ ✗ Dialogue QA on world knowledge
HybridQA (Chen et al., 2020) ✓ ✗ ✗ ✗ ✗ Multi-Hop QA on world knowledge
OTT-QA (?) ✓ ✗ ✗ ✗ ✗ QA on tables and text
Multi-Woz (Budzianowski et al., 2018) ✗ ✗ ✗ ✓ ✗ Task-oriented Dialogue
Persona-Chat (Zhang et al., 2018) ✗ ✓ ✗ ✓ ✗ Consistent personality dialogue
DailyDialog (Li et al., 2017) ✗ ✗ ✗ ✓ ✗ Multi-turn dialogues on daily life
Personal-Dialogue (Zheng et al., 2019) ✗ ✓ ✗ ✓ ✗ Multi-turn personalized dialogues
MSC (Xu et al., 2021a) ✗ ✓ ✗ ✓ ✗ Long-Term open-domain conversation
DialogueSum (Chen et al., 2021) ✗ ✗ ✗ ✓ ✗ Dialogue summarization
Dulemon (Xu et al., 2022) ✗ ✓ ✗ ✓ ✗ Personal long-term Chinese conversation
HybridDialogue (Nakamura et al., 2022) ✓ ✗ ✗ ✗ ✗ Dialogue QA on tables and text
Topical-Chat (Gopalakrishnan et al., 2023) ✓ ✗ ✗ ✗ ✗ Knowledge-grounded open-domain conversations
ChatDB (Hu et al., 2020) ✓ ✗ ✗ ✗ ✗ Question answering with structured memory
MemoryBank (Zhong et al., 2024) ✗ ✓ ✗ ✓ ✗ Personal long-term memory dialogue
CONVERSATION CHRONICLES (Jang et al., 2023) ✗ ✗ ✓ ✓ ✓ Long-term multi-session open domain conversation

PerLTQA ✓ ✓ ✓ ✓ ✓
Question answering on personal long-term memory
including semantic and episodic memory

Table 1: Typology of memories in QA/Dialogue datasets: Analysis of World Knowledge (WK), Profiles (PRO),
Social Relationships (SR), Dialogues (DLG), and Events (EVT).

To establish a unified long-term memory bank,
we leverage the in-context generation capabilities
of large language models (LLMs) to generate vari-
ous memory categories: world knowledge, profiles,
social relationships, events, and dialogue history,
as illustrated in Figure 2. The dataset consists of a
memory database with 141 profiles, 1,339 seman-
tic social relationships, 4,501 events, and 3,409
dialogues, and 8,593 memory-related evaluation
questions.

In the realm of long-term memory research
(Zhong et al., 2024; Stacey et al., 2024; Packer
et al., 2023), retrieval models (Karpukhin et al.,
2020; Izacard et al., 2021; Robertson et al., 1995)
and generative models (Yang et al., 2023; Bai et al.,
2023; Touvron et al., 2023; Zhang et al., 2023a;
Jiang et al., 2023) are the two most commonly used
modules to integrate external long-term memory.
Furthermore, considering the variety of memory
types examined in PerLTQA, classification models
provide an effective means to refine the scope of
retrieval and improve response consistency. There-
fore, we propose three subtasks memory classifica-
tion, memory retrieval, and memory fusion to eval-
uate the memory utilization capabilities of LLMs.
We carry out experiments using five LLMs and
three retrieval models.

The main contributions of this work are sum-
marised as follows:

• We introduce a new personal long-term mem-
ory dataset, coined as PerLTQA, for QA. The
PerLTQA provides a new research paradigm for
the modeling of interaction between different
memory types, paving the way for personalized

question-answering systems and lifelong com-
panion agents.

• We propose a new framework consisting of
three subtasks memory classification, memory re-
trieval, and memory fusion to evaluate the mem-
ory utilization capabilities of LLMs.

• We carry out experiments using five LLMs and
three retrieval models. The results demonstrate
that a classification-based re-ranking mechanism
improves the consistency of responses generated
by LLMs when accessing unified long-term mem-
ory.

2 Related Work

The long-term memory differentiation is mirrored
in the datasets like (Kwiatkowski et al., 2019; Chen
et al., 2021; Zhong et al., 2024). In the realm
of question answering, Natural-QA (Kwiatkowski
et al., 2019) and CoQA (Reddy et al., 2019) both
target Wikipedia-based knowledge, exemplifying
the use of world knowledge as semantic memory.
Within dialogue tasks (Wang et al., 2023b), MSC
(Xu et al., 2021a) and Dulemon (Xu et al., 2022)
consider dialogues as episodic memory. Memory-
Bank (Zhong et al., 2024) introduces a bilingual
dataset using GPT-4 to summarize dialogues and
personal data, effectively simulating episodic mem-
ory in multi-turn dialogues. However, existing
datasets (Hu et al., 2020; Zhang et al., 2023b) lack
comprehensive coverage of both memory types
with detailed annotations on social relationships
and events, highlighting a research gap for LLMs
in personal long-term memory fusion.

Efficient retrieval methods for external mem-
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Profile

(Semantic Memory)

...

Events

(Episodic Memory)
Dialogue

(Episodic Memory)

Social relationships

(Semantic Memory)

Name: 王小明 (Wang Xiaoming)

    Sex: 男 (Male)

    Nickname: 明明 (Mingming)

    Age: 28

    Occupation: 软件工程师 (Software Engineer)

    Hobby: 摄影，打篮球

   (photography, basketball)

    Appearance: 短发，戴眼镜 (short hair, 

wearing glasses)

    Education Background: 本科毕业于计算机

科学与工程 (Undergraduate Computer Science 

and Technology Major Graduation)   …

Supporting Character: 

王小红

Wang Xiaohong

Description: 

王小明的姐姐 (Wang 

Xiaoming’s sister, 36 years old, 

is a doctor)

Relationship: 姐姐(sister)

 …

Summary: 探索大峡谷

(Explore the Grand Canyon)

Topic: 家庭旅行 (Family Trip)

Characters: 王小红，王小明 

( Wang Xiaohong, Wang Xiaoming ) 

Time: 2022年5月12日 (May 12, 

2022)

Content: 王小明和姐姐王小红打

算去美国亚利桑那州探索大峡谷。

(Wang Xiaoming and his sister 

Wang Xiaohong decided to explore 

the Grand Canyon in Arizona, USA)

…

Date: 2022-05-18,

Dialogues:

           : 你上次和王小红去亚利桑那州探索大峡谷感

觉怎么样？(How did you and Wang Xiaohong go to 

the Grand Canyon in Arizona last time? )

           : 非常棒 (very nice!) 

           : 你们拍了什么好看的照片吗？(Did you take 

any good photos? )

           :我用相机拍下了北卡尼诺峡谷的照片，姐姐

也用手机记录了很多美好的瞬间。(I took photos of 

North Canino Canyon with my camera, and my sister 

also recorded many beautiful moments with her phone.)

…

Step 2: generate 

profiles from seed data

Step 3: generate 

relationships for 

characters from Step 2

Step 4: generate events 

for characters from 

Step 1, 2, 3

Step 5: generate dialogues 

between assistant and 

characters from Step 4

Step 1: 

Collect seed data

Step 6: 

Validation

names,  hobbies, 

occupation,

education 

backgrounds, topics 

Figure 2: The process of PerLT Memory generation. A six-step process: Step 1. Seed data collection. Step 2. PRO
generation. Step 3. SR generation. Step 4. EVT generation. Step 5. DLG generation and Step 6. Validation.

ory in dialogue system fall into two main cate-
gories: sparse retrieval method like BM25 (Robert-
son et al., 1995) and vector-based retrieval method
like DPR (Karpukhin et al., 2020), Contriever (Izac-
ard et al., 2021). The use of Retrieval-Augmented
Generation (RAG) is increasingly enhancing re-
trieval tasks within large language models (LLMs).
Within this framework, fine-tuned embeddings are
employed for text similarity searches, such as RE-
PLUG (Shi et al., 2023), OpenAI Embeddings 2.
This integration helps generate context-aware re-
sponses that consider personal memory, thereby
improving the interaction quality in systems like
those documented in recent studies (Wang et al.,
2023a) and platforms like LangChain 3 and Lla-
maIndex 4.

With the aim of integrating the memories recov-
ered in the responses, LLMs provide the consis-
tent response generation method based on prompts
(Zhang et al., 2023a; Yang et al., 2023; Bai et al.,
2023; Zhang et al., 2023c; Touvron et al., 2023; Li
et al., 2023). In dialogue systems, this approach
incorporates memory directly into prompts, gen-
erating tailored responses that reflect individual
memory (Zhao et al., 2023; Lee et al., 2023; Zhu
et al., 2024; Zhong et al., 2024).

3 Dataset Collection

We detail the creation of the PerLTQA dataset,
which involves collecting PerLT memories and

2https://platform.openai.com/docs/api-
reference/embeddings

3https://www.langchain.com/
4https://docs.llamaindex.ai/en/latest/index.html

generating and annotating PerLT QA pairs. Us-
ing an in-context technique, we build a memory
database that encompasses profiles, social relation-
ships, world knowledge, events, and dialogues. We
then semi-automatically annotate components of
memory-based Q&A, including questions, answers,
reference memories, and memory anchors that con-
nect answers to their respective memories.

3.1 PerLT Memory Generation

As shown in Figure 2, the generation of PerLT
memories is decomposed into six steps:
Step 1. Diverse Seed Data Collection. We select
ChatGPT and Wikipedia as initial world knowledge
source for our seed dataset due to their compre-
hensive coverage of a wide range of occupations,
educational backgrounds, hobbies, and event top-
ics, essential for foundational world knowledge.
It comprises professional backgrounds that span
across 10 categories and 299 specialties, hobbies
that are categorized into 7 groups with 140 items,
and a comprehensive range of topics structured into
49 categories with 2442 subtopics. Complement-
ing this approach, gpt-3.5-turbo is employed
to generate 141 virtual names. We implement a
manual review process, allowing us to avoid the
unrealistic use for data generation.
Step 2. Profile (Semantic Memory) Genera-
tion. To study personalized memories, generat-
ing character profiles is essential. We leverage
seed data, particularly occupations, educational
backgrounds, hobbies inputs, within prompt tem-
plates that include descriptions of other attributes
(gender, nickname, age, nationality, appearance,
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achievements, education, profession, employer,
awards, and role models). By utilizing ChatGPT
(gpt-3.5-turbo), we generate random charac-
ter profiles. The detailed prompts for this process
is available in Appendix.A.1.

Step 3. Social Relationship (Semantic Memory)
Generation. For the development of diverse social
connections, we utilize structured prompts shown
in Appendix.A.1 to craft 50 distinct categories of
relationships. These categories span a wide array,
including but not limited to family, friends, col-
leagues and neighbors, aiming to comprehensively
cover social interactions.

Step 4. Event (Episodic Memory) Generation.
Each character includes a series of narrative events,
deeply embedded in their episodic memory and
linked to interactions with others. The event gen-
eration starts by generating descriptions of back-
ground events chosen at random from the seed
topics highlighted in Step 1. Following this step,
we use prompts to help create detailed accounts
of events that are deeply tied to these initial oc-
currences and the social networks. To ensure co-
herence between the dynamics of character in-
teractions and the backdrop of events, few-shot
learning techniques, as outlined by (Brown et al.,
2020), are employed. This strategy aids ChatGPT
(gpt-3.5-turbo) in achieving narrative consis-
tency, weaving together individual events and rela-
tionships into a cohesive story for each character.

