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Abstract

Vast amount of online conversations are pro-
duced on a daily basis, resulting in a press-
ing need to automatic conversation understand-
ing. As a basis to structure a discussion, we
identify the responding relations in the con-
versation discourse, which link response utter-
ances to their initiations. To figure out who
responded to whom, here we explore how the
consistency of topic contents and dependency
of discourse roles indicate such interactions,
whereas most prior work ignore the effects of
latent factors underlying word occurrences. We
propose a neural model to learn latent topics
and discourse in word distributions, and pre-
dict pairwise initiation-response links via ex-
ploiting topic consistency and discourse depen-
dency. Experimental results on both English
and Chinese conversations show that our model
significantly outperforms the previous state of
the arts.

1 Introduction

The growing popularity of online platforms have
resulted in the revolution of interpersonal commu-
nications. Individuals now engage in diverse forms
of online conversations to exchange viewpoints
and share ideas. It allows users to access an abun-
dance of fresh materials, whereas the explosive
growth of online texts — essentially conversational
and usually in multiple threads (Wang and Rosé,
2010) — has also hindered human capability to
find the information needed. There consequently
presents a pressing need to develop conversation
understanding methods to automatically digest mas-
sive texts and complex interactions therein. To that
end, it is crucial to capture the interactions of who
responded to whom — the base to build and un-
derstand the conversation structure, as pointed out
in many previous studies (Wang and Rosé, 2010;
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[C1] I am aware that you can thank them in private argu-
ment but what does that matter?
[C2] The most important part of my argument is that it
hurts literally nobody.
[C3] All they are doing is trying to be polite.
[C4] Some people gild comments anonymously and do
not respond to the private messages, so the gildee never
knows who gave them gold.
[C5] Note: for the purposes of my argument, assume I
am talking about comments edited in such a way as to say
thanks for the gold!
[R] We are all aware that you can do that, but sometimes
people like to express gratitude publicly.

Figure 1: A Reddit conversation snippet. C1 and R is
an initiation-response pair while C2 to C5 are the other
four candidates. Topic words reflecting the discussion
points “public gratitude expression” are in bold. The
blue and italic “that” occurring in both C1 and R imply
R’s possible intention to answer C1’s question.

Zeng et al., 2019b). By reflecting how partici-
pants interact with each other, such structure has
shown useful to predict users’ online social activi-
ties (Zeng et al., 2019b), summarize key discussion
topics (Qin et al., 2017; Li et al., 2018a), measure
argument persuasiveness (Ji et al., 2018a), and so
forth.

To date, despite of the extensive efforts on user
interaction modeling, many of them employ user-
annotated in-reply-to signals, such as @-mention
on Twitter (Li et al., 2018a; Zeng et al., 2019b).
Nonetheless, such labels are usually unavailable
or unreliable (Du et al., 2017; He et al., 2019),
especially for online conversations in informal
styles. Other studies assume utterances only re-
spond to their chronological neighbors (Jiao et al.,
2018; Zhao et al., 2018), largely ignoring the long-
distance interactions prominent in online conver-
sations (Wang and Rosé, 2010). All these con-
cerns lay down our objective to investigate who
responded to whom in conversation contexts.

Following previous practice (Schegloff, 2007),
we define our task to predict pairwise initiation
utterances and their responses in an online con-
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versation (henceforth initiation-response pairs),
where an initiation sets up an expectation earlier
and its response later react to it in process of a dis-
cussion. To illustrate our task, Figure 1 shows an
example response R and the other five utterances
C1 to C5 from R’s previous post in a Reddit con-
versation. Our goal is to identify which utterance
from C1 to C5 is R’s initiation. As can be seen,
R is most likely to respond to C1 for two possible
reasons: First, they both focus on the topic of pub-
lic gratitude expression (as topic words “thank”,
“public”, “gratitude” are mentioned); Second, C1

raises a question (signaled by “what” and the ques-
tion mark “?”) that can be well answered by R (via
echoing the pronoun “that”).

Here, we examine two latent factors that implic-
itly link an initiation and its response — the consis-
tency of the topics they center around (henceforth
topic consistency) and the dependency of their dis-
course roles (henceforth discourse dependency).
Our intuition is that responses tend to follow the
points pushed forward in their initiations (such as
public gratitude expression in Figure 1) and their
discourse roles are likely to exhibit some depen-
dency in interactions, such as an answer respond-
ing to an initiated question (like R answering C1

in Figure 1) and an argument followed by another
argument in a back-and-forth debate. To the best
of our knowledge, we are the first to analyze the
effects of topics and discourse in conversational
responding behavior, while previous work predict
initiation-response pairs without modeling such la-
tent factors embedded in the relations (Du et al.,
2017; He et al., 2019).

