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Abstract

Despite being spoken by a large population
of speakers worldwide, Cantonese is under-
resourced in terms of the data scale and diver-
sity compared to other major languages. This
limitation has excluded it from the current “pre-
training and fine-tuning” paradigm that is dom-
inated by Transformer architectures. In this pa-
per, we provide a comprehensive review on the
existing resources and methodologies for Can-
tonese Natural Language Processing, covering
the recent progress in language understanding,
text generation and development of language
models. We finally discuss two aspects of the
Cantonese language that could make it poten-
tially challenging even for state-of-the-art ar-
chitectures: colloquialism and multilinguality.

1 Introduction

Cantonese, or Yue Chinese, is a diaspora lan-
guage with over 85 million speakers all over the
world (Lai, 2004; García and Fishman, 2011; Yu,
2013; Eberhard et al., 2022). 1 It is commonly
used in colloquial scenarios (e.g., daily conversa-
tion and social media) but also in formal and writ-
ten contexts, such as in the Legislative Council of
the Hong Kong Special Administrative Region, or
in sections of special local interests in the newspa-
pers, such social and entertainment, or in horse rac-
ing and betting information. Otherwise Standard
Chinese (SCN) 2, sometimes called Putonghua (普
通话) or Guoyu (國語), is generally favored in for-
mal and written contexts (Luke, 1995; Lee, 2016;
Li, 2017; Wong and Lee, 2018).
In terms of digital language support, Mandarin

Chinese thrives with a mature Natural Language
Processing (NLP) environment. Chinese NLP
has a versatile and growing literature from major

1https://www.ethnologue.com/language/yue.
2Notice that the written form of SCN includes both sim-

plified and traditional orthographies for writing in a specific
Chinese dialect or topolect.

conferences, such as ACL and COLING. In con-
trast, as for digital language support Cantonese is
at the vital level, one level lower than thriving
(cf. Ethnologue) (Zhao et al., 2024b; Zhu et al.,
2024). In fact, Cantonese is an rare exception as
a main diaspora language, as most diaspora lan-
guages -including but not limited to Arabic, Chi-
nese, English, French, Hindi, Japanese, Korean,
Portuguese, Spanish, etc.- have both a thriving dig-
ital language support and a strong NLP commu-
nity, while Cantonese does not (Li et al., 2023;
Zhao et al., 2024a).
More specifically, while current NLP paradigms

have been deeply changed by large-scale pre-
training models based on Transformer architec-
tures, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), ELECTRA (Clark et al., 2020), GPT-
3 (Brown et al., 2020) and GPT-4 (Achiam
et al., 2023), which have achieved state-of-the-
art (SOTA) level of performance on several tasks.
Compared to the previous generation systems, the
progress was particularly remarkable in task requir-
ing fine-grained semantic understanding, such as
textual entailment, question answering and causal
reasoning (Wang et al., 2018, 2019; Zhao et al.,
2023). On the other hand, language technologies
for Cantonese have not yet benefited from this rev-
olution (Xiang et al., 2022). From this point of
view, the number of publications in the ACL An-
thology is emblematic (see Figure 1): only 61 pa-
pers are related to “Cantonese”, compared to 9,756
papers for English, and 5,312 (4,919 + 393) for
SCN/Mandarin.
The history of publications in Cantonese NLP,

as in Figure 1, shows that the numbers of papers
published yearly remains in single digit, although
there is a moderate increasing trend (cf. Figure 2).
However, as an emergent language in NLP, it is
surprising that only a small portion (17/61, 27.9%)
introduces language resources, as shown by Table
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Figure 1: Number of publications in the ACL Anthol-
ogy indexed by languages as of Mar 2024. The publi-
cations were retrieved via searching the language name
in either the title or the abstract.

Figure 2: Yearly publications of the 61 papers for Can-
tonese NLP in the ACL Anthology from 1998 to 2024.

Research Topics # of Papers
Phonetics&Phonology&
Speech Recognition 22

Lexicography&Syntax&
Semantics&Morphology 10

NLP Resources 17
NLP Tasks 12
Total 61

Table 1: Papers on Cantonese by research topic (statis-
tics checked on Mar 2024).