Step 5. Dialogues (Episodic Memory) Genera-
tion. Building on the events generated in Step 4,
we craft historical dialogues between the AI assis-
tant and the character. This process, anchored in
historical events, ensures that conversations main-
tain relevance to past events. We utilize prompt
templates that merge character profiles and event
details to help dialogue generation, as detailed in
Appendix.A.1. Furthermore, embedding the di-
alogues maintains a profound connection to the
shared histories and relationships.

Step 6. Validation. We start with small batches
for quality checks and scale up after ensuring error-
free outputs. We conduct random sampling of the
generated memory data, identifying types of issues
as detailed in Appendix A.3, and then manually
refine the memories. This refinement includes re-
moving anomalies in profiles, discriminatory con-
tent, inconsistencies in character memories, and
brief event narratives, enhancing the accuracy and
consistency of the memory. Even so, there still be

some biases as shown in Limitations.

3.2 PerLT Question Answering
To thoroughly assess each memory type for a char-
acter, we gather four QA-related metrics (ques-
tion, answer, reference memory, and memory an-
chor) for evaluating the memory-based QA. The
process of collecting PerLT QA items unfolds in
three phases:
Question and answer generating. Utilizing Chat-
GPT, we generate questions and answers prompted
by the memory sentences stored in PerLT Memory
database. The answers are designed to align with
the reference memories provided, adhering to the
prompts we created, as shown in the Appendix.A.2.
Memory Anchor Annotation. The memory an-
chor, a key text segment in the answer that aligns
with the referenced memory and question, is essen-
tial for memory evaluation in response generation.
We employ exact match techniques and human ver-
ification to annotate the start and end positions of
memory anchors, guided by the reference memory.
Given the intensive labor involved in manual ad-
justments, we have annotated memory anchors for
a limited set of 30 characters.
Validation on QA pairs and Memory Anchor.
To ensure the integrity of PerLT QA pairs, we start
with unbiased random sampling and a detailed er-
ror categorization in QA, references, and memory
anchors, alongside pronominal reference checks
for accuracy, with all errors cataloged in the Ap-
pendix.A. We employ LLMs to score QA pairs
on a scale from 0 to 10, automatically accepting
those scoring 10, reviewing scores between 6 and
9, and discarding scores below 6. This process
includes automated validation to verify reference
memory accuracy and remove irrelevant stopwords,
followed by thorough manual corrections and align-
ment checks to guarantee the highest quality of QA
items.

3.3 Dataset Statistics
The PerLTQA dataset, presented in Table 2, in-
cludes 141 character profiles with detailed occu-
pations and relationships. With 50 relationship
categories, an average of 9.5 social relationships
per character, the dataset provides a vivid social
relationship for semantic memory. Furthermore,
PerLT Memory features 4,501 events, averaging
313 words each, which fuel 3,409 event-related
historical dialogues, totaling 25,256 utterances. In
the QA section, 8,593 question-answer pairs and
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Dataset Statistics

Profiles
# Character profiles 141
# Jobs 98

Semantic
Memory

# Relationship Descriptions 1,339
# Relationship Categories 50
# Average Social Relationships
per Character

9.5

Episodic
Memory

# Topics 49
# Events 4,501
# Average Words per Events 313
# Event-related Historical Dialogs 3,409
# Utterances 25,256
# Average Words per Utterance 43.7

Memory
QA

# Question Answer Pairs 8,593
# Average Words per Question 16.7
# Average Words per Answer 27.4
# Memory Anchors 23,697
# Average Anchors 2.8

Table 2: PerLTQA dataset statistics.

23,697 memory anchors average 16.7 and 27.4
words, respectively. This rich compilation of data
supports the development of dialogue QA system
with a profound understanding of human-like mem-
ory recall and fusion within a concise framework.

3.4 Task Definition

The PerLT memory database is formulated as
M = {(Si(l1), Ei(l2)) | i = 1, 2, . . . , p}, where
each tuple consists of semantic memories including
profiles and social relationship and episodic mem-
ories including events and dialogs. Each Si(l1)
and Ei(l2) are defined to have l1, l2 elements, re-
spectively, which are specific to the i-th character
memory representation.

The PerLT QA dataset comprises a set of items
T = {tj}Nj=1, where each item tj is a tuple consist-
ing of four elements: tj = (qj , rj ,mj , aj). Here,
qj denotes the question, rj the reference memory,
mj the memory anchor, and aj the answer. The
dataset spans various data types including semantic
memory, and episodic memory, which are implic-
itly reflected in the construction of each tj . The
variable N represents the total number of QA items
in the dataset.

As shown in Figure 3, to explore the integration
of memory information in QA, we propose three
subtasks: memory classification, memory retrieval
and memory fusion for response generation. In
particular, memory fusion is our ultimate goal.

Memory Classification. We introduce a clas-
sification model designed to assist queries in find-

ing semantic memory or episodic memory. This
model can operate through an instruction-based
LLM, few-shot-based LLM, or BERT-based classi-
fier. The classification model conforms to a unified
formula as Eq.(1).

π = MC(q) (1)

where π denotes the classification result, MC is
the classification model, and q is the input query.
The outputs from our classification model improve
memory retrieval by assisting in the post-ranking
of various types of retrieved memories, thereby re-
ducing the over-reliance on memory classification.
Further details are elaborated in Appendix.A.4.

Memory Retrieval. For each character, we per-
form memory retrieval for a given evaluation ques-
tion from the PerLT memory database M sepa-
rately, formalized as Eq.(2).

m, s = R(q,M, k) (2)

where m is the retrieved memory with size k, s is
the corresponding scores, R is the retrieval model.

Our method distinguishes itself by initially re-
trieving k memories from each category within the
memory database, amassing 2k potential memory
candidates. These candidates undergo a re-ranking
process influenced by their classification scores,
culminating in a composite score for each memory
mi, which is computed as follows:

s′i = α · P (π|mi) + β · sigmoid(si) (3)

where P (π|mi) represents the classifier’s confi-
dence that memory item mi belongs to category π.
Higher confidence indicates a greater likelihood of
relevance to the queried category, which is vital for
retrieval tasks. The weights α and β are both set to
0.5 to balance their contributions.

Memory Fusion. Memory fusion leverages
LLM for response generation. This task uses a
prompt template z (as illustrated in Appendix.8),
an evaluation question q, and retrieved memories
m as Eq.(4).

r′ = LLM(z, q,m) (4)

3.5 Evaluation Metrics
For the memory classification task, we use preci-
sion (P), recall (R), F1, and Accuracy to serve as
metrics. For the memory retrieval task, we utilize
Recall@K (Manning et al., 2008) as our metric. To
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DPR

BM25

Contriever

LLMs

ChatGLM2,3

Qwen-7B

Baichuan2-7B

ChatGPT

Memory Synthesis

…

A1：王小明的姐姐叫王小红。
Wang Xiaoming’s sister is Wang Xiaohong.

E1：王小明的姐姐叫什么？
What is the name of Wang Xiaoming's sister?

E2：王小明和李明什么时候举行的晚宴聚会？
（When did Wang Xiaoming and Li Ming hold a 

dinner party?）

A2：他们在2022年5月12日组织了晚宴聚会。
（They held a dinner party on the evening of June 

15, 2022.）

Evaluation 

Questions Assistant 

Responses

𝑝1 𝑝2

Memory Classification

ChatGPT
BERT

ChatGLM2,3

LLMs

Baichuan2

…

… …

rescoring

Memory Retrieval

instructionmemory question

sig

𝛼 ∙

𝛽 ∙

prompt

Profile, Intersocial Relationship Events,  Dialogues
Memory Database

Figure 3: The framework of memory classification, memory retrieval and memory fusion in QA.

evaluate memory fusion for the response generation
task, we measure the correctness and coherence of
responses with gpt-3.5-turbo-based evalua-
tion method (Zhong et al., 2024) and use MAP
(mean average precision) of memory anchors as
shown in Eq.(5) to evaluate memory fusion ability
(Nakamura et al., 2022).

MAP =
1

N

N∑

i=1

EM(qi,mari)

NUM(mari)
(5)

where N represents the total number of ques-
tions in the evaluation dataset. mar denotes mem-
ory anchors, EM represents the tally of exact
matches between answers and memory anchors,
and NUM(mari) is the count of memory anchors
per question.

4 Experiments

4.1 Implementation details
In our work, we divide the data from the PerLT
QA dataset into training (5155), validation (1719),
and test sets (1719) for model training and eval-
uation. In the memory classification task, we
fine-tune BERT-base model and compare the sen-
tence classification performance on the test dataset
with ChatGLM2, ChatGLM3 (Zhang et al., 2023a),
Baichuan2-7B-Chat (Yang et al., 2023), Qwen-7B-
Chat (Bai et al., 2023), and ChatGPT under in-
structional and few-shot settings. For the memory
retrieval task, we employ three retrieval models -

DPR (Karpukhin et al., 2020), BM25 (Robertson
et al., 1995), and Contriever (Izacard et al., 2021)
- to collect character memories. In the memory
fusion task, we use the above five LLMs to gener-
ate responses of no more than 50 words, given re-
ranked retrieved memories, employing in-context
learning methods.

The memory fusion task is evaluated across
three scenarios: with memory classification and
retrieval (W-MC+R), without memory classifica-
tion but with retrieval (W/o-MC+W+R), and with-
out both classification and retrieval (W/o-MC+R).
Experiment details are shown in the appendix.A.5

4.2 Memory Classification

BERT-based model provides better perfor-
mance than LLMs for memory classification.
As shown in Table 4, BERT demonstrates supe-
rior performance compared to other LLMs un-
der instruction and few-shot settings. Specif-
ically, in few-shot scenarios where an evalua-
tion question is paired with corresponding ex-
amples for each type of memory, the perfor-
mance of gpt-3.5-turbo declines in compar-
ison to methods that rely solely on instruction-
based classification. In summary, the BERT-base
model achieves the highest weighted precision
(95.96%), weighted recall (95.64%), weighted F1
score (95.74%), and accuracy (95.64%). Moreover,
the high performance in memory classification re-
inforces confidence in the rescoring mechanism, as
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W-MC+R W/o-MC+W-R W/o-MC+R
MAP Corr. Coh. MAP Corr. Coh. MAP Corr. Coh.

ChatGLM2 0.688 0.483 0.963 0.688 0.481 0.962 0.128 0.054 0.960
ChatGLM3 0.704 0.517 0.971 0.695 0.517 0.969 0.130 0.060 0.962
Qwen-7B 0.729 0.535 0.960 0.720 0.532 0.959 0.131 0.057 0.957
Baichuan2-7B 0.736 0.535 0.966 0.728 0.522 0.968 0.132 0.051 0.953
gpt-3.5-turbo 0.756 0.573 0.969 0.745 0.562 0.969 0.156 0.088 0.961

Table 3: Comparison of MAP, Correctness (Corr.), Coherency (Coh.) across three settings: With memory classifi-
cation and retrieval (W-MC+R), without memory classification but with retrieval (W/o-MC+W-R), and without
memory classification and without retrieval (W/o-MC+R).

Models P R F1 Acc
ChatGLM2-6B 0.749 0.712 0.729 0.712
ChatGLM3-6B 0.864 0.485 0.538 0.485
Qwen-7B 0.730 0.631 0.673 0.631
Baichuan2-7B 0.848 0.602 0.657 0.602
gpt-3.5-turbo 0.868 0.668 0.715 0.668
F+ChatGLM2-6B 0.770 0.806 0.785 0.806
F+ChatGLM3-6B 0.778 0.445 0.508 0.445
F+Qwen-7B 0.804 0.402 0.452 0.402
F+Baichuan2-7B 0.860 0.324 0.337 0.324
F+gpt-3.5-turbo 0.864 0.511 0.566 0.511
P+BERT-base 0.720 0.849 0.779 0.849
BERT-base 0.960 0.956 0.957 0.956

Table 4: Comparative performance of five LLMs and
BERT in memory classification tasks under few-shot
settings (F) and prompt-based training (P).