To learn topics and discourse, we separate two
word distributions for representing each of them.
The latent variables are inferred with a neural ar-
chitecture in an unsupervised manner (Zeng et al.,
2019a), which enables topic and discourse infer-
ence without either manually annotated data (Zhao
et al., 2017) or expertise involvements to customize
model inference (Li et al., 2018b). Afterwards, two
neural modules are employed, one to capture topic
consistency and the other discourse dependency,
both aim to explore the implicit links of a response
and a candidate initiation. The learned representa-
tions are hence coupled to predict how likely the
two utterances form an initiation-response pair.

In an empirical study, we carry out extensive
experiments on two conversation datasets, one con-
tains English argumentative discussions on Red-
dit (from the ChangeMyView subreddit), and the

other Chinese customer service dialogues from
e-commerce platform Wangwang. Both of them
will be released upon publication as part of our
work. The experimental results show that our
model significantly outperforms state-of-the-art
methods from previous work. For example, we
achieve 79.02 MRR on the Wangwang dialogues
compared with 72.69 produced by He et al. (2019).
In extensive analyses on latent topics and discourse,
we find that meaningful representations can be
learned by our model and both topics and discourse
may contribute to indicate initiation-response pairs.
Lastly, we show that our learned representation
to indicate initiation-response relations can further
benefit to identify persuasive arguments in social
media debates.

2 Study Design

2.1 Task Formulation

We define initiation-response pairs following Sche-
gloff (2007) and refer both initiations and responses
to conversation utterances from different partici-
pants. In a discussion flow, responses appear and
react to the points raised earlier in their initiations
and hence hold responding relations with them.

In previous practice, an initiation-response pair
is defined to cover a wide range of user interac-
tions, such as questions and answers, quotations
and replies, blames and denials, all existing in di-
verse genres of conversations (Wang and Rosé,
2010). In empirical study, we will experiment on
quotation-reply pairs in forum discussions (Wang
and Rosé, 2010) and question-answer pairs in cus-
tomer service dialogues (He et al., 2019). We thus
describe these two types of initiation-response rela-
tions in the following.

Quotations and Replies. Many popular online
forums, such as Reddit and Usenet, allow users to
quote utterances from previous messages to indi-
cate what they are commenting on. Such quoting
behaviors provide us with abundant user-annotated
data to extensively study initiation-response rela-
tions in forum conversations.

Here we are interested in a specific type of online
conversations — argumentative dialogues from the
ChangeMyView subreddit (henceforth CMV) (Tan
et al., 2016), exhibiting rich user interactions in
back-and-forth social media debates. In CMV, an
opinion holder (OH) first initiates a debate with
their viewpoints and challengers then engage in,
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raising their arguments in comments and attempt-
ing to change OH’s mind. As challengers carry on
the persuasion process, they usually quote OH’s
utterances to explicitly point out what they are ar-
guing against, followed by their own responsive
arguments (replies). An example quotation in a
CMV comment is shown in Figure 2, where the
reply utterance questions the positive aspects of
early Americans — a point initialized by OH.

Original Post from an Opinion Holder:
... Strong family values in society lead to great results. I
want society to take positive aspects of the early Amer-
icans and implement that into society. This would be a
huge improvement than what we have now. ...
Comment from a Challenger:
&gt; I want society to take positive aspects of the early
Americans and implement that into society. What do you
believe those aspects to be? ...

Figure 2: An original post and its comment from the
CMV subreddit. The comment quotes an utterance from
the original post (in italic), followed by its reply utter-
ance.

Questions and Answers. We also examine ques-
tions and answers in customer service dialogues on
Chinese e-commerce platform Wangwang (hence-
forth CS) (He et al., 2019). In a dialogue thread,
customers may raise multiple questions in a se-
quence of utterances and the seller’s answers may
appear in the following turns. Our goal is to pair a
question from the customer’s utterances and an an-
swer from the seller’s. Figure 3 shows a customer
service dialogue excerpt centered around a dress
in winter style. We observe two question-answer
pairs therein focusing on the product quality and
dress style, respectively.

𝑢"

http:xxx.com𝑢#

𝑢$

I really like this color.𝑢%
𝑢&

Is there a winter style?𝑢'

𝑢(
Why hasn’t been echoed again?𝑢)

𝑢"*

Question-Answer

Customer Server

Is this a quality product?