1. This explains why Cantonese NLP has a prob-
lem in terms of scarcity of resources and lack of
alignment to state-of-the-art practices.
In light of these concerns, this paper presents a

first overview of Cantonese NLP, going through
essential issues regarding this language’s unique-
ness, data scarcity, research progress, and major
challenges. As a pilot study, we also present some
preliminary analysis on Cantonese data from so-
cial media and discuss the possible challenges. We

found that, given the prominence of colloquial lan-
guage and code-switching in the data, it is desir-
able that future models will be developed to prop-
erly deal with such phenomena. Finally, we con-
clude our contribution by indicating some possible
directions for future research.

2 Cantonese NLP Resources

2.1 Corpora

Cantonese was perhaps the most documented
Sinitic languages in early bilingual dictionaries
compiled by western missionaries (Huang et al.,
2016). Some Cantonese words were included
in the first ’modern’ bilingual Chinese dictionary
compiled by Matteo Ricci at the end of the 16th
century. The majority of the bilingual dictionar-
ies published throughout the 19th century were, in-
deed, dedicated to Cantonese. Given the impor-
tant role of Cantonese in the context of the en-
counter between China and the West, it is perhaps
no surprising that the first Cantonese corpus was
a bilingual one. Wu (1994) introduced the work
on the HKUST Chinese-English Bilingual Parallel
Corpus, based on the transcriptions from the Hong
Kong legislative Council. The first monolingual
Cantonese corpus was most likely the CANCORP
(Lee and Wong, 1998), consisting of one million
characters from Cantonese-speaking children in
Hong Kong. Another important corpus for child
language acquisition is the CHILDES Cantonese-
English Corpus by Yip and Matthews (2007), con-
taining both audio and visual data of children con-
versation and the related transcripts.
The Hong Kong Cantonese Adult Language

Corpus (HKCAC) focuses instead on adult lan-
guage and contributes speech recorded from
phone-in programs and forums (Leung and Law,
2001). This corpus also presents speech transcrip-
tions for a total of 170k characters. Another re-
source, the Hong Kong University Cantonese Cor-
pus (HKUCC) (Wong, 2006) was collected from
transcribed spontaneous speech in conversations
and radio programs and its annotation include
word segmentation, Cantonese pronunciation and
parts-of-speech, covering approximately 230,000
words.
Lee (2011) introduced a parallel corpus that

aligns Cantonese and SCN at the sentence level for
machine translation. The annotation materials are
the transcriptions of Cantonese speeches from tele-
vision shows in Hong Kong, and their correspond-
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Figure 3: Outline of the survey.

ing Mandarin subtitles. The corpus contains 4,135
pairs of aligned sentences, with a total of 36,775
characters in Mandarin, and 39,192 in Cantonese.
Wong et al. (2017) later published a small paral-
lel dependency treebank for Cantonese and Man-
darin, based on the same textual materials. The
corpus consists, in total, of 569 aligned sentences
and it is annotated with the Universal Dependen-
cies scheme (DeMarneffe et al., 2014; Nivre et al.,
2016). Another corpus based on the transcripts of
Hong Kong Cantonese movies has been presented
by Chin (2015), and made accessible to the users
via an online interface. 3

Spoken Cantonese data from television and ra-
dio programmes broadcasted in HongKong are the
source material also for the corpus introduced by
Kwong (2015). The corpus covers different topics,
such as politics, affairs, economics/finance, and
food/entertainment, and a variety of textual typolo-
gies (interviews, phone call transcriptions, reviews
etc.). The Hong Kong Cantonese Corpus by Luke
and Wong (2015) includes 150,000 words, and
it also consists of transcribed Cantonese speech
recordings that are annotated with both segmen-
tation and part-of-speech tags. Ng et al. (2017)
proposed the first bilingual speech corpus of Can-
tonese and English, built with the goal of the as-
sessment of correct Cantonese pronunciation. Fi-
nally, the most recent introduction is the MYCan-
Cor corpus (Liesenfeld, 2018), which has been
built with 20 hours of Cantonese speech recorded
in Malaysia (plus the videos and the related tran-
scriptions) to support studies on multimodal com-
munication.
Concerning domain-specific resources, the par-

allel corpus by Ahrens (2015) includes 6 million
words from political speeches from China, Hong
Kong, Taiwan and USA, and it contains more than