RM R@1 R@2 R@3 R@5 T(s)
Contriever 0.486 0.674 0.737 0.792 0.070
DPR 0.602 0.803 0.862 0.919 2.960
BM25 0.705 0.847 0.871 0.895 0.030

Table 5: Performance of Recall@K (R@K) and average
retrieval time (T) in memory retrieval using Contriever,
BM25, and DPR models.

illustrated in Figure 3.

4.3 Memory Retrieval

Different retrieval models show variable Re-
call@K and time performance. In the memory
retrieval task, Table 5 reveals that the unsupervised
retrieval model Contriever significantly lags behind
the statistic-based BM25 and the supervised DPR
model. Moreover, as the top k values increase, DPR
notably improves Recall@K performance, surpass-
ing BM25 after k equals 3. However, the retrieval
time cost of DPR is substantially higher than BM25
retrieval. This suggests that we need to balance the
retrieval performance and time cost when deploy-
ment in dialogue QA tasks.

Models NR IR CR
MAP Corr. MAP Corr MAP Corr.

Baichuan2-7B 0.132 0.051 0.396 0.225 0.782 0.581
Qwen-7B 0.131 0.057 0.390 0.221 0.786 0.574
ChatGLM2 0.128 0.054 0.396 0.248 0.738 0.523
ChatGLM3 0.130 0.060 0.365 0.216 0.754 0.561
ChatGPT 0.156 0.088 0.375 0.252 0.842 0.609

Table 6: Performance of LLMs on MAP and Correct-
ness (Corr.) under No Retrieval (NR), Incorrect Re-
trieval (IR) and correct retrieval (CR) settings.

4.4 Memory Fusion
Memory classification and retrieval significantly
improve LLMs to integrate memory into re-
sponses. The results in Table 3 indicate LLMs
enhanced with memory classification and retrieval
models significantly improve the generation of per-
sonally consistent responses, with notable increases
in precision (MAP peaking at 0.756) and correct-
ness (up to 0.573). Without memory classifica-
tion, robust scores decrease (MAP 0.688-0.745),
underscoring the vital role of memory classifica-
tion. Coherency remains consistently high across
configurations, never falling below 0.953, high-
lighting the ability of LLMs to produce coherent
text. Additionally, smaller-scale LLMs can achieve
performance similar to ChatGPT, demonstrating
that even less complex models can be optimized to
deliver comparable output quality.

5 Analysis and Case Study

5.1 Ablation Study
Correct memory retrieval significantly enhances
the accuracy of responses across various LLMs.
The experimental results, as shown in Table 6,
demonstrate the consistent ability of different
LLMs to generate accurate memory based re-
sponses. This consistency underscores that LLMs
experience a substantial improvement when they
have access to accurate external memory. The find-
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Figure 4: Evaluation results by memory type in Corr.
and MAP metrics with different external memory con-
figurations: Semantic Memory Only (Se-MM), Episodic
Memory Only (Ep-MM), and Both (B-MM), Both with
memory classifier (B-MM-W-MC).

ings further indicate that LLMs possess a degree
of tolerance towards misinformation and are capa-
ble of leveraging accurate memory information to
some extent. Despite incorrect memory retrieval,
all models manage to sustain a reasonable degree
of precision, with MAP scores from 0.365 to 0.396,
underlining their robustness in less-than-ideal in-
formation conditions.

Episodic and semantic memories enhance
each other and improve memory fusion perfor-
mance. As shown in Figure 4, the results demon-
strate that lacking any memory type significantly
compromises the evaluation performance. No-
tably, even with only one memory type present
like semantic memory, the system could still cor-
rectly address some questions related to the miss-
ing episodic memory, suggesting possible mutual
enhancement between memory types. However,
while including all memory types improves overall
correctness and MAP, performance for individual
memory types decreases compared to when only
one memory type is used. This indicates that mix-
ing memory types introduces additional noise, a
prevalent issue with mixed interference. Compared
to the mix retrieval, our soft classification mecha-
nism improve performance for both memory types,
emphasizing the importance of distinguishing mem-
ory features for better integration.

5.2 Case Study

We present specific cases in Figure 5 to evaluate the
question ’What is Wang Wei’s occupation?’ with
the verifiable answer ’cameraman’. Without mem-
ory retrieval, gpt-3.5-turbo generates a speculative
response ’Wang Wei is a teacher’, a common hal-
lucination in most LLMs, or provides context-less
responses. Introducing memory retrieval, we ob-
serve two cases. In case 2, the model response

’Wang Wei is an actor’ based on the dialogues re-
trieved. Despite higher accuracy due to analogous
character experiences, case 2 still provides an in-

NR (W/o-MC+R)

Question: What is Wang Wei's occupation?

Ground Truth Answer: Wang Wei is a cameraman.

R-1: Wang Wei is a teacher.

Retrieved Memory: 

AI Assistant: I heard that your cooperation with Wang Wei in the movie 

was very successful and received high praise. (episodic memory)

Retrieved Memory: Wang Wei is a colleague of Xu Jia's film 

production company. He is 30 years old and a cameraman. They often 

work together on movies and TV series and have a very good rapport. 

Xu Jia and Wang Wei are colleagues. (semantic memory)

Memory Anchor :  cameraman

R-2 : Wang Wei is an actor.

R-3 : Wang Wei is a cameraman.

Memory Anchor Score: 0/1

Memory Anchor Score: 0/1

Memory Anchor Score: 1/1

IR (W/o-MC+WR)

CR (W-MC+R)

#case 1

#case 2

#case 3

Figure 5: Comparative analysis of response perfor-
mance without retrieval (NR), incorrect retrieval (IR),
and Correct Retrieval (CR).

correct answer. The key difference between cases
2 and 3 is the memory classification mechanism.
While case 2 retrieves relevant dialogues, it fails
to retrieve essential semantic memory as in case 3.
With memory classification, our models retrieve ac-
curate social relationship memory, yielding correct
responses. In this evaluation, with ’cameraman’ as
the memory anchor, only case 3 correctly incorpo-
rates the pertinent memory.

6 Conclusion

Our study introduces the PerLTQA dataset, which
includes a memory database and memory-based
question-answer pairs, covering personal long-
term memory such as profiles, social relation-
ships, events, and dialogues, categorized into se-
mantic and episodic types. We outline three sub-
tasks—memory classification, retrieval, and fu-
sion—and report baseline experiments involving
five large language models (LLMs) and three re-
trievers. Our findings indicate that Bert-based clas-
sifiers excel at categorizing memory types com-
pared to other LLMs. Additionally, we observe
significant variances among LLMs in producing ac-
curate memory-based responses. We also discover
that enhancing personalization and consistency in
responses requires integrating the unique charac-
teristics of various memory types with those of
different retrieval models. Future research should
focus on refining retrieval models to better manage
complex memory structures and on minimizing ir-
relevant noise in the context, thus improving the
quality of responses generated by LLMs.
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Limitations

In this work, we utilize gpt-3.5-turbo to gen-
erate a memory-based dataset and evaluate its abil-
ity to generate responses based on memory in three
distinct subtasks. However, we acknowledge the
following limitations:

1. The process of generating memory data in the
PerLTQA memory database could be varied. We
have only implemented a step-by-step generation
method based on memory types. Furthermore, the
prompts used during the generation process still
have room for optimization.

2. This dataset may exhibit certain biases, which
are evident in several key aspects. Firstly, the range
of names and nationalities included in the dataset is
relatively limited, which may lead to potential dis-
crepancies between the generated character events
and the actual era, cultural background, and profes-
sional experiences of the characters. Secondly, due
to the step-by-step generation process and the use
of relatively uniform prompts, the diversity of the
generated data remains constrained. Consequently,
these biases make the dataset more suited for sim-
ulating personal narratives and science fiction sce-
narios, rather than accurately reflecting real-life sit-
uations. When utilizing this dataset, it is important
to consider these limitations to avoid misinterpreta-
tions or inappropriate applications.

3. Our evaluations are limited to four open-
source LLMs that are less than 10B in size and
ChatGPT. We do not evaluate other LLMs of vary-
ing scales and types.

4. For the evaluation of the correctness and co-
herence of response generation, we adopted the
evaluation methods of LLMs. However, this metric
may still have uncertainties in accurately measur-
ing the quality of responses.

Ethics Statement

The work presented in this paper introduces the
PerLTQA dataset, which is generated from Chat-
GPT (gpt-3.5-turbo). This dataset does not
violate any licenses or policies, nor does it infringe
on privacy. The dataset can be utilized for aca-
demic exploration in memory-based QA, dialogue,
and other related fields. To ensure the quality of
the data, we have employed three researchers in the
field of natural language who are proficient in both
Chinese and English and possess excellent com-
munication skills. Each researcher is paid $20 per
hour (above the average local payment of similar

jobs). The design, annotation, and review of the
entire dataset took four months, costing approxi-
mately an average of about 200 hours per annotator.
The annotators have no affiliation with any of the
companies that are used as targets in the dataset,
eliminating any potential bias due to conflict of
interest.
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A Appendix

A.1 Memory Database Generation Prompts
The design of the PerLT memory dataset prompts
are illustrated in Figure 7. The "Profile Generation"
prompt creates character profiles using specified
seed data and a prompt template. Following this,
the "SR (Social Relationship) Generator" prompt
produces social relationships based on ten provided
seed relationships. Additionally, the "EVT (Event)
Generator" prompt is employed to create events
that align with the established social relationships
between characters. Lastly, the "DLG (Dialogue)
Generator" prompt facilitates the generation of
event-based dialogues between a character and an
AI assistant. Collectively, these prompts enable our
model to generate raw memory data effectively.

ISR Generation Prompt

EVT Generation Prompt

DLG Generation Prompt

Profile Generation Prompt 

Please help me create a random profile for the above user? Include the 

following details: [name], gender, nickname, title, age, [occupation], 

nationality, physical features, [hobbies], achievements, ethnic background, 

[educational background], occupation, employer, awards and role models? 

Relationships between individuals include family, friends, romantic 

partners, acquaintances, colleagues, mentors/mentees, neighbors, 

community members, and strangers. Based on [profile description], can 

you help me randomly create relationships for [name] and provide their 

names? The answer should be in the JSON format  like {relationship: 

{name:, description}})

Please integrate [episodic memory] to generate a multi-turn, temporally 

related dialogue between [name] and the AI assistant. Requirements: 

Please note that the speakers are the AI assistant and [name] . Please use 

the appropriate titles. The dialogue should include entities such as time, 

characters, locations, and specific plot details. Please generate the JSON 

response in the following format:\n[{\"date\":,\"dialogue\":[[name] :, AI 

Assistant:, ...]}]

Given [profile description], please integrate [relationship description],

and the relationship between [name] and [s_name] is [relationship]. 

Generate episodic memories related to the events with [name] and 

[s_name] , as much as possible while retaining the entity names. [topic 

cases]）The generated response should conform to the following JSON 

format: {date | topic | supporting character name | relationship | event | 

detailed description}

Figure 6: Prompts for PRO, SR, EVT, and DLG memory
generator.

A.2 Memory QA items Generation Prompts
The design of the PerLT QA generation prompts are
illustrated in Figure 6. The "Question and Answer
Generation" prompt is designed to create questions
and answers based on a provided reference memory
and character name. Additionally, the "Memory
Anchor Candidates Searching" prompt is utilized
to identify key fragments that are crucial for craft-
ing questions. These fragments are specifically
chosen because they are present both in the gener-
ated answer and in the reference answer, ensuring
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relevance and coherence.

