Incremental pre-training from smaller language models

Han Zhang', Hui Wang?*, and Ruifeng Xu'23*
! Harbin Institute of Technology, Shenzhen, China
2 Peng Cheng Laboratory, Shenzhen, China
3 Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
hanlardresearch@gmail.com, wangh@6@pcl.ac.cn, xuruifeng@hit.edu.cn

Abstract

Large language models have recently become
a new learning paradigm and led to state-of-
the-art performance across a range of tasks. As
explosive open-source pre-trained models are
available, it is worth investigating how to better
utilize existing models. We propose a simple
yet effective method, Incr-Pretrain, for incre-
mentally pre-training language models from
smaller well-trained source models. Differ-
ent layer-wise transfer strategies were intro-
duced for model augmentation including pa-
rameter copying, initial value padding, and
model distillation. Experiments on multiple
zero-shot learning tasks demonstrate satisfying
inference performance upon transferring and
promising training efficiency during continu-
ing pre-training. Compared to training from
scratch, Incr-Pretrain can save up to half the
training time to get a similar testing loss.

1 Introduction

Large language models have led to state-of-the-
art accuracies across a range of tasks and have
demonstrated strong performances with few-shot
in-context learning (Zhang et al., 2020b; Zeng et al.,
2021; Brown et al., 2020). From GPT (Radford
et al., 2018) to Switch-Transformer (Fedus et al.,
2021), the number of parameters grows from 125
million to 1.6 trillion at an exponential rate. The
study of GPT3 (Brown et al., 2020) shows that
a large language model (up to 175 billion) can
have strong context learning ability, and obtains
comparable performances with state-of-the-art fine-
tune style methods even without any parameter
updating. An empirical scaling law (Kaplan et al.,
2020) shows that the larger models with wider and
deeper architecture are significantly more sample-
efficient on a relatively modest amount of data.
Furthermore, as the model size increases, there is
still room for performance improvement.

5

R. Xu and H. Wang are corresponding authors.

36

However, training large language models from
scratch always costs huge computing resources and
time. For instance, NVIDIA leveraged their Selene
supercomputer to perform scaling studies and used
up to 3,072 A100 GPUs for training the largest
Megatron (Shoeybi et al., 2019) model (1 trillion
parameters). OpenAl spent 355 GPU-years for
training GPT-3 (Brown et al., 2020), and the to-
tal costs are more than ten million dollars. Most
existing model transfer methods aim at improving
the performance of downstream tasks, e.g. transfer
learning (Zhuang et al., 2019) or speeding up the
inference process, e.g. knowledge distillation (Gou
et al., 2020), but studies for accelerating model
pre-training from scratch remain limited. To our
knowledge, no research on how to transfer a small
pre-trained model to a large model has been done.

We introduce Incr-Pretrain to augment a smaller
source Transformer model to a larger target model
and make them have comparable performances,
both upon transferring and after continuing pre-
training. Different layer-wise transfer strategies
are introduced for model augmentation including
parameter copying, padding and model distillation.
Specifically, we propose a KL-divergence-based
approximation method to distill the LayerNorm
layer to address a mathematically intractable issue
during transferring. We tested our method’s perfor-
mance on zero-shot tasks of BERT-base and GPT-2,
and the results show that the augmented models ob-
tain satisfying performances. When incrementally
training a dialogue-GPT model on different scales,
the training and testing losses can continue declin-
ing from the values before transferring. The total
training time can be saved up to half compared with
that training from scratch.

To the best of our knowledge, this is the first
parameter-based method for incrementally pre-
training language models. Our method can help
reduce the heavy resource cost of training large
language models from scratch and can be applied

Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), pages 36—44
August 16, 2024 (©2024 Association for Computational Linguistics

to almost any open-source pre-trained model in the
Transformers library (Wolf et al., 2020). The pro-
posed method is also compatible with mainstream
parallel training techniques. We summarize our
contributions as follows: 1) We prove that it is fea-
sible to train a larger language model from smaller
Transformer models without training from scratch;
2) We propose a distillation-based method to trans-
fer the LayerNorm parameters.

2 Method

We present the implementation of Incr-Pretrain
in the scenarios of both widening and deepening
a Transformer model. For widening the model,
we use parameter copying and padding to trans-
fer the embedding, attention and MLP layers and
a distillation-based method to adjust the Layer-
Norm’s parameters to the new input distribution
due to the changed input dimension problem. For
deepening the model, we initialize the deeper lay-
ers with small parameter values, the noise of which
could be overwritten by the residual connection
setting and have less adverse impact on the entire
model. The overall framework is shown in Figure
1.

Target model

Source model

Add & Norm .

Feed I
Forward I
Add & Norm
Multi-Hy I
Attention

ead
P ¢

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

N Student
Supervise

>

Copy

Embedding