3https://hkcc.eduhk.hk/.

one million words of transcribed speeches of Hong
Kong’leaders before and after the handover. It
consist of more than 400k words in English, and
more than 600k words in Chinese/Cantonese. Pan
(2019) introduced a Chinese/English Political Cor-
pus for translation and interpretation studies. With
over 6 million word tokens, the corpus consists of
transcripts of both Cantonese and Mandarin and
their English translations. Lee et al. (2020) intro-
duced a Counselling Corpus in Cantonese to re-
search domain-specific dialogues: 436 input ques-
tions were solicited from native Cantonese speak-
ers and 150 chatbot replies were harvested from
mental health websites. The authors later extended
their work by collecting another dataset used for
text summarization and question generation (Lee
et al., 2021), containing 12,634 post-restatement
pairs and 9,036 post-question pairs, all with man-
ual annotations. It also includes 89,000 unla-
beled post-reply pairs collected from the online
discussion forums in Hong Kong. Finally, the
SpiCE corpus by Johnson et al. (2020) is an open-
access corpus created specifically for translation
tasks and contains bilingual speech conversations
in Cantonese and English, for a total of 19 hours
of conversation. The transcripts have been pro-
duced with the Google Cloud Speech-to-Text ap-
plication, followed by manual corrections, ortho-
graphic alignment and phonetic transcriptions.

For corpus reading and preprocessing, Lee et al.
(2022) recently introduced the PyCantonese pack-
age, which includes reader modules for some of
the most popular Cantonese corpora (e.g. the
CHILDES Cantonese-English Bilingual Corpus,
the Hong Kong Cantonese Corpus etc.), stopword
lists, modules for carrying out word segmentation
and part-of-speech tagging, parsing and common
computational tasks involving Jyutping (e.g. ro-
manization of the characters).
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2.2 NLP Benchmarks

The gap between Cantonese and other diaspora
languages in NLP research and digital support is
underlined by the scarcity of benchmark datasets
specifically targeting Cantonese. A first example
was the shared task for Chinese Spelling Check,
which was conducted in co-location with the work-
shop on NLP for Educational Applications in 2017.
The organizers published a benchmark dataset
with 6,890 sentences for normalizing Cantonese,
mapping from the spoken to thewritten form (Fung
et al., 2017).
Xiang et al. (2019) provided a sentiment analy-

sis benchmark collected OpenRice, a Hong Kong
catering website, where over 60k comments are
labeled with 5-level ratings indicating sentiment
scores. The authors anonymized the data, fil-
tered out comments written in other languages (e.g.
SCN, English) and limited the length of the exam-
ples to 250 words. 4

Chen et al. (2020) published a rumor detec-
tion benchmark collected from Twitter, including
27,328 web-crawled tweets (13,883 rumors and
13,445 non-rumors) written in Traditional Chinese
characters, in part in Taiwanese Mandarin and in
part in Cantonese 5. However, the dataset does
not provide the information about the language in
which a tweet has been written.
For text genre categorization, a benchmark has

been collected by the ToastyNews project 6. The
dataset consists of more than 11000 texts, divided
into 20 different categories. The texts have been
extracted from LIHKG, a popular Hong Kong fo-
rum with a structure similar to Reddit, and the cat-
egory labels have been generated from the discus-
sion threads they belong to.
Finally, for the development of dialogue sys-

tems, Wang et al. (2020) presented a food-ordering
dialogue dataset for Cantonese called KddRES, in-
cluding dialogues extracted from Facebook and
OpenRice for 10 different Hong Kong restaurants.
Using this dataset, it is possible to evaluate systems
either on the classification of the intention of cus-
tomer statements, or on sequence labeling tasks to
identify the slot of interests of a conversation (e.g.
the selected food, the number of people for a reser-
vation, the time for take-out etc.).

4https://github.com/Christainx/Dataset_
Cantonese_Openrice.