Based on the provided question-and-answer pair, identify the correct 

key answer word(s) from the response. Here is the given example:

Question: When Zhou Ting's family was planning their summer 

vacation, who took the initiative to help arrange the itinerary?

Answer: Zhang Tao took the initiative to help with the planning.

Memory Anchor Candidates: ["Zhang Tao"]

Question: [question]

Answer:   [answer]

Memory Anchor Candidates:

Based on the provided memory information, construct question-answer 

pairs and return them as a JSON array [{Q, A}], where Q and A are the 

keys that represent question and answering respectively.

Question and Answering Generation Prompt

Memory Anchor Candidates Searching Prompt 

Figure 7: Prompts for question answering generation,
and memory anchor candidate searching.

A.3 Dataset Generation Error Types

In the dataset generation process for PerLT Mem-
ory and PerLT QA, several categories of errors
are identified and corrected as shown in Table 7.
Anomalies, such as missing information in profiles,
are rectified by removing or emptying the faulty
fields. Incorrect character relationships that do not
provide sufficient event data are excluded from the
dataset. Instances of brief event narratives with-
out detailed information are eliminated. Referent
errors, which include incorrect or ambiguous ref-
erences, are replaced with accurate information to
ensure clarity. Redundant answers are streamlined
to avoid unnecessary repetition, ensuring concise
and relevant data. Finally, blurred memory anchor
boundaries are corrected to precisely reflect the
intended memory cues. These steps are taken to
enhance the accuracy and reliability of the dataset.

A.4 Optimizing Memory Retrieval with
Memory Classification Re-Ranking

We devise a method in which the output probabili-
ties of the classification model are utilized to fur-
nish the retrieval model with classification insights,
allowing for the re-ranking of candidate memo-
ries. This strategy minimizes the risks associated
with memory retrieval based on specific memory
bank classification results. Such risks primarily
stem from potential classification inaccuracies that
could lead to memory retrieval from an incorrect
memory type, thereby unduly influencing the re-
liance on classification model precision within the
framework. The introduction of a re-ranking strat-
egy ensures the retrieval of a predefined number

of memories across all memory types, regardless
of the initial confidence levels of classification re-
sults. This is achieved through a weighted score
re-ranking mechanism that effectively reduces the
influence of classification inaccuracies on the ulti-
mate ranking. For those instances with high clas-
sification confidence, revising their scores and re-
ordering them accentuates their relevance, thereby
optimizing the retrieval process.

Answer Generation Prompt:  

Please answer the following question based on the provided 

memory information, ignoring any irrelevant memories. Keep the

response under fifty words.

Memory Information：[memories]

Question：[question]

Answer：

Figure 8: Prompts for answer generation.

A.5 Experiment Settings

Memory Classification settings. We conduct
binary-class classification experiments on seman-
tic memory, and episodic memory using BERT,
Baichuan, ChatGLM2, ChatGLM3, and ChatGPT.
For BERT, we employ fine-tuning with the evalu-
ation questions to predict the memory type. For
LLMs, we use instructions to guide LLMs in pre-
dicting the memory type. We also conduct instruc-
tion augmentation BERT experiments. Specifi-
cally, we train BERT-base classification models
with 7,516 QA pairs. We finally evaluate the per-
formance of memory type classification on a test
set of 1,719 evaluation questions.

Memory Retrieval settings. We create unique
memory banks for each character. In the case of
DPR, we train the DPR model using 7516 evalua-
tion questions. Contriever uses the text2vec model
(Xu, 2023) from Hugging Face to calculate the sim-
ilarity between memory sentences and questions.

Memory Fusion settings. In the W-MC+R
setting, responses are generated using retrieved
memories that are post-ranked based on memory
classification outcomes. Conversely, in the W/o-
MC+W+R scenario, responses are produced solely
through memory retrieval, without the aid of mem-
ory classification for re-ranking. Meanwhile, in the
W/o-MC+R framework, responses are generated
directly without utilizing any external memory, re-
lying solely on the inherent knowledge in LLMs.
These configurations not only validate the effec-
tiveness of each component but also underscore the
importance of external memory. Due to limited re-
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Error Type Source Error Example Operation Revision
Anomalies
in profiles

PerLT Memory {hobbies: “Not Provided”} Remove {hobbies: “”}

Invalid
character relationship

PerLT Memory
Zheng Yong has a wife and
girlfriend at the same time.

Remove
Remove the relationship wife or girlfriend
which not provide enough events data.

Brief
event narratives

PerLT Memory
Xiaoming’s father used to
participate in the activities.

Remove -

Referent error PerLT QA
When will Wang Xiaoming and the AI
assistant plan to visit the exhibition?

Replace
When will Wang Xiaoming and Wang Xiaohong
plan to visit the exhibition?

Redundant
answer

PerLT QA
Who is the mentor of Wangxiaoming?
Wangxiaoming’s mentor is Zhangwen.

Reduce Zhangwen.

Blurred
Memory anchor boundaries

PerLT QA
Answer: They met at Bali
Memory Anchor:[“At Bali”]

Correct
Answer: They met at Bali
Memory Anchor:[“Bali”]

Table 7: The error types observed in PerLT Memory and QA items generation and revision by human.

sources, we only evaluated LLMs with fewer than
10 billion parameters. These models are prompted
by retrieved memories. To ensure smooth operation
on an Nvidia-3090 GPU with 24GB of memory,
we have implemented a semi-precision inference
setting.

164



Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), pages 165–174
August 16, 2024 c©2024 Association for Computational Linguistics

 

 
 

Abstract 

This paper describes the SIGHAN-2024 

shared task for Chinese dimensional aspect-

based sentiment analysis (ABSA), 

including task description, data preparation, 

performance metrics, and evaluation results. 

Compared to representing affective states 

as several discrete classes (i.e., sentiment 

polarity), the dimensional approach 

represents affective states as continuous 

numerical values (called sentiment intensity) 

in the valence-arousal space, providing 

more fine-grained affective states. 

Therefore, we organized a dimensional 

ABSA (shorted dimABSA) shared task, 

comprising three subtasks: 1) intensity 

prediction, 2) triplet extraction, and 3) 

quadruple extraction, receiving a total of 

214 submissions from 61 registered 

participants during evaluation phase. A total 

of eleven teams provided selected 

submissions for each subtask and seven 

teams submitted technical reports for the 

subtasks. This shared task demonstrates 

current NLP techniques for dealing with 

Chinese dimensional ABSA. All data sets 

with gold standards and evaluation scripts 

used in this shared task are publicly 

available for future research. 

1 Introduction 

Aspect-Based Sentiment Analysis (ABSA) 

(Pontiki et al., 2014; 2015; 2016) is a critical NLP 

research topic that aims to identify the aspects of a 

given entity and analyze the sentiment polarity 

associated with each aspect. In recent years, 

considerable research has been devoted to ABSA, 

which can be categorized into different tasks based 

on the number of sentiment elements to be 

extracted. For example, the Aspect Sentiment 

Triplet Extraction (ASTE) task (Yuan et al., 2023; 

Chen et al., 2021; Mao et al., 2021; Peng et al., 

2020; Wu et al., 2020; Xu et al., 2020; Zhang et al., 

2020) extracts three elements in a triplet, including 

aspect/target term, opinion term and sentiment 

polarity (e.g., positive, neutral, and negative). 
Furthermore, the Aspect Sentiment Quadruple 

Prediction (ASQP) task (Cai et al., 2021; Gao et al., 

2022; Mao et al., 2022; Peper and Wang, 2022; 

Zhang et al., 2021; Zhou et al., 2023) extracts the 

same three elements plus an additional aspect 

category to construct a quadruple. 

However, compared to representing affective 

states as several discrete classes (i.e., sentiment 

polarity), the dimensional approach that represents 

affective states as continuous numerical values 

(called sentiment intensity) in multiple dimensions 

such as valence-arousal (VA) space (Russel, 1980), 

providing more fine-grained emotional 

information (Lee et al., 2022; Deng et al., 2022; 

2023; Yu et al., 2016). 

Therefore, we organized a Chinese dimensional 

ABSA shared task (dimABSA) in the 10th 

SIGHAN Workshop on Chinese Language 

Processing (SIGHAN 2024), providing fine-

grained sentiment intensity prediction for each 

extracted aspect of a restaurant review. We have 

three subtasks: 1) Intensity Prediction, 2) Triplet 

Extraction, and 3) Quadruple Extraction. 

Participants are free to participate in any or all 

subtasks. Given a sentence with/without aspects, 

participating systems should be able to extract the 
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sentiment elements with the corresponding 

valence-arousal rating values.  

The rest of this article is organized as follows. 

Section 2 provides a description of the Chinese 

dimensional ABSA shared task. Section 3 

introduces the evaluation data construction. 

Section 4 describes the performance metrics. 

Section 5 compares evaluation results from the 

various participating teams. Finally, we conclude 

this paper with findings and offer future research 

directions in Section 6.  

2 Task Organization  

This task aims to evaluate the capability of an 

automatic system for Chinese dimensional ABSA.  

The four sentiment elements are defined as follows: 

• Aspect Term (shorted as A): 

This denotes an entity indicating the opinion 

target. If the aspect is omitted without being 

mentioned clearly, we use “NULL” to represent the 

term.  

• Aspect Category (C) 

This represents a predefined category for the 

explicit aspect of the restaurant domain. We use the 

same categories defined in the SemEval-2016 

Restaurant dataset (Pontiki et al., 2016). There are 

a total of twelve categories; each can be split into 

an entity and attribute using the symbol “#” as 

follows: 1) “餐 廳#概 括” / “餐 厅#概

括”(restaurant#general); 2) “餐廳#價格” / “餐厅

#价格”  (restaurant#prices); 3) “餐廳#雜項” / 

“餐厅#杂项” (restaurant#miscellaneous); 4) “食

物#價格” / 食物#价格 (food#prices); 5) “食物#品

質” / “食物#品质”(food#quality); 6) “食物#份

量 與 款 式” / “食 物#份 量 与 款 式 ” 

(food#style&options); 7) “飲料#價格” / “饮料#价

格”(drinks#prices); 8) “飲料#品質” / “饮料#品

质”(drinks#quality); 9) “飲料#份量與款式” / 

“饮料#份量与款式”(drinks#style&options); 10) 

“氛圍#概括” / “氛围#概括” (ambience#general); 

11) “服 務#概 括” / “服 务#概

括”(services#general);  and 12) “地點#概括” / 

“地点#概括”(location#general). 

• Opinion Term (O) 

This describes the sentiment words or phrases 

towards the aspects. 

• Sentiment Intensity (I) 

This reflects sentiments using continuous real-

valued scores in the valence-arousal dimensions. 

The valence represents the degree of pleasant and 

unpleasant (i.e., positive and negative) feelings, 

while the arousal represents the degree of 

excitement and calm. Both the valence and arousal 

dimensions use a nine-degree scale. Value 1 on the 

valence and arousal dimensions respectively 

denotes extremely high-negative and low-arousal 

sentiment, while 9 denotes extremely high-positive 

Example Version Input & Output 

Example 1 

(subtask 1) 

Traditional 
Input: E0001:S001, 檸檬醬也不會太油，塔皮對我而言稍軟。, 檸檬醬#塔皮 

Output: E0001:S001 (檸檬醬,5.67#5.50)(塔皮,4.83#5.00) 

Simplified 
Input: E0001:S001, 柠檬酱也不会太油，塔皮对我而言稍软。 柠檬酱#塔皮 

Output: E0001:S001 (柠檬酱,5.67#5.50)(塔皮,4.83#5.00) 

Example 2 

(subtask 2) 

Traditional 
Input: E0002:S002, 不僅餐點美味上菜速度也是飛快耶！！ 

Output: E0002:S002 (餐點, 美味, 6.63#4.63) (上菜速度, 飛快, 7.25#6.00) 

Simplified 
Input: E0002:S002, 不仅餐点美味上菜速度也是飞快耶!! 