Hello?

Our clothes are certified products.

This is the latest style of this year.

The dress is in autumn and winter.
Question-Answer

Welcome, what can I do for you? 𝑢+

Figure 3: A Wangwang dialogue between a customer
(on the left) and a seller (from the server team on the
right) from He et al. (2019). Pairwise questions and
answers are linked and displayed with the same color.

Pairwise Ranking. To explore how responses
and initiations interact with each other, here we fol-

low previous settings to formulate our task into a
pairwise ranking problem (Wang and Rosé, 2010).
It is shown that the determination of who responds
to whom largely relies on subjective judgements
(without explicit indicators); thus we view the pair-
ing of responses to their initiations from a compari-
son perspective (instead of answering “yes or no”
in binary classification fashion).

Specifically, given a response utterance r, we
rank a set of candidate utterances with one positive
initiation q+ and u negative ones q−1 ∼ q−u . In
practice, we measure a matching score S(q, r) to
indicate the likelihood of q as r’s initiation and
the one with the highest score will be considered
as r’s predicted initiation. In Section 2.2, we will
describe how we form the candidate initiations.

2.2 Data Collection and Analysis

Data Collection. The CMV dataset gathers so-
cial media arguments, whose raw data is released
by Tan et al. (2016). For each discussion, we only
examine the context of an OH’s post and a chal-
lenger’s comment to focus on the quotation-reply
relations therein. In challenger’s comments, we
form a quotation and the utterance right after it to
be an initiation-response pair. The rest utterances in
the quoted post (from OH) are used as the negative
instances, and the samples are randomly selected
with a cap at 4 to avoid unbalanced labels. In ad-
dition, the quotation of the OH’s post is removed
from the challenger’s comment when forming an
instance.

The CS dataset is annotated and released with He
et al. (2019). The newest 4 consecutive customer’s
utterances (skipping the positive initiation) before
a seller’s response serve as the negative instances.
Here the candidate number is also capped at 4 for
comparable results with CMV.

CMV Dataset CS Dataset
# of utt. per conv 21.2±15.6 9.6±2.8
# of words per conv 403.1±292.5 130.8±73.1
# of convs 7,937 4,277
# of words per r 19.7±6.0 15.0±20.8
# of words per q+ 20.6±6.2 6.5±4.3
# of words per q− 16.5±5.0 11.2±18.7
max # of pairs 14 7
avg. # of pairs 1.1±0.3 1.7±1.1

Table 1: Data statistics. Means and standard deviations
appear before and after ±. utt. and r refers to utterance
and response, while q+ and q− for positive and negative
initiation. # of pairs represents the number of initiation-
response pairs per conversation.
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Data Analysis. Table 1 shows the data statistics,
where the two datasets exhibit different characteris-
tics. CMV arguments contain more utterances and
richer contexts (with more words) compared with
CS. For initiation-response pairs, CMV challengers
only quote once on average while the maximum
number is 14 (to extensively criticize OH’s weak
points); whereas the number of question-answer
pairs are diverse in CS dataset, ranging from 1 to 7
with 1.1 standard deviation.

3 Learning Topics and Discourse Effects
for Initiation-Response Prediction

The overall architecture of our model is shown in
Figure 4 (a). It takes an initiation candidate q, a
response r, and their corresponding contexts cq
and cr as inputs. The outputs are matching scores
indicating how likely r responds to q.

3.1 Latent Topics and Discourse Modeling
Inspired by previous efforts in neural topic mod-
els (Miao et al., 2017; Zeng et al., 2019a), we
adopt variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014) to learn la-
tent topics and discourse. It allows their associated
word distributions to be learned in neural architec-
ture and end-to-end training with other components
in a deep learning framework. The corresponding
networks are illustrated in Figure 4 (b). In below,
we first describe how we model the topics, followed
by the process to learn discourse.

Latent Topics. We first assume there are K latent
topics in the corpus, each represented by a word dis-
tribution ΦT

k (k = 1, 2, ...,K) over the vocabulary
V . The latent topics of each utterance is defined as
z and generated from the topic composition of its
context c. Here we learn utterance-level topics in
its conversation context assuming that utterances
in a discussion excerpt tend to focus on similar top-
ics. It allows the modeling of rich patterns of word
statistics for topic inference.

The following process presents how to generate
an utterance x in context of c. Here, we adopt
the bag-of-words assumption of most latent topic
models (Blei et al., 2002; Miao et al., 2017) and
generate x in its bag of words (BoW) form xBoW .