5https://github.com/cxyccc/CR-Dataset.
6https://github.com/toastynews/lihkg-cat-v2

3 Pilot Study for Cantonese

In the previous sections, we have illustrated the
general scarcity of resources in NLP for Cantonese.
We also mentioned that Cantonese has a numer-
ous and active social media community, and Can-
tonese social media language provides an interest-
ing example for analysis, as it can show the main
challenges related to the automatic processing of
this language.
As we anticipated, colloquialism and multilin-

guality are primary obstacles to robust and effec-
tive processing. In the next sections, we present
an analysis of the two phenomena in Cantonese so-
cial media.

3.1 Colloquialism and Lexical Differences

In the introductory sections, we already discussed
how the Cantonese vocabulary deeply diverges
from SCN (Ouyang, 1993; Snow, 2004), and men-
tioned the fact that, due to the long tradition of
all Sinitic languages sharing a written/formal strata
(i.e. written Chinese), the divergence and chal-
lenges of Cantonese are in the spoken or informal
strata. This include transcriptions of speech, as
well as the habit in writing to adopt a colloquial
style when dealing with topics of local interest,
hence we refer to it as ”colloquialism”).

Data Source Token Count Text Size
DISCUSS 118.7 M 258.8 MB
LIHKG 632.7 M 651.9 MB
OpenRice 172.1 M 226.1 MB

Table 2: Scales of textual data from 3 different Can-
tonese forums (0.924 billion tokens and 1.1 Gigabytes
size in total).

In this section, we analyze the colloquial fea-
tures of Cantonese, with some examples, and
present some data from a small-scale study on
word surprisal (Hale, 2001, 2016). To start with,
we examined the data from three popular Can-
tonese online forums: DISCUSS, LIHKG, and
OpenRice (Hong Kong).7 The first two are gen-
eral forums with diverse topics, while OpenRice
is s the most popular forum for sharing restaurant
and food reviews. Table 2 shows the statistics of
the forums, where the three sources altogether con-
tribute 1.1 Gigabytes (G) texts and 0.924 billion

7DISCUSS: discuss.com.hk; LIHKG: lihkg.com;
OpenRice:https://www.openrice.com/zh/hongkong.
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(B) tokens. Just to give some figures for compari-
son, 80G texts and 16B tokens have been used for
pre-training English models on tweets (BERTweet,
Nguyen et al. (2020)), and 5.4B tokens have been
used for a relatively small size model for SCN
(MacBERT, Cui et al. (2021)). This would be, to
the best of our knowledge, the largest social media
text collection for pre-training a Cantonese model
from scratch, although the data size is certainly
smaller compared to other languages.

One reason why it is challenging to directly
apply or adapt SCN NLP models for Cantonese
is the large number of Cantonese specific vocab-
ulary and expressions, including words with un-
known forms and words with known forms but
with novel meanings. These discrepancies made
the pre-trained models based on Mandarin ineffec-
tive for Cantonese NLP. In addition, due to the low
degree of conventionalizing, spelling mistakes are
prominent in the data, such as the mis-replacement
of fan3 gaau3 訓覺 instead of fan3 gaau3 瞓覺
(sleep), together with intentional misspellings in
jokes and punning, which are commonly found
also in newspapers headlines (Li and Costa, 2009).

As in all social media texts, slang expressions
and idioms are also frequently found, requiring ex-
ternal knowledge and background for the correct
understanding, and most of such expressions are
unknown in standard Chinese. Consider the fol-
lowing example: gam1 ci3 jin2 coeng3 wui2 hou2
naan4 maai5 dou3 fei1，keoi5 dou1 hai6 zap1 sei2
gai1 sin1 zi3 jau5 dak1 tai2 zaa3。今次演唱會
好難買到飛，佢都係執死雞先至有得睇咋。
(It’s extremely hard to buy tickets for the concert.
He would not have a chance to go to the concert
if he did not collect a lucky coin). There are at
least two expressions that would be challenging to
a SCN trainedmodel. The first is the word飛‘fare,
ticket’, which is a phonetic borrowing as discussed
above. AMandarin trained model would treat it as
the verb‘to fly’, with a different PoS and totally
different behavior. The second is the expression
zap1 sei2 gai1執死雞 is a Cantonese idiom origi-
nated from football terminology, literally meaning
‘to hold (a) dead chicken’, which is shared byMan-
darin and Cantonese. However, in Cantonese, it
also has the idiomatic meaning that was originally
used in soccer ‘scoring a goal with pure luck.’
These two meanings in Cantonese cannot be ob-
tained without either a comprehensive Cantonese
lexicon of colloquial usages or a large training cor-