Output: E0002:S002 (餐点, 美味, 6.63#4.63) (上菜速度, 飞快, 7.25#6.00) 

Example 3 

(subtask 3) 

Traditional 
Input: E0003:S003, 這碗拉麵超級無敵霹靂難吃 

Output: E0003:S003 (拉麵, 食物#品質, 超級無敵霹靂難吃, 2.00#7.88) 

Simplified 
Input: E0003:S003, 这碗拉面超级无敌霹雳难吃 

Output: E0003:S003 (拉面, 食物#品质, 超级无敌霹雳难吃, 2.00#7.88) 

Table 1: Examples of the dimABSA task 
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and high-arousal sentiment, and 5 denotes a neutral 

and medium-arousal sentiment. Valence-arousal 

values are separated by a hashtag (symbol “#”) for 

a mark. 

This dimABSA task can be further divided into 

three subtasks described as follows. 

• Subtask 1: Intensity Prediction 

The first subtask focuses on predicting sentiment 

intensities in the valence-arousal dimensions. 

Given a sentence and a specific aspect, the system 

should predict the valence-arousal ratings. The 

input format consists of ID, sentence, and aspect. 

The output format consists of the ID and valence-

arousal predicted values that are separated with a 

'space'. The intensity prediction is two real-valued 

scores rounded to two decimal places and separated 

by a hashtag, each respectively denoting the 

valence and arousal rating. Example sentences are 

presented in Table 1. In Example 1, a given 

sentence “檸檬醬也不會太油，塔皮對我而言稍

軟” (The lemon curd is not too oily and the tart 

crust is a little soft for me.) and two aspects “檸檬

醬” (lemon curd) and “塔皮” (tart crust) as an input, 

participating systems are expected to respectively 

predict valence-arousal ratings such as 5.67#5.50 

for “檸檬醬” (lemon curd) and 4.83#5.00 for “塔

皮” (tart crust).  

• Subtask 2: Triplet Extraction 

The second subtask aims to extract sentiment 

triplets composed of three elements. Given a 

sentence only, the system should extract all 

sentiment triplets (aspect, opinion, intensity). The 

output format consists of the ID and sentiment 

triplet that are separated with a 'space'. In Example 

2, the input sentence is “不僅餐點美味上菜速度

也是飛快耶！！” (The meals were not only 

delicious but were also served very quickly!!) and 

the output contains two tuples: the first triple 

contains “餐點” (meals) as an aspect term, “美味” 

(delicious) as an opinion term, with valence-

arousal ratings as 6.63#4.63; the second triple 

consists of “上菜速度” (were served) as an aspect 

term and “飛快” (very quickly) as an opinion term, 

with valence-arousal ratings as 7.25#6.00.   

• Subtask 3: Quadruple Extraction 

The third subtask aims to extract sentiment 

quadruples composed of four elements. Given a 

sentence only, the system should extract all 

sentiment quadruples (aspect, category, opinion, 

intensity). The output format consists of the ID and 

sentiment quadruple that are separated with a 

'space'. In Example 3, if the input sentence is “這

碗拉麵超級無敵霹靂難吃” (This bowl of ramen 

is terribly unpalatable.), the expected quadruple 

includes “拉麵” (ramen) denoted as the aspect 

which belongs to an aspect category “食物#品質” 

(food#quality), along with an opinion term “超級

無敵霹靂難吃” (terribly unpalatable) and a 

sentiment intensity value in terms of valence-

arousal ratings of 2.00#7.88 

3 Data Preparation  

We first crawled restaurant reviews from Google 

Reviews and an online bulletin board system PTT. 

Then, we removed all HTML tags and multimedia 

material and split the remaining texts into several 

sentences. Finally, we randomly selected partial 

sentences to retain content diversity for manual 

annotation. 

The annotation process was conducted in two 

phases. We first annotated the 

aspect/category/opinion elements and then V#A 

element. In the first phase, three graduate students 

majoring in computer science were trained to 

annotate the sentences for aspect/category/opinion. 

One task organizer led a discussion to clarify 

annotation differences and seek consensus among 

the annotators. A majority vote mechanism was 

finally used to resolve any disagreements among 

the annotators. In the second phase, each sentence 

along with the annotated aspect/category/opinion 

was presented to five annotators majoring in 

Chinese language for V#A rating. Similarly, one 

task organizer also led a group discussion during 

annotation. Once the annotation process was 

finished, a cleanup procedure was performed to 

remove outlier values which did not fall within 1.5 

standard deviations (SD) of the mean. These 

outliers were then excluded from calculating the 

average V#A for each instance. 

We provided two versions of all datasets with 

identical content, but one in traditional Chinese 

characters and the other in simplified Chinese 

characters. The participating teams could choose 

their preferred version for the task evaluation. The 

submitted results were evaluated with the 

corresponding version of the gold standard and 

ranked together as the official results.  

This shared task is presented as an open test, and 

participating systems can use other publicly 

available data, but such data must be specified in 

the final system description paper. For example, we 
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also provide the Chinese EmoBank (Lee et al., 

2022) as a potentially useful sentiment resource 

annotated with real-valued scores for both valence 

and arousal dimensions. This data set features 

various levels of text granularity including two 

lexicons called Chinese valence-arousal words 

(CVAW, 5,512 single words) and Chinese valence-

arousal phrases (CVAP, 2,998 multi-word phrases), 

along with two corpora called Chinese valence-

arousal sentences (CVAS, 2,582 single sentences) 

and Chinese valence-arousal texts (CVAT, 2,969 

multi-sentence texts). 

Table 1 presents detailed statistics for the 

mutually exclusive training, development and test 

sets, where #Sent, #Char, and #Tuple respectively 

denote the number of sentences, characters and 

tuples in the dataset. The training set provided for 

all three subtasks included 6,050 sentences (85,769 

characters), annotated with 8,523 tuples. The 

development set only includes 100 sentences for 

output format validation. Two mutually exclusive 

test sets were prepared for system performance 

evaluation, each including 2,000 sentences. One 

was provided for Subtask 1 and the other was used 

for Subtasks 2 and 3.  

We further analyzed the aspect types in the test 

set, including #unique and #repeat which 

respectively denote the number of aspects which 

occurred only one time or more than one time. For 

Subtask 1, a total of 2,658 aspects belong to the 

unique type, without the null and repeat cases. For 

Subtasks 2 and 3, 1821 aspects (51.1% out of total 

3,566) occurred more than one time across all 

testing sentences. In addition, a very small portion 

(near 1.5%) of aspects belonged to the null cases. 

Similarly, we also analyzed the opinion terms, the 

repeat cases occupied about 8.5% (=303/3566). 

These findings revealed: 1) the aspect has a 

centered distribution, reflecting that users’ opinion 

targets may be similar, and 2) the opinion has a 

diverse distribution, indicating that different 

affective words or phrases are used to express a 

user’s feelings.  

Restaurant (REST) Domain 

Subtask Dataset #Sent #Char #Tuple 
Aspect Opinion 

#NULL #Unique #Repeat #Unique #Repeat 

ST1 

Train 6,050 85,769 8,523 169 6,430 1924 - - 

Dev. 100 1,109 115 0 115 0 - - 

Test 2,000 34,002 2,658 0 2,658 0 - - 

ST2 & 

ST3 

Train 6,050 85,769 8,523 169 6,430 1,924 7,986 537 

Dev. 100 1,280 150 0 78 72 143 7 

Test 2,000 39,014 3,566 52 1,693 1,821 3263 303 

Table 2: Detailed data statistics 

Figure 1: Scatter plots of valence-arousal distributions 

168



 

 
 

Figure 1 shows the scatter plots of valence-

arousal distributions. They presented similar 

curves for the training and test sets, indicating that 

both high-positive and high-negative opinion terms 

usually have high arousal values. Identical results 

were obtained from the Chinese EmoBank (Lee et 

al., 2022).  

Figure 2 presents the aspect category 

distributions. The distributions are imbalanced for 

both the training and test sets for Subtask 3. This 

finding is the same as that for the SemEval-2016 

Restaurant dataset (Pontiki et al., 2016). The most 

frequently occurring category was “食 物 # 品

質”(food#quality), followed by “食物#份量與款

式 ”(food#style&options) and “飲 料#品 質” 

(drinks#quality). In the training set, these 3 

categories accounted for 87.4% of the total, with 

the remaining 9 categories accounting for 12.6%. 

In the test set for Subtask 3, these 3 categories 

accounted for 89.5% of the total, with the other 9 

categories accounting for the remaining 10.5%. 

4 Performance Metrics 

For Subtask 1, the sentiment intensity prediction 

performance is evaluated by examining the 

difference between machine-predicted ratings and 

human-annotated ratings using two metrics: Mean 

Absolute Error (MAE) and Pearson Correlation 

Coefficient (PCC), defined as the following 

equations.  

 

MAE =
1

𝑛
∑ |𝑎𝑖 − 𝑝𝑖|
𝑛
𝑖=1              (1) 

PCC =
1

𝑛−1
∑ (

𝑎𝑖−𝜇𝐴

𝜎𝐴
)

𝑛

𝑖=1
(
𝑝𝑖−𝜇𝑃

𝜎𝑃
)           (2) 

 

where 𝑎𝑖 ∈ 𝐴  and 𝑝𝑖 ∈ 𝑃  respectively denote 

the i-th actual value and predicted value, n is the 

number of test samples, 𝜇𝐴  and 𝜎𝐴  respectively 

represent the mean value and the standard 

deviation of A, while 𝜇𝑃  and 𝜎𝑃  respectively 

represent the mean value and the standard 

deviation of P.  

Each metric for the valence and arousal 

dimensions is calculated and ranked independently. 

The actual and predicted real values should range 

from 1 to 9, so MAE measures the error rate in a 

range where the lowest value is 0 and the highest 

value is 8. A lower MAE indicates more accurate 

prediction performance. The PCC is a value 
between −1 and 1 that measures the linear 

correlation between the actual and predicted values. 

A lower MAE and a higher PCC indicate more 

accurate prediction performance. 

For Subtasks 2 and 3, we use the F1-score as the 

evaluation metric, defined as: 

 

𝐹1 =
2xPxR

P+R
                          (3) 

 

where Precision (P) is defined as the percentage 

of triplets/quadruples extracted by the system that 

are correct. Recall (R) is the percentage of 

triplets/quadruples present in the test set found by 

the system. The F1-score is the harmonic mean of 

precision and recall. 

 

Figure 2: Aspect category distributions 
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Each metric for the valence and arousal 

dimensions is calculated either independently or in 

combination. First, the valence and arousal values 

are rounded to an integer. Next, a triplet/quadruple 

is regarded as correct if and only if the three/four 

elements and their combination match those in the 

gold triplet/quadruple. All metrics range from 0 to 

1. A higher Precision, Recall, and F1 score indicate 

more accurate performance. 

5 Evaluation Results  

5.1 System Summary 

We received a total of 214 submissions from 61 

registered participants during the evaluation phase. 

A total of eleven teams provided submissions to the 

leaderboard for each subtask and seven submitted 

their task technical papers. HITSZ-HLT (Xu et al., 

2024) and CCIIPLab (Tong and Wei, 2024) 

participated in all three subtasks, ZZ-NLP (Zhu et 

al., 2024) team took part in two subtasks, and the 

remaining four teams only joined in one subtask.  