• Draw the latent topic z ∼ N(µ, σ2)
• c’s topic mixture θ = softmax(fθ(z))
• For the n-th word in x:

– βn = softmax(fΦT (θ))
– Draw the word wn ∼ Multi(βn)

where f∗(·) is a neural perceptron (fully connected
layer). The weight matrix of fΦT (·) (after the soft-
max normalization) is viewed as the topic-word
distributions ΦT .

The prior parameters µ and σ are estimated from
conversation c’s bag of words cBoW :

µ = fµ(fe(c
BoW )), log σ = fσ(fe(c

BoW )) (1)

fµ, fe and fσ are neural perceptron defined above.
As can be seen, the entire topic modeling process

follows a VAE fashion — for each utterance x, we
first encode its latent topic z from the conversation
context c (in BoW form cBoW ) and then reconstruct
its BoW (xBoW ) via decoding.

Latent Discourse. Similar to latent topics, we
represent latent discourse with word distributions
ΦD
d (d = 1, 2, ..., D) and D denotes the number of

discourse roles observed from the corpus.
Following Ritter et al. (2010), we assume each

utterance x reflects only one discourse role d (to
signal its dialogue act). It is hence represented by
a D-dimensional one-hot vector over the discourse
inventory (the high bit indicates x’s discourse role).
To learn latent discourse, we adopt the similar VAE-
based process as topic modeling with both the input
and output as utterance x’s BoW (xBoW ). First,
xBoW is encoded into its latent discourse role d
with the following formula:

π = gs(fπ(x
BoW )), d = Multi(π) (2)

where gs refers to Gumbel softmax function (Lu
et al., 2017) to encode the discrete nature of la-
tent discourse d and fπ is another neural percep-
tron. Afterwards, the decoding process reconstructs
xBoW conditioned on d with another fully con-
nected layer:

xBoW = fΦD (d) (3)

Here similar to latent topics, we utilize fΦD ’s
weights to compute discourse-word distributions.

3.2 Initiation-Response Pair Prediction
Given topic and discourse representations of a re-
sponse r (zr and dr) and those of its candidate
initiation q (zq and dq), we further predict how
likely they form an initiation-response pair with an
utterance matching process. Here we measure the
effects of topic consistency and discourse depen-
dency to indicate initiation-response relations.

For topic consistency, we capture how similar
the topics of q and r is with the following score:
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Figure 4: (a) Our model architecture to predict initiation-response pairs. We first learn latent topics and discourse
factors for both response r and the candidate initiation q in award of their contexts cr and cq and show the detailed
learning process in (b) (x denotes q or r.) Then, utterance matching is conducted to measure topic consistency and
discourse dependency. Lastly, we predict S(q, r) — the likelihood of r responding to q.

Stopic(q, r) = zTr Wtzq (4)

where Wt is a weight matrix learned to indicate the
importance of each topic factor.

Likewise, q and r’s discourse-level matching
score is denoted as Sdiscourse and defined below:

Sdiscourse(q, r) = dTr Wddq (5)

where the trainable weight matrix Wd is employed
to capture the transition probabilities from q’s dis-
course role to r’s (Pr(dr | dq)).

Further, to yield the final matching score S(q, r)
to estimate how likely r responding to q, we lever-
age Stopic(q, r) and Sdiscourse(q, r) to couple both
topic and discourse effects with the weighted sum:

S(q, r) = γStopic(q, r) + (1− γ)Sdiscourse(q, r) (6)

where γ ∈ [0, 1] is the parameter balancing the
relative contributions of topic and discourse.

3.3 Learning Objectives

Latent Topics and Discourse Modeling Loss.
We employ neural variational inference to approxi-
mate the posterior distributions over the latent topic
z and the latent discourse d.

Encoding Topics and Discourse. To examine
how to learn topics and discourse, the cross entropy
loss is used to reflect the estimation of z and d from
encoding process:

Lt = Eq(z | c)[log p(c | z)]−KL(q(z | c) || p(z)) (7)

Ld = Eq(d | x)[log p(x | d)]−KL(q(d |x) || p(d)) (8)

KL cost term is added to avoid posterior collapse.
For space limitation, we leave out the derivation
details and refer the readers to Zhao et al. (2018).