pus. Without the prior knowledge of its extended
meaning of “to get a great deal”, even for humans
it would be challenging to make sense of the sen-
tence, not to mention NLP models.
We studied the bigram distributions of DIS-

CUSS, containing forum threads in 20 different
topics, and compare it with the Gigaword cor-
pus, which is composed of text from news out-
lets in Chinese (Huang, 2009; Parker et al., 2011).
Both datasets concern contemporary and widely-
discussed events in diverse news topics and are
written in traditional Chinese. For both datasets,
we sampled 260 megabytes of textual data and
computed the average frequency of the union of the
top 1000most frequent bigrams in the two datasets.
The relative frequencies of the bigrams are shown
in Figure 4. We can observe, at a glance, that the
distribution of DISCUSS exhibits a high spike on
the left, and then it has a long tail of low-frequency
bigrams. Notice that, given the bigger size and the
more standardized nature of GigaWord, the rela-
tive frequencies of many of the shared bigrams in
the long tail are comparably higher.
To explore the predictability of Cantonese text

by SCN models, we utilized two representative
models to extract and compare surprisal scores for
Cantonese sentences and the corresponding trans-
lations in Simplified and Traditional Chinese. We
chose to use the BERT-CKIP model 8, which was
trained on Traditional Chinese on a concatenation
of a 2020 dump of the Chinese Wikipedia and the
Chinese Gigaword Corpus (Huang, 2009; Parker
et al., 2011); and the RoBERTa-HFL model 9, an
implementation of RoBERTa by Cui et al. (2021).
It has been trained on both Simplified and Tradi-
tional characters on a 2019 dump of the Chinese
Wikipedia and various news and question answer-
ing websites.
The surprisal of a word w (Hale, 2001; Levy,

2008) is generally defined as the negative log prob-
ability of theword conditioned on the sentence con-
text, according to the following:

Surprisal(w) = −logP (w|context) (1)

The higher the surprisal for a given linguistic ex-
pression, the more unpredictable that expression
is for a given computational model. If a model
instead is able to provide confident estimates of

8https://github.com/ckiplab/
ckip-transformers

9https://huggingface.co/hfl/
chinese-roberta-wwm-ext
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Figure 4: Distribution of bigrams from DISCUSS and Gigaword datasets. The x-axis shows the union dataset of
the top 1,000 bigrams from each dataset ordered by the average relative frequency in the two datasets. The top
curve refers to DISCUSS, the bottom one to Gigaword.

words occurring in a corpus, the surprisal will be
low.
To run our small experiment, we adopted the im-

plementation of theminicons library (Misra, 2022),
which provides handy functions to estimate proba-
bility and surprisal scores of a sentence. We ran-
domly sampled 50 sentences from the Cantonese
forums in Section 4.1, and for each of themwe gen-
erate the translation in both Traditional and Simpli-
fied Chinese using the Baidu translation interface
10. Then we computed the surprisal score for each
sentence using the two SCN models, and took the
average across sentences. The sampling was re-
peated 10 times (Table 3 reports the average across
different samples). Notice that, since both BERT-
CKIP and RoBERTa-HFL are bidirectional mod-
els trained, the surprisal scores for each word are
computed by masking the words in the sentence
one-by-one, computing their probabilities in con-
text and then applying the formula in (1). Once
the scores for single words are obtained, the mini-
cons library outputs their average as the surprisal
score for the sentence. 11
We tested both Cantonese sentences and Taiwan

Mandarin sentences from the Academia Sinica
Corpus (Huang and Chen, 1992). Note that both
Hong Kong and Taiwan use traditional characters