Table 3 summarizes the participating systems, 

including involved subtasks, system architectures 

and additional data usage. HITSZ-HLT (Xu et al., 

2024) integrated a BERT-based pre-trained 

language model (PLM) (i.e., ERNIE 3.0 (Sun et al., 

2021)) and a code-style large language model 

(LLM) (i.e., deepseek (Guo et al., 2024)) to address 

this task, demonstrating promising performance in 

different scenarios. CCIIPLab (Tong and Wei, 2024) 

proposed a Contrastive Learning-enhanced Span-

Subtask 1: Intensity Prediction 

Team 
Evaluation Metrics Overall 

Rank V-MAE V-PCC A-MAE A-PCC 

HITSZ-HLT 0.279 (1) 0.933 (1) 0.309 (1) 0.777 (1) 1 

CCIIPLab 0.294 (2) 0.916 (3) 0.309 (1) 0.766 (3) 2 

YNU-HPCC 0.294 (2) 0.917 (2) 0.318 (3) 0.771 (2) 2 

DS-Group 0.460 (4) 0.858 (5) 0.501 (4) 0.490 (4) 4 

yangnan 1.032 (5) 0.877 (4) 1.095 (5) 0.097 (5) 5 

Table 4: Testing results of Subtask 1. V for valence and A for arousal. The best scores of each metrics are in bold. 

Team 
Subtask Architecture Data  

Augmentation ST1 ST2 ST3 PLM LLM 

HITSZ-HLT V V V Erine-3.0-xbase-zg 
deepseek-7B-

instruct-v1.5 
- 

CCIIPLab V V V MacBERT-base - Chinese EmoBank 

YNU-HPCC V   BERT-wwm-ext - Merged-Train 

DS-Group V   - GPT-4o - 

TMAK-Plus  V  - GPT-4o - 

ZZU-NLP  V V BERT Baichuan2-7B - 

JN-NLP   V - T5-base - 

Table 3: Participating system summary. ST for subtask, PLM for pre-trained language models, and LLM for large 

language models.  

Subtask 3: Quadruple Extraction 

Team 
Evaluation Metrics Overall 

Rank V-Quad-F1 A-Quad-F1 VA-Quad-F1 

HITSZ-HLT 0.567 (1) 0.526 (1) 0.417 (1) 1 

CCIIPLab 0.555 (2) 0.507 (2) 0.389 (2) 2 

ZZU-NLP 0.522 (3) 0.489 (3) 0.376 (3) 3 

SUDA-NLP 0.487 (4) 0.444 (4) 0.336 (4) 4 

JN-NLP 0.482 (5) 0.439 (5) 0.331 (5) 5 

BIT-NLP 0.470 (6) 0.434 (7) 0.329 (6) 6 

USTC-IAT 0.438 (7) 0.437 (6) 0.312 (7) 7 

Table 6: Testing results of Subtask 3. V for valence, A for arousal, VA for valence-arousal, and Quad for 

quadruple. The best scores of each metric are in bold. 
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based (CL-Span) framework based on MacBERT 

(Cui et al., 2021) to improve the performance of 

tuple extraction and sentiment intensity prediction. 

The Chinese EmoBank (Lee et al., 2022) was also 

incorporated as an auxiliary training resource to 

boost performance. YNU-HPCC (Wang et al., 

2024) used a BERT-based encoder to generate 

aspect-specific representation and train linear 

predictors to jointly predict valence-arousal ratings. 

DS-Group (Meng et al., 2024) proposed an aspect-

aware example selection method for in-context 

learning based on LLM. TMAK-Plus (Kang et al., 

2024) presented a Multi-Agent Collaboration 

(MAC) model to assemble several GPT-based 

LLM for the dimensional ABSA task. ZZU-NLP 

(Zhu et al., 2024) proposed a two-stage contextual 

learning approach based on the Baichuan2-7B 

(Yang et al., 2023). JN-NLP (Jiang et al., 2024) 

used a paraphrase generation paradigm based on 

the T5 (Raffel et al., 2020) pre-trained model to 

address the dimABSA task.  

5.2 Official Ranking 

Tables 4, 5, and 6 respectively show the testing 

results for each subtask. Each metric in each 

individual subtask is ranked independently. (*) 

means the rank for each metric. A system’s overall 

ranking is computed based on the cumulative rank. 

The lower the cumulative rank, the better the 

system performance.  

The overall best results came from the HITSZ-

HLT (Xu et al., 2024) team, achieving the best 

scores in all metrics across three subtasks, followed 

by the CCIIPLab (Tong and Wei, 2024), ranking 

second on the leaderboard for each subtask.  

6 Conclusions and Future Work  

This paper provides an overview of the 

SIGHAN-2024 dimABSA task for Chinese 

dimensional aspect-based sentiment analysis, 

including task descriptions, data preparation, 

performance metrics and evaluation results. We 

received a total of 214 submissions from 61 

registered participants during the evaluation phase. 

Among eleven participating teams, seven 

presented their task technical reports. Regardless of 

actual performance, all submissions contribute to 

the development of an effective dimensional ABSA 

solution, and each task technical paper for this 

shared task also provides useful insights for further 

research.  

We hope the data sets collected and annotated 

for this shared task can facilitate and expedite 

future development of Chinese dimensional ABSA. 

Therefore, the gold standard test set and evaluation 

scripts are made publicly available in GitHub 

repositories at: https://github.com/NYCU-

NLP/SIGHAN2024-dimABSA  

Future directions will focus on the development 

of Chinese dimensional ABSA models. We plan to 

build new language resources to develop 

techniques for the future enrichment of this 

research topic, especially for reviews in the other 

domains.  
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Abstract

This paper presents the winning system partici-
pating in the ACL 2024 workshop SIGHAN-10
shared task: Chinese dimensional aspect-based
sentiment analysis (dimABSA). This task aims
to identify four sentiment elements in restau-
rant reviews: aspect, category, opinion, and sen-
timent intensity evaluated in valence-arousal di-
mensions, providing a concise yet fine-grained
sentiment description for user opinions. To
tackle this task, we introduce a system that
integrates BERT and large language models
(LLM) to leverage their strengths. First, we
explore their performance in entity extraction,
relation classification, and intensity prediction.
Based on preliminary experiments, we develop
an integrated approach to fully utilize their ad-
vantages in different scenarios. Our system
achieves first place in all subtasks and obtains
a 41.7% F1-score in quadruple extraction.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained problem that aims to recognize aspect-level
sentiments and opinions of users (Pontiki et al.,
2016). ABSA generally involves four fundamen-
tal elements: (1) aspect term (a), the mention of
the reviewed entity in the text; (2) aspect category
(c), a predefined category of the evaluated aspect;
(3) opinion term (o), the sentiment word or phrase
towards the aspect; and (4) sentiment (Cai et al.,
2021; Zhang et al., 2021). For example, in the re-
view “the sushi was delicious but the staff was un-
friendly”, the quadruples are (sushi, food#quality,
delicious, positive) and (staff, services#general, un-
friendly, negative).

Existing ABSA works have typically treated
sentiment as coarse-grained polarities, overlook-
ing the complexity of sentiment dimensions. Pio-
neeringly, the SIGHAN-2024 dimABSA task (Lee

∗ Equal contribution.
† Corresponding author.

食物#品质 6.5#5.75 6.5#6.
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Figure 1: Illustration of three dimABSA subtasks.

et al., 2024) proposes to represent sentiment states
as continuous real-valued scores in valence-arousal
dimensions, referred to as intensity (i). Valence
measures the positivity or negativity, and arousal
evaluates the degree of emotional activation (Rus-
sell, 1980). As depicted in Figure 1, dimABSA
consists of three subtasks: (1) Intensity Prediction,
predicting the intensity of the given aspect; (2)
Triplet Extraction, extracting the triplets composed
of (a, o, i) from the given sentence; (3) Quadruple
Extraction, extracting the quadruples composed of
(a, c, o, i) from the given sentence.

To tackle these subtasks, we develop a system
that integrates BERT and large language models
(LLM), representing two leading paradigms for
natural language understanding tasks. Specifically,
we devise both BERT-based and LLM-based meth-
ods and evaluate them to highlight their respec-
tive advantages. The BERT-based method em-
ploys a pipeline approach that sequentially per-
forms aspect-opinion extraction, pairing and clas-
sification, and intensity prediction. We imple-
ment three improvements to enhance performance:
domain-adaptive pre-training (Gururangan et al.,
2020), negative pairs construction, and removing
dropout in intensity prediction. The LLM-based
method transforms the three subtasks into text gen-
eration tasks and then fine-tunes a unified model
using a multi-task learning strategy. We craft
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code-style prompts (Li et al., 2023) to enhance
the extraction capabilities of LLMs and employ
QLoRA (Dettmers et al., 2024) to reduce memory
usage during training.

Through preliminary experiments, we make two
observations: (1) in structure extraction (aspect-
opinion extraction and pairing), the BERT-based
method outperforms the LLM-based method; (2)
in intensity prediction, the BERT-based method
performs better with continuous values, while the
LLM-based method excels in integer-level predic-
tions. Therefore, for Subtask 1, we employ the
BERT-based method. For Subtask 2 and 3, we uti-
lize the BERT-based method to derive the aspect,
category, and opinion, which are then fed into LLM
to generate integer-level intensity predictions.

Our contributions are summarized as follows:

• We propose both BERT-based and LLM-based
methods to address the dimABSA tasks and
devise various strategies to enhance their per-
formance.

• We analyze the strengths of BERT-based and
LLM-based methods in different scenarios
and develop an ensemble solution.

• Extensive experimental results demonstrate
that our system achieves superior performance
and validate the effectiveness of each module.
Additionally, we conduct several discussions
to provide further insights.

2 Related Work

2.1 Aspect-Based Sentiment Analysis

Aspect-level Sentiment Classification (ASC) is
the most fundamental task in ABSA, aiming to
identify the sentiment of specific aspect terms in a
sentence (Pontiki et al., 2016). Early methods uti-
lized LSTM with attention mechanisms to capture
the interaction between aspects and their contextual
relationships (Wang et al., 2016b; Ma et al., 2017).
With the development of the fine-tuning paradigm,
it became mainstream for ASC. Strategies such as
interaction mechanism designs (Wu and Ong, 2021;
Zhang et al., 2022b), post-training (Xu et al., 2019;
Li et al., 2021; Zhang et al., 2023), graph neural
networks (Wang et al., 2020; Chen et al., 2022),
and contrastive learning (Liang et al., 2021; Cao
et al., 2022) have been used to enhance fine-grained
sentiment classification. With the advent of LLMs,

recent work has explored the effect of LLMs, in-
cluding in-context learning (Wang et al., 2023b;
Xu et al., 2024), chain-of-thought prompting (Fei
et al., 2023), and sentiment explanation (Wang
et al., 2023a).

Aspect Sentiment Quad Prediction (ASQP) is
the most comprehensive task in ABSA, aiming to
extract all ABSA quadruples in a review (Cai et al.,
2021; Zhang et al., 2021). Research can be catego-
rized into three main types: discriminative methods,
generative methods, and LLM-based methods. In
the first stream, Cai et al. (2021) applied extract-
classify techniques, and Zhou et al. (2023) involved
table-based methods to extract aspect-category and
opinion-sentiment pairs via simultaneous training.
Generative methods, like Zhang et al. (2021), con-
verted quad prediction into paraphrase generation,
while Gou et al. (2023) used different permuta-
tions as prompts to generate quadruples in various
orders for voting. Additionally, some methods en-
hanced ASQP performance through tree generation
designs (Bao et al., 2022; Mao et al., 2022). In
the third stream, LLM-based approaches mainly
leveraged the rationale of LLMs to improve quad
prediction (Kim et al., 2024).

However, early ABSA work solely modeled sen-
timent with three-class polarities. Our system pre-
dicts sentiment in valence-arousal dimensions, pro-
viding more fine-grained sentiment information.