Reconstructing Utterances. For the reconstruc-
tion loss to reflect how an utterance can be inferred
from z and d, we define the loss Lx as:

Lx = Eq(z | x)q(d | c)[log p(x | z, d)] (9)

Distinguishing Topics and Discourse. As dis-
cussed above, topics and discourse are modeled in
different granularity (discourse in utterance only
while topics in richer contexts). To further distin-
guish their respective word distributions, we follow
Zeng et al. (2019a) to employ the mutual infor-
mation to define the mutual dependency of latent
topics and discourse:

Eq(z)q(d)[log
p(z, d)

p(z)p(d)
] (10)
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Further, the mutual information loss (shown in be-
low) is adopted to separate the semantic space of
topics and discourse:

LMI = Eq(z)q(d)[KL(p(d | z) || p(d))] (11)

Initiation-Response Pair Prediction Loss. To
allow positive pairs to obtain higher matching
scores than negative, we use hinge loss in train-
ing:

Lm =

u∑

i=1

max(0, λ− S(q+, r) + S(q−i , r)) (12)

where u is the number of negative initiations for
each response. λ is a margin parameter and
S(q+, r) and S(q−i , r) are the matching scores of
a response and its positive and negative initiations.

The Final Objective. Finally, we combine all the
effects above and define the overall objective of the
entire model as:

L = Lt + Ld + Lx + Lm − LMI (13)

In the training process, the optimization of final
objective L enables the end-to-end exploration of
topic and discourse representation and their joint ef-
fects to signal pairwise initiation-response relations
in conversation structure.

4 Experimental Setup

Data Preprocessing. For CMV dataset, the raw
data was preprocessed by Tan et al. (2016). We
first filter out tokens occurring less than 15 to al-
leviate sparsity and maintain a vocabulary with
15, 182 tokens. Then, we remove too short (with
less than 7 words) and too long utterances (with
over 45 words) to better explore utterance-level
word statistics for topic and discourse modeling.
Next, to form context for quotations and replies (cq
and cr), we consider all utterances in the original
post (from OH) as cq and those in the challenger’s
comment as cr. Lastly, the training and test data is
separated following Tan et al. (2016), where 6, 839
pairs are used for training and and 1, 098 for test.

For CS dataset, we don’t remove words and the
vocabulary size is 15, 407, with the scale similar to
CMV. Short utterances with less than 5 words are
removed. The Chinese word segmentation and the
separation of training and test set has been done
by He et al. (2019), with 3, 701 and 576 instances
for training and test. Here all utterances in the

dialogue thread are used to form both cq and cr due
to the synchronous nature of CS conversations.

For both datasets, 10% data is further sampled
from the training set for validation.

Model Settings. The hyperparameters are tuned
on validation set. For the number of topics (K)
and discourse roles (D), we set K = 50, D = 5
for CMV dataset and K = 10, D = 3 for CS. Max
margin weight λ is set to 10 (Eq. 12) and γ =
0.5 for balancing topic consistency and discourse
dependency (Eq. 6). In model training, we set the
batch size to 32, dropout probability to 0.5, and
the maximum epoch number to 200 (with early
stop). The trainable parameters are optimized via
stochastic gradient descent with learning rate decay,
whose initial learning rate is set to 0.1.

Evaluation Metrics. In evaluation, we exam-
ine whether the positive initiations can be ranked
higher than negative for each response. Two
widely-used information retrieval metrics Hits@N
and Mean Reciprocal Rank (MRR) are adopted. For
Hits@N we only measure the hits at the top two
retrieved initiations, i.e., N = 1, 2.

Comparison Models. We first consider three
non-neural baselines that rank initiations based
on: 1) POSITION, where earlier utterances are
ranked higher for CMV while later is higher for
CS; 2) EMBEDDING_SIM — the cosine similar-
ity between a response and an initiation utterance
measured by the average word embeddings from
Glove (Pennington et al., 2014); 3) LDA_DISC

— using cross entropy to discriminate initiation’s
and response’s topic distributions inferred by latent
Dirichlet allocation (LDA) (Du et al., 2017).

We also compare with the following neu-
ral models proposed by previous work: 1)
MALSTM (Mueller and Thyagarajan, 2016)
designed for sentence-level semantic matching
(LSTM for utterance encoding and Manhattan dis-
tance for matching); 2) COATTENTION (Ji et al.,
2018b) proposed for pairwise argument quality
evaluation, where a co-attention network learns
alignment representations and a BiGRU layer com-
putes similarity for matching. 3) RPN (He et al.,
2019), the state-of-the-art model for question-
answer pairing in dialogues that ranks initiations
by recurrent pointer networks (RPN).