10https://fanyi.baidu.com/
11This method for estimating probabilities/surprisals for

sentences with bidirectional language models is known as
pseudo log-likelihood, and it has been introduced by Salazar
et al. (2020). This method has a standard implementation in
the minicons library.

with variations in lexical choices. Thus, our study
was carried out in three different writing systems
to ensure that the differences in writing systems do
not contribute to the surprisal scores. Thus each
set of data are tested in 1) original writing forms,
2) converted writing forms with each other (i.e.
Hong Kong vs. Taiwan), and 3) converted to sim-
plified Chinese. The results in Table 3 show that
for both models and for three possible writing sys-
tem settings (i.e. original, switched, simplified),
the Cantonese sentences tend to have higher sur-
prisal scores. The experiment establishes that it is
more difficult for SCN trained models to predict
Cantonese sentences. One of the reasons of the ad-
ditional difficulties may be the usage of different
words in Cantonese: we computed that, compared
to the translated sentences, there is an overlap of
characters of 69.1% for the Traditional Chinese
translation and 65.5% for the Simplified Chinese
one (i.e. more than 30% of the Cantonese charac-
ters do not appear in the translations). Still, given
the relatively high overlap degree, it is likely that
Cantonese-specific words play a role together with
other factors, such as regional usages of the same
words/characters and differences in grammar.
The two models behave very differently when

the Cantonese text is translated into Simplified
Chinese: RoBERTa-HFL, which is trained on
both Traditional and Simplified characters, reports
lower surprisal scores than on the original Can-
tonese sentences, and has a slightly higher score
for the translation from Traditional to Simplified
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BERT-CKIP RoBERTa-HFL
Can_Orig 4.30 4.39
Trad_Translated 3.17 2.89
Simp_Translated_Can 5.84 2.79
Trad_Orig 0.61 1.09
Can_Translated 1.71 2.20
Simp_Translated_Trad 5.38 1.15

Table 3: Surprisal analysis on 50 Cantonese and Traditional Chinese sentences. The average surprisal scores are
shown in the table. Can_Orig: 50 Cantonese sentences. Trad_Translated: 50 Traditional Chinese sentences trans-
lated from Can_Orig. Simp_Translated_Can: 50 Simplified sentences translated from Can_Orig.

(which might be due to the ambiguity of the con-
version, as for a traditional character there might
be multiple corresponding characters in Simplified
Chinese); BERT-CKIP has instead extremely high
surprisal scores when either Cantonese or Tradi-
tional Chinese are translated into Simplified Chi-
nese, as it was not exposed to Simplified characters
during pretraining. In any case, we can notice that
predicting words in Cantonese is much more chal-
lenging for SCNmodels, and that extra difficulties
may come in when there is a conversion from Tra-
ditional to Simplified characters.

3.2 Multilinguality

language Cantonese SCN English Others
DISCUSS 31.49% 52.00% 9.19% 7.32%
LIHKG 40.57% 33.40% 11.85% 14.18%
OpenRice 73.65% 18.91% 4.93% 2.55%

Table 4: Ratio of language usage. Cantonese and Stan-
dard Chinese are dominant in all the datasets under con-
sideration.

To better understand the nature of multilingual-
ism, we examine the contribution of different lan-
guages to Hong Kong social media data. The open-
source toolkit fastlangid is employed to analyze
the language usage ratio of the datasets 12. More
specifically, we used fastlangid with the default
settings and the parameter k = 1, meaning that
only the most likely language shall be detected.
The percentages are shown in Table 4, where the
statistics have been computed as an aggregation of
sentence-level results. As it can be seen, the code-
switching behavior across Cantonese and SCN is
frequent; English is also very often attested in our
data 13, and we can even observe code-mixing

12https://github.com/currentsapi/fastlangid
13It should be kept in mind that English is still one of the

primary languages in Hong Kong education.

with other languages. This is because Cantonese-
speaking areas happen to integrate speakers of
multiple nationalities (Yue-Hashimoto, 1991; Li,
2006).
To exemplify the multilingualism phenomenon

in Cantonese, we present some typical code-
switching cases of Cantonese and English. The
original texts are followed by the English transla-
tions in brackets. The switched scripts are under-
lined in both the original texts and the translations.