2.2 Dimensional Sentiment Analysis

This task focuses on the multiple dimensions
of emotional states, such as valence-arousal
space (Russell, 1980). Valence measures positiv-
ity or negativity, while arousal evaluates excite-
ment or calmness. Previous studies provided var-
ious multi-dimensional affective resources, such
as lexicons (Warriner et al., 2013) and sentence-
level corpora (Preoţiuc-Pietro et al., 2016; Buechel
and Hahn, 2017). Meanwhile, some works devel-
oped multi-granularity Chinese dimensional sen-
timent resources, filling the gap in Chinese re-
sources (Yu et al., 2016; Lee et al., 2022). To
effectively predict dimensional scores, early ap-
proaches mainly used LSTM for modeling, includ-
ing Densely Connected LSTM for phrase-level pre-
dictions (Wu et al., 2017), a relation interaction
model for sentence-level predictions (Xie et al.,
2021), and a Regional CNN-LSTM model for text-
level predictions (Wang et al., 2016a, 2019). With
the advancement of Transformer (Vaswani et al.,
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Figure 2: Overview of our BERT framework.

2017), researchers began leveraging PLMs for im-
provement. For instance, Deng et al. (2023) pro-
posed a multi-granularity BERT fusion framework,
and Wang et al. (2024) introduced soft momen-
tum contrastive learning for pre-training. Different
from them, our work further evaluates LLMs for
dimensional score prediction, providing advanced
exploration and analysis.

3 Methods

3.1 Task Definition

Given a sentence S = [w1, · · · , wT ] and a pre-
defined aspect term a (a substring of S), the ob-
jective of Subtask 1 is to predict the sentiment
intensity val, aro, which are continuous values
ranging from 1 to 9. For Subtasks 2&3, the in-
put consists only of the sentence S, and the output
includes all triplets (a, o, val-aro) and quadruples
(a, c, o, val-aro), where c and o denote the aspect
category and opinion term, respectively. In Sub-
tasks 2&3, (1) the aspect term a and opinion term
o can either be a substring of S or be implicit, in
which case they are represented by ‘NULL’; (2) the
aspect category belongs to a pre-defined category
set C.

3.2 BERT-based Method

As shown in Figure 2, our BERT framework
is structured into four main steps: (i) Domain-
adaptive Pre-training, (ii) Aspect-opinion Extrac-
tion, (iii) Pairing and Classification, and (iv) Inten-
sity Prediction.

Domain-adaptive Pre-training. Pre-training on
sentiment-dense corpus has been proven to enhance
downstream sentiment analysis tasks (Xu et al.,
2019; Zhang et al., 2023). We first collect 5.2 mil-
lion open-source Chinese restaurant reviews and

conduct data cleaning to remove duplicates and
excessively short entries. Subsequently, we con-
catenate all data and split it according to the max-
imum length, resulting in 1.5 million pre-training
corpora.1 Moreover, we employ LTP (Che et al.,
2010) for Chinese word segmentation and imple-
ment a dynamic whole-word masking strategy for
masked language modeling (Cui et al., 2021), aim-
ing at enhancing BERT’s contextual understanding
in the restaurant domain.

Aspect-Opinion Extraction. This step utilizes
the pre-trained BERT model to extract aspect and
opinion terms. To identify implicit terms, we aug-
ment the given sentence by prepending a special
[NULL] token. We add this token to the vocabu-
lary and initialize its embedding. Subsequently, we
transform the extraction task into a BIO sequence
labeling task. Using BERT, we predict the category
of each token as follows:

h0,h1, · · · ,hT = BERT(S′), (1)

P (yt) = softmax(Linear(ht)), (2)

where S′ = [[NULL], w1, · · · , wT ] denotes the
augmented sentence, and yt represents the tag for
the t-th token in the sentence, belonging to {BA, IA,
BO, IO, O}.

Pairing and Classification. This step pairs as-
pect and opinion terms and determines the corre-
sponding aspect categories. In the BERT-based
method, we frame the aspect-opinion pairing and
category classification as a unified multi-class clas-
sification task. To achieve this, we input the sen-
tence S′ along with the aspect term a and opinion
term o into BERT and feed the hidden vector at the

1Here, we set the maximum sequence length to 512 after
adding [CLS] and [SEP] tokens.
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[CLS] token position to a classifier, formulated as
follows:

h[CLS] = BERT(S′, a, o), (3)

P (c) = softmax(Linear(h[CLS])), (4)

where c ∈ {Invalid} ∪ C.
In this step, we introduce negative pairs con-

struction to mitigate error propagation. During
training, the input aspect and opinion terms are
true values. However, at the inference stage, these
terms are predicted values obtained from the previ-
ous step. This discrepancy can lead the classifier to
fail in rejecting those aspect and opinion terms with
minor boundary errors, resulting in error propaga-
tion. To address this issue, we train the extraction
model using k-fold cross-validation and incorpo-
rate incorrectly extracted aspect and opinion terms
into the negative pairs, labeling them as invalid.
These negative pairs, along with the true aspect and
opinion terms, are then fed into the relation model
during training to enhance its robustness against
such errors.

Intensity Prediction. This step predicts the
valence-arousal scores of an aspect term (for Sub-
task 1) or an aspect-opinion pair (for Subtask 2&3).
We exploit two models for intensity prediction: a
regression model and a classification model.

• The regression model obtains the valence and
arousal scores sval, saro by feeding the hid-
den vector at the [CLS] token position to two
separate linear layers:

h[CLS] = BERT(S′, a, o), (5)

ŝval = Linear(h[CLS]), (6)

ŝaro = Linear(h[CLS]). (7)

We then compute two losses by mean squared
error (MSE) and average them as the regres-
sion loss.

• The classification model first converts continu-
ous scores into categories cval, caro at fixed in-
tervals and then predicts these two categories
using two classifiers:

ĉval = softmax(Linear(h[CLS])), (8)

ĉaro = softmax(Linear(h[CLS])). (9)

We use the cross-entropy function to compute
two losses and average them as the classifica-
tion loss.

Furthermore, for the regression model, we
adopt the strategy of removing BERT’s internal
dropout. This approach was discussed in a Kaggle
forum2. The rationale behind this strategy is that
BERT’s internal dropout may lead to inconsisten-
cies in the variance of neuron activations between
the training and inference phases, potentially af-
fecting the numerical stability of the regression.

3.3 LLM-based Method

We transform the dimABSA tasks into text gener-
ation tasks and fine-tune a unified LLM using a
multi-task learning strategy. To augment the extrac-
tion capabilities of the LLM, we employ code-style
prompts, as suggested by Li et al. (2023). Addition-
ally, we utilize QLoRA (Dettmers et al., 2024) to
reduce memory usage during training. Our frame-
work is illustrated in Figure 3.

Multi-task Learning. Recent work shows that
LLMs exhibit excellent task generalization capa-
bilities (Touvron et al., 2023). Inspired by this, we
design a multi-task learning strategy for dimABSA
to enable the LLM to acquire diverse sentimen-
tal knowledge across different tasks. Specifically,
we manually construct 6 typical tasks from exist-
ing data and labels, including three target subtasks.
These are aspect extraction, aspect intensity pre-
diction, aspect-opinion-intensity triplet extraction,
aspect-category-opinion triplet extraction, quadru-
ple extraction, and aspect-opinion intensity predic-
tion. These tasks encompass a variety of extraction,
classification, and regression task types, thus allow-
ing for a comprehensive learning of aspect-related
sentiment knowledge.

Code-style Prompt. LLMs are general-purpose
text generation models. To adapt them for specific
tasks, it is necessary to craft prompts that direct
their output to align with the specific requirements
of these tasks. Following Li et al. (2023), we de-
sign code-style instructions as prompts. As shown
in Figure 3, we formalize each task as Python
code, explaining necessary information through
comments and standardizing the output format or
content via specific code to serve a more instructive
role.

Optimization with QLoRA. After completing
task selection and prompt design, we construct the

2https://www.kaggle.com/competitions/
commonlitreadabilityprize/discussion/260729
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# According to the sentence, extract …
def ASPECT_EXTRACTION(sentence):    

# aspect is the entity to which …
aspect_list = <｜fim▁hole｜>
for aspect in aspect_list: 

assert aspect in target_sentence
return aspect_list

print(ASPECT_EXTRACTION({S}))
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Figure 3: Overview of our LLM framework.

training data for fine-tuning the LLM. This fine-
tuning approach is QLoRA (Dettmers et al., 2024).
QLoRA is a typical parameter-efficient fine-tuning
approach that integrates low-rank matrices into the
architecture of LLMs and further quantizes the base
model to 4-bit. QLoRA enables us to fine-tune
most LLMs on a single 40G A100 GPU.

Inference. We load the parameters of the base
model along with those obtained during the fine-
tuning phase to perform inference. Utilizing code-
style instructions as prompts for each task, we
integrate these prompts with the test text inputs
for model decoding. During decoding, we set the
temperature coefficient to 1 and utilize the beam
search strategy (Freitag and Al-Onaizan, 2017)
with ‘num_beams=2’.

3.4 Ensemble
We conduct preliminary experiments to compare
the BERT-based and LLM-based methods. The
results indicate that BERT performs better in con-
tinuous intensity predicting and aspect-opinion ex-
traction. Conversely, the LLM shows superior per-
formance in integer-level intensity prediction tasks.
We suppose this difference arises because LLMs,
constrained by their natural language generation
output format, may not ensure an accurate under-
standing of continuous values and extraction, but
exhibit better results in coarse-grained predictions
due to the larger parameter size.

To fully leverage the strengths of both models,
we develop an integrated method. For Subtask 1,
we average the predictions of the regression and
classification models in the BERT-based method.
For Subtasks 2 and 3, we use the BERT-based
method to extract (a, c, o) tuples. Then, we in-
put all valid aspect-opinion pairs into the LLM,
employing the aspect-opinion intensity prediction

(a) Category distribution. (b) Intensity distribution.

Figure 4: Visualization of training data distribution.

prompt to output integer-level predictions of va-
lence and arousal.

4 Experiments

4.1 Experimental Settings
Datasets. In experiments, we use the Chinese
restaurant review dataset provided by the organizer,
which includes 6,050 sentences for training, 2,000
sentences for Subtask 1 testing, and 2,000 sen-
tences for Subtasks 2&3 testing. Specifically, the
average sentence length, aspect length, and opin-
ion length in the training set are 14.12, 3.14, and
3.07, respectively. Additionally, the training set
contains 8,523 quadruples, with 22.81% of quadru-
ples sharing the same aspect in one sentence, 6.10%
sharing the same opinion, and 1.98% being implicit
aspects. As depicted in Figure 4a, there are 12 pre-
defined categories, with their specific distribution.
The training set also includes valence-arousal an-
notations for aspect-opinion pairs, with real values
ranging from 1 to 9. The distribution of valence-
arousal annotations is visualized in Figure 4b.

Evaluation Metrics. For Subtask 1, the perfor-
mance of sentiment intensity prediction is assessed
using Mean Absolute Error (MAE) and Pearson
Correlation Coefficient (PCC). These metrics eval-
uate the difference between model-predicted re-
sults and human-annotated scores for valence and
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arousal dimensions, respectively.

MAE =
1

n

n∑

i=1

|yi − ŷi| (10)

where yi is the actual value and ŷi is the prediction.

PCC =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)

√∑n
i=1(yi − ȳ)2

√∑n
i=1(ŷi − ¯̂y)2

(11)
where ȳ and ¯̂y are the means of the actual and
predicted values, respectively. Lower MAE val-
ues indicate more accurate predictions, while PCC
ranges from -1 to 1, with higher values indicat-
ing a stronger linear correlation. To evaluate Sub-
tasks 2 and 3, the Precision (P), Recall (R), and
F1-score (F1) are employed. Meanwhile, valence
and arousal values are rounded to the nearest inte-
ger. A tuple is correct only if all elements and their
combinations match the gold standard.