In addition, we consider the following neural
matching models with a fully connected layer to
score initiation-response pairs and the following
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encoders for utterance-level representation learn-
ing: RNN (henceforth MATCH_RNN), autoen-
coder (henceforth MATCH_AE), variational au-
toencoder (henceforth MATCH_VAE), and dis-
crete variational autoencoder (Zhao et al., 2018)
(henceforth MATCH_DVAE).

Further, to study the relative contributions
of topic consistency and discourse depen-
dency, we compare with our two ablations,
one only explores the topic effects (henceforth
TOPIC_ONLY) and the other discourse (henceforth
DISCOURSE_ONLY).

5 Results and Discussions

5.1 Main Comparison Results

The overall results are shown in Table 2. Several
interesting observations can be drawn.

• All models yield generally better performance
on CS than CMV. It shows that initiation-response
links are more difficult to be identified on dialogues
in argumentative than everyday styles.

• Neural networks perform better than non-neural
baselines. Initiation-response pair prediction is
challenging, where shallow features from position,
word embeddings, and LDA-based latent topics
cannot guarantee good performance. Neural mod-
els explore deeper semantic features and hence pro-
vide better results.

• Autoencoders can learn useful representations.
It is observed that models based on autoencoders
perform generally better than other neural models.
This shows that autoencoders are effective in en-
coding utterances compared with other alternatives,
such as RNN.

• Topics contribute more on CMV while discourse
is more useful in CS. TOPIC_ONLY performs much
better than DISCOURSE_ONLY on CMV, while the
opposite is observed on CS. It is probably because
of the richer context in CMV to learn latent top-
ics (with more words per conversation as shown in
Table 1), while the synchronous CS dialogues ex-
hibits richer discourse word patterns from back and
forth interactions between participants and hence
allow better discourse modeling.

• Our model significantly outperforms all compar-
isons. This shows that the joint effects of topics
and discourse can usefully indicate the relations of
initiations and responses in conversation context.

5.2 Effects of Topics and Discourse
We have shown the joint effects of topics and dis-
course to signal initiation-response relations. Here
we further analyze what we learn for topic and
discourse representations.

0

0.2

0.4

0.6

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

CMV Dataset

Positive Pair Negative Pair

0
0.1
0.2
0.3
0.4

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

CS Dataset

Positive Pair Negative Pair

Figure 5: The distribution of topic similarity in the
CMV dataset (a) and CS (b). X-axis shows similarity
intervals and y-axis indicates proportions. For each
interval, positive pair results are displayed on the left
(in blue) and negative on the right (in orange).

Topic Effects. We first analyze the effects of
topic consistency and compute the cosine simi-
larity of the latent topics we learn for responses
(zr) and candidate initiations (zq). The distribu-
tions over positive and negative pairs are shown in
Figure 5. For both datasets, our model generally
assigns higher topic similarity for positive pairs
than negative, probably because responses tend
to follow the concern of initiations and are hence
likely to contain similar topic words. We also ob-
serve a proportion drop in very similar positive
pairs (sim > 0.8), indicating that most responses
do not echo what were said in initiations, though
their topics might be similar. Nevertheless, nega-
tive pairs exhibit different distributions compared
with the positive ones. Our model is able to capture
such features in topic consistency modeling (Eq.
4), which might help in distinguishing positive and
negative initiations for a response.

0

0.05

0.1

0->0 2->2 3->2 3->3 3->4 4->0 4->4

CMV Dataset

Positive Pair Negative Pair

0
0.2
0.4
0.6
0.8

1->2 1->4 2->2 2->3 2->4 4->2 4->4

CS Dataset

Positive Pair Negative Pair

Figure 6: The transition distributions of discourse roles
from initiations to responses, CMV in (a) and CS in (b).
Only the top 5 transitions observed in positive (on the
left in blue) and negative pairs (on the right in orange)
are displayed. X-axis: initiation-response discourse
roles (dq → dr); Y-axis: proportions.