• E1: sau1 dou3 offer, gam1 nin4 gau2 jyut6
zung6 heoi3 m4 heoi3 dou3 ngoi6 gwok3
duk6 syu1 hou2? 收到offer,今年 9月仲去
唔去到外國讀書好? (Got the offer. Will it
be better or not to go for overseas study in
September this year?)

• E2: hai6 ge3 zau6 wai4 jau5 hai2 hoeng1
gong2 maai5 liu5, tung4 maai4 dim2 gaai2
hoeng1 gong2 di1 din6 hei3 dim3 m4 gaau2
haa6 di1 si3 sik6 wut6 dung6。係嘅就唯有
喺香港買了,同埋點解香港啲電器店唔搞
下啲試食活動。(I can only buy it in Hong
Kong. And why don’t the electrical appliance
stores of Hong Kong do some trial promotion
campaigns.)

• E3: zaa3 zoeng3 bei2 gaau3 taam5, bat1
gwo3 min6 hou2 Q, zan1 hai6 hou2 zeng3。
炸醬比較淡, 不過麵好Q, 真係好正。(The
fried sauce is bland, but the noodles are very
chewy. it’s really tasty.)

The code-switching phenomenon in E1 is com-
monly observed in the data: the English nouns “of-
fer” is directly taken and inserted in a Cantonese
context. E2 uses “D” in the alphabet as an al-
ternative to Cantonese tokens di1 “啲” (of ) and

75

https://github.com/currentsapi/fastlangid


dim2 “點” (some) because of their similar pronun-
ciations. For E3, “Q” is borrowed from Hokkien,
another Chinese variety of the SouthernMin group
that is widely used in Fujian and Taiwan, and it
means “chewy”. The borrowing can be explained
by the geographical proximity of the Cantonese
and Hokkien speaking areas and by the constant
migratory flows between the two regions.
In sum, our analysis shows how colloquialism

and code-switching with multiple languages are
pervasive in Cantonese social media data, and thus
models for Cantonese NLP will have to be robust
to such phenomena. For example, future Can-
tonese language understanding systems could be
integratedwith spelling correction and dialect iden-
tification components, in order to mitigate the ir-
regularity of the input data.

4 Conclusions

In this paper, our goal is to present the status of
the research on Cantonese NLP, to describe the
uniqueness of this language and to suggest possible
solutions for addressing the current shortcoming,
due to the lack of resources. Indeed, most research
on Cantonese NLP has not translated into the re-
lease of useful models, corpora and benchmark
datasets, which are often not publicly available or
not up to date. A possible reason of this difficulty
is the limited number of online sources of Can-
tonese text with non-restrictive licenses (Eckart de
Castilho et al., 2018), which does not leave too
many options to researchers for putting together
new benchmarks and for training large-scale mod-
els that are Cantonese-specific.
After reviewing the existing resources andmeth-

ods, we analyzed the twomain challenges that such
data pose to automatic systems: the pervasive col-
loquialism and the multilinguality of Cantonese
text, which often leads to the simultaneous pres-
ence of multiple languages in the same message
or post. As strategies to tackle the challenges of
Cantonese NLP, we could safely indicate data aug-
mentation and crosslingual learning as two possi-
ble ways to go, in case the collection and balancing
of large-scale Cantonese corpora turn out to be too
problematic.
Cantonese is one of the most pervasive dias-

pora languages with native speaking communities
spread around the world and has a vibrant and mul-
ticultural online community, and unique features
that deserve a special attention for computational

modeling. With our contribution, we hope we will
manage to stimulate a new interest around this lan-
guage in the NLP community, and to encourage fu-
ture studies that will be devoted to resource sharing
and to the reproducibility of the research results on
public benchmarks.

Limitations

The main limitation of this work is that we only
conduct our pilot study on limited number of do-
mains since the textual data demands more efforts
to clean. In future work, we plan to extend our
study in more domains and more specifically focus
on multi/cross lingual scenarios.
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