F1 =
2× P× R

P + R
(12)

where P denotes the number of correct tuples di-
vided by the total number of extracted tuples, and
R denotes the number of correct tuples divided by
the total number of standard tuples. Higher values
of F1 indicate better performance. Additionally,
each metric is calculated independently for valence
and arousal dimensions or in combination.

Implementation Details. For BERT, we use
ernie-3.0-xbase-zh (Sun et al., 2021) as the back-
bone encoder. The pre-training settings are as fol-
lows: batch size of 32, gradient accumulation steps
of 12, bf16 mixed precision, 5 training epochs,
initial learning rate of 1e-4, and a maximum se-
quence length of 512. During fine-tuning, we set
the learning rate to 2e-5 and the batch size to 32.
The fine-tuning epochs are 7 for aspect-opinion ex-
traction, pairing-and-classification, and BERTCLS
models, and 6 for the BERTREG model, using the
AdamW optimizer. Besides, the interval l for clas-
sification is set to 0.25. All models are fine-tuned
on five different random seeds and results are ag-
gregated by voting. For LLM, we use deepseek-
7b-instruct-v1.5 (Guo et al., 2024) as the backbone.
The training settings include the learning rate of 1e-
4, 5 epochs, batch size of 4, bf16 mixed precision,
and maximum sequence length of 2048. Besides,
the rank of QLoRA fine-tuning is set to 8, and the
scaler factor is set to 16. All implementations are

based on the PyTorch framework, using NVIDIA
A6000 GPUs.

Comparison. We apply different BERT mod-
els, LLMs, and the pipeline ensemble method for
comparison, including: (1) BERTREG, which uti-
lizes regression method for intensity prediction;
(2) BERTCLS, which employs the interval-based
classification approach to predict intensity scores;
(3) LLMINT, which trains LLM with integer-level
intensity; (4) LLMDEC, which uses one decimal
place intensity and corresponding prompts for train-
ing; and (5) Ensemble, referring to the ensemble
method described in Section 3.4.

4.2 Main Results

The main results are presented in Table 1, from
which we can draw the following conclusions:

Firstly, the proposed ensemble method demon-
strates obvious superiority, achieving the best re-
sults on the majority of metrics. For instance, in
Subtasks 2 and 3, the Ensemble method shows
improvements of 0.8% and 0.6% in VA-T-F1 and
VA-Q-F1 compared to BERTCLS. Compared to
LLMINT, these improvements even more achieve
4.1% and 3.8%. These results indicate that our
ensemble method effectively leverages the respec-
tive strengths of both BERT and LLM in differ-
ent scenarios, achieving better performance than
single-model approaches.

Secondly, we find that the performance of LLM
across various metrics is generally inferior to that
of BERT. For example, the BERTCLS outperforms
LLMINT by 1.1% on V-PCC and surpasses the
LLMDEC model by 3.2% on VA-Q-F1. This in-
dicates that BERT is more suitable for predicting
the intensity of continuous numerical scores. Addi-
tionally, further exploration reveals that although
LLM underperforms in Subtasks 2&3, the perfor-
mance is primarily constrained by aspect-opinion
extraction. Conversely, LLM excels in predicting
valence-arousal at integer levels, the superiority of
Ensemble also supports this viewpoint.

Lastly, we compare different training methods
within the same model. We observe that BERTCLS
significantly outperforms BERTREG in Subtasks 2
and 3, indicating that the classification model is
more suitable for coarse-grained evaluation. Fur-
thermore, comparing LLMINT and LLMDEC, we
find that LLMDEC performs better in Subtask 1,
whereas LLMINT excels in Subtasks 2 and 3. We
assume that in Subtasks 2 and 3, the joint extraction
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Methods Subtask 1 Subtask 2 Subtask 3

V-MAE V-PCC A-MAE A-PCC V-T-F1 A-T-F1 VA-T-F1 V-Q-F1 A-Q-F1 VA-Q-F1

BERTREG 0.287 0.930 0.311 0.773 0.574 0.526 0.405 0.555 0.511 0.393
BERTCLS 0.279 0.930 0.316 0.766 0.583 0.543 0.425 0.564 0.527 0.411
LLMINT 0.367 0.884 0.394 0.683 0.530 0.498 0.392 0.512 0.482 0.379
LLMDEC 0.294 0.919 0.331 0.738 0.457 0.437 0.312 0.443 0.426 0.302

Ensemble 0.279 0.933 0.309 0.777 0.589 0.545 0.433 0.567 0.526 0.417

Table 1: Main experimental results of our dimABSA system across three Subtasks. V for valence, A for arousal, T
for Triplet, and Q for Quadruple. The best scores of each metric are in bold.

Methods Type V-Q-F1 A-Q-F1 VA-Q-F1

Voting BERT 0.557 0.509 0.393
Co-Voting BERT&LLM 0.563 0.526 0.413
Replace BERT&LLM 0.565 0.526 0.416
Pipeline BERT&LLM 0.567 0.526 0.417

Table 2: Results of different ensemble strategies for
BERT and LLM on Subtask 3.

tasks require generating multiple tuples at once and
generating more complex decimals may impact the
overall extraction result.

4.3 Analysis of Ensemble

To further verify the effectiveness of the proposed
ensemble method, we compare several different
ensemble approaches on Subtask 3, including (1)
Voting, where results from both types of BERT
models are averaged; (2) Co-Voting, where votes
are cast only for (a, c, o) tuples that are consistent
between LLM and BERT while retaining BERT
results for all other tuples; (3) Replace, using in-
tensity results from LLM to replace those of BERT
for consistent tuples; (4) Pipeline (ours), where
extracted tuples from BERT are input into LLM
for intensity prediction. Results are shown in Ta-
ble 2. We observe that Voting performs poorest,
highlighting the importance of combining LLM
with BERT. Furthermore, when comparing the last
three methods, we find that both Co-Voting and
Replace underperform Pipeline. Since LLM excels
in coarse-grained intensity prediction, the Pipeline
method can more effectively leverage this advan-
tage and achieve superior results.

4.4 Ablation Study

Ablation of BERT. To investigate the effective-
ness of various components in BERT, we conduct
ablation studies on BERTREG, as shown in Table 3.
We observe that removing pre-training (w/o pre-
training) leads to a slight decline across all metrics,

validating the effectiveness of domain-specific pre-
training. Furthermore, eliminating the no-dropout
strategy (w/o no-dropout) results in a substantial
decrease in most metrics, confirming that dropout
can introduce biases in the numerical outputs of
regression models. Lastly, omitting the negative
sample construction strategy during aspect-opinion
pairing training (w/o construction) also degrades
performance, proving that this strategy effectively
reduces error propagation in the pipeline model.

Ablation of LLM. To explore the effectiveness
of various strategies within the LLM framework,
we conduct ablation studies on LLMINT, specifi-
cally targeting code-style prompts, multi-task learn-
ing, and beam search. These modifications are de-
noted as w/o code prompt, w/o multi-task, and w/o
beam search, respectively. The results, as shown in
Table 4, indicate that replacing code-style prompts
with standard natural language instructions signifi-
cantly reduces performance in Subtasks 2&3, con-
firming the effectiveness of this method. Addition-
ally, removing multi-task learning leads to a de-
cline in all metrics, suggesting that LLM benefits
from learning generalized emotional knowledge
across tasks. Lastly, the performance also declines
upon removing the beam search, highlighting the
importance of decoding strategy design in LLM
inference.

4.5 Effect of Pre-Trained Language Models

To compare the effectiveness of different PLMs
on the dimABSA tasks, we conduct experiments
on Subtask 1 using several types of models with
varying parameter sizes. The results are pre-
sented in Table 5. Specifically, we employ
our ensemble method to test five different Chi-
nese language models, including chinese-roberta-
wwm-ext and chinese-roberta-wwm-ext-large (Cui
et al., 2021), ernie-3.0-base-zh and ernie-3.0-xbase-
zh (Sun et al., 2021), and erlangshen-deberta-v2-
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Methods Subtask 1 Subtask 2 Subtask 3

V-MAE V-PCC A-MAE A-PCC V-T-F1 A-T-F1 VA-T-F1 V-Q-F1 A-Q-F1 VA-Q-F1

BERTREG 0.287 0.930 0.311 0.773 0.574 0.526 0.405 0.555 0.511 0.393

w/o pre-training 0.294 0.924 0.313 0.771 0.565 0.520 0.401 0.544 0.502 0.386
w/o no-dropout 0.337 0.933 0.348 0.779 0.537 0.503 0.365 0.521 0.487 0.354
w/o construction - - - - 0.567 0.518 0.399 0.549 0.502 0.387

Table 3: Ablation study of BERTREG.

Methods Subtask 1 Subtask 2 Subtask 3

V-MAE V-PCC A-MAE A-PCC V-T-F1 A-T-F1 VA-T-F1 V-Q-F1 A-Q-F1 VA-Q-F1

LLMINT 0.367 0.884 0.394 0.683 0.530 0.498 0.392 0.512 0.482 0.379

w/o code prompt 0.367 0.882 0.394 0.672 0.515 0.472 0.373 0.495 0.454 0.358
w/o multi-task 0.381 0.876 0.406 0.632 0.535 0.481 0.381 0.514 0.464 0.367
w/o beam search 0.377 0.880 0.391 0.670 0.531 0.489 0.388 0.511 0.472 0.374

Table 4: Ablation study of LLMINT.

Model (Params) Valence Arousal

MAE PCC MAE PCC

roberta-base (102M) 0.300 0.918 0.310 0.766
ernie-base (118M) 0.300 0.915 0.313 0.762
ernie-xbase (296M) 0.286 0.926 0.309 0.776
deberta-large (320M) 0.284 0.930 0.310 0.774
roberta-large (326M) 0.289 0.923 0.314 0.769

Table 5: Results of different pre-trained language mod-
els on Subtask 1 (using Ensemble strategy).

320m-chinese (Zhang et al., 2022a). The results
indicate that larger models with more parameters
tend to perform better than base models. Addition-
ally, our backbone, ernie-xbase, with a moderate
parameter size, demonstrates superior performance,
ensuring both training efficiency and excellent re-
sults for our system.

5 Conclusions

In this paper, we describe our winning system
in the SIGHAN-2024 dimABSA task, which in-
volves identifying fundamental sentiment elements
in restaurant reviews: aspect, category, opinion,
and intensity. Our system integrates BERT and
LLM, utilizing their strengths in entity extraction
and intensity prediction across three subtasks. The
experimental results not only validate the effective-
ness of our methods but also underscore the poten-
tial of BERT-LLM ensemble strategies in advanced
sentiment analysis, providing technical insights and
a solid foundation for future research.
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Limitations

Despite proposing a novel approach that inte-
grates BERT and LLM for the dimABSA task and
achieves promising performance, our study has sev-
eral limitations. Firstly, our exploration is confined
to ensemble methods such as voting and pipeline
approaches, leaving deeper integration strategies
between BERT and LLMs unexplored. Methods
such as knowledge distillation and designing hy-
brid architectures could potentially enhance per-
formance by capturing more respect advantages.
Secondly, our research is constrained by limited
computational resources, preventing us from inves-
tigating the application of more advanced LLMs
to this task. These advanced models might offer
better performance in terms of both accuracy and
generalization. Lastly, our work does not leverage
existing dimensional sentiment resources, such as
sentiment lexicons and annotated datasets, which
we believe could further improve the prediction of
sentiment dimensions. Future work should con-
sider incorporating these resources to enhance the
robustness and accuracy of sentiment predictions.
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