Discourse Effects. We then discuss how dis-
course dependency affects the prediction of
initiation-response pairs. The transition distri-
butions of discourse roles from initiations to re-
sponses (dq → dr) are shown in Figure 6. As can
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2*Models CMV Dataset CS Dataset
Hits@1 Hits@2 MRR Hits@1 Hits@2 MRR

Non-Neural Models
POSITION 24.68* 24.68* 24.68* 49.13* 49.13* 49.13*
EMBEDDING_SIM 22.77* 45.00* 48.66* 17.01* 39.06* 44.04*
LDA_DISC 24.68* 42.99* 47.77* 26.39* 49.65* 52.40*
Neural Models
MALSTM (Mueller and Thyagarajan, 2016) 29.87* 42.99* 50.91* 43.58* 72.40* 65.80*
COATTENTION (Ji et al., 2018b) 47.72* 68.31* 67.26* 51.56* 79.17* 71.77*
RPN (He et al., 2019) 46.45* 67.21* 66.22* 52.95* 80.21* 72.69*
MATCH_RNN 49.45* 71.58* 68.79* 50.00* 80.38* 71.13*
MATCH_AE 51.82* 74.77‡ 70.50* 52.78* 82.12‡ 72.88*
MATCH_VAE 53.19* 73.95‡ 71.11‡ 52.60* 81.42* 72.70*
MATCH_DVAE 47.45* 69.95* 67.34* 53.82* 82.81‡ 73.65*
Ablations
TOPIC_ONLY 58.20 76.14 73.78 42.53* 69.10* 64.11*
DISCOURSE_ONLY 41.44* 63.02* 62.20* 48.96* 76.04* 69.76*
Our model 59.74 76.23 74.41 64.93 84.20 79.23

Table 2: Comparison results on two datasets and our model achieves the best results under all settings. * and ‡

indicates that our model significantly outperforms the comparison model (* for p<0.01 and ‡ for p<0.05, both
measured with Wilcoxon signed rank test).

be seen, the discourse transition distributions in
CS dataset are diverse for positive and negative
pairs. It may help explain why discourse can better
signal initiation-response pairs on CS compared
with CMV (observed from DISCOURSE_ONLY’s
performance in Table 2). For CMV, there are
slightly different distributions for positive and neg-
ative pairs. For this reason, topic factors may con-
tribute more than discourse (seen via comparing
DISCOURSE_ONLY and TOPIC_ONLY on CMV).
This also indicates that discourse modeling for ar-
gumentative dialogues is challenging, which may
require the learning of more complex features other
than word statistics and is beyond the capacity of
our model.

6 Related Work

Our work is in the line with prior efforts to detect
initiation-response pairs. Wang and Rosé (2010)
explore how topic features discovered via latent se-
mantic analysis (LSA) work in this task, largely
ignoring the effects of discourse roles. On the
contrary, our study shows that both topics and dis-
course are helpful to identify who respond to whom
in conversation structure. Other related work (Jami-
son and Gurevych, 2014; Du et al., 2017; Chen
et al., 2017) focus on the design of hand-crafted
features. Recently, there exists a growing attention
over how neural framework perform to identify
replying relations in conversation discourse (Guo
et al., 2018; He et al., 2019). However, they ignore
the effects of latent topics and discourse to structure
a conversation, which are extensively studied here

and shown useful to indicate initiation-response
relations in experiments.

We are also inspired by the previous approaches
to discover latent topics and discourse in conversa-
tions contexts. Many of them employ probabilistic
graphical models in LDA-fashion to explore word
statistics (Ritter et al., 2010; Li et al., 2018a; Zeng
et al., 2018). We take the advantage of the recent
progress to explore conversation representations
via variational autoencoders (VAE) (Miao et al.,
2017; Zhao et al., 2018; Zeng et al., 2019a), al-
lowing to capture topic and discourse factors in
an unsupervised manner. However, their effects to
signal user interactions in conversation structure
have never been studied before, which is a gap our
work fills in.

7 Conclusion

This work explores the effects of latent topics and
discourse roles to signal initiation-response rela-
tions that structure a conversation. We first em-
ploy a VAE-based neural model to capture topic
and discourse representations in an unsupervised
manner. Then, topic consistency and discourse
dependency are further exploited to predict how
likely an utterance responds to an initiation. Exten-
sive experiments on large-scale datasets containing
asynchronous English argumentative conversations
(from the CMV subreddit) and synchronous Chi-
nese customer service dialogues (from Wangwang
platform) show that our model significantly outper-
form the previous state-of-the-art models.
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Limitations

The model’s performance relies on preprocessing
steps, such as token filtering and utterance length
restrictions, which could potentially introduce bias
or eliminate valuable information. To address this
issue, the use of modern tokenizers and large lan-
guage models may be beneficial. Additionaly, in
terms of multi-lingual generalizability, the model’s
ability to identify initiation-response pairs in asyn-
chronous English argumentative conversations and
synchronous Chinese customer service dialogues
may not readily transfer to other languages.
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A Position Distribution of Datasets
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Figure 7: The distribution over relative positions of ini-
tiations and responses. X-axis: initiations’ utterance
order counted from responses (only considering cus-
tomer’s or OH’s turns). Y-axis: proportions.

We analyze the relative positions of initiations
and responses and show the distribution of their in-
termediate utterance number in Figure 7. As can be
seen, large proportion of responses do not interact
with the closest utterance, though CS sellers do re-
spond more to newer questions, probably because
of recency effects in in synchronous dialogues —
people’s attention tends to be drawn by new infor-
mation. However, in asynchronous forum discus-
sions, CMV challengers are more likely to quote
the opening points in OH’s post. Another possible
reason is that most key arguments are located at the
beginning of a post.

B Further Discussions

B.1 Parameter Analysis.

Here we present in-depth analyses of our model
and start with the discussion of two important pa-
rameters — the number of topics (K) and discourse
(D).

Varying Topic Number. Figure 8 (a) shows
how Hits@1 scores change over varying num-
ber of topics (K). For comparison, we also dis-
play MATCH_DVAE’s results, the best comparison
model in Table 2. For relatively large K, our model
performs consistently better than MATCH_DVAE.
We also find that the our trend on both datasets
are not monologues, where the best performance
is attained at K = 50 for CMV and K = 10 for
CS. This implies that the topics in customer service
dialogues are limited (focusing on products) while
participants may discuss wide range of topics in
social media debates.
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Varying Discourse Number. The results for vary-
ing discourse number (D) are displayed in Figure 8
(b). Similar to K, our model exhibits consistently
better results than MATCH_DVAE for D > 1. It
is also observed that CS is more sensitive to D
compared with CMV, indicating that discourse fac-
tors largely affect the initiation-response prediction
results on CS.
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Figure 8: Hits@1 over varying number of topics and
discourse X-axis: topic number (K in (a)) and discourse
number (D in (b)). Y-axis: Hits@1 score. Blue and red
curves: our model on CMV and CS. Purple and black
lines: MATCH_DVAE on CMV and CS.

B.2 Case Study.

To further examine what we learn to represent top-
ics and discourse, we take the CMV conversation
snippet in Figure 1 as an example to analyze the
topic and discourse words assigned by our model.
Recall that R answers C1’s question suggested by
the shared pronoun “that” and the similar topics
they concern. Figure 9 shows the visualization re-
sults and displays topic words in red and discourse
in blue. It is observed that our model is able to
separate topic words (e.g., “thank”, “private”, and
“public) from discourse (e.g., “that”, “what”, and
“?”), which may resulting in coherent topic and
discourse distributions and indicative representa-
tions to signal initiations-response relations. Inter-
estingly, discourse words are mostly stop words
and punctuation. Their meaningful clusters exhibit-
ing different statistic patterns might usefully indi-
cate varying discourse behaviors in conversations,
which is consistent with the findings from previous
studies (Li et al., 2018b; Zeng et al., 2019a).

B.3 Downstream Task.

In Introduction, we mentioned that the detection of
initiation-response pairs may contribute to a better
understanding of conversation structure and hence
benefit downstream applications. Here we take the
prediction of argument persuasiveness as an exam-
ple to discuss whether the representations learned

Figure 9: Visualization of the topic and discourse word
assignment for the CMV conversation snippet in Fig-
ure 1. The blue words are prone to indicate discourse
(p(w | d) > p(w | z)) while red topic. Darker colors
indicate higher confidence.

by our model can advance the state-of-the-art per-
formance on this task. Table 3 shows the perfor-
mance of the non-neural baseline (Tan et al., 2016),
the state-of-the-art model (Ji et al., 2018b), and Ji
et al. (2018b) incorporating the topic and discourse
representations we learn (z and d). The dataset is
also collected from CMV and argument quality is
labeled by ∆ (given by OH to indicate the success-
ful persuasion). It is seen that the latent topics and
discourse learned to signal initiation-response rela-
tions can indeed help to predict argument quality,
suggesting that the persuasiveness of arguments are
closely related to the structure of who respond to
whom in argumentation processes.

Models Pairwise accuracy
Tan et al. (2016) (baseline) 65.70

Ji et al. (2018b) (SOTA) 70.45
Ji et al. (2018b)+Our model 74.12

Table 3: The pairwise accuracy to predict argument
persuasiveness. The results in the first two rows were
reported in their original paper. Our representations
help advance the state of the art (SOTA).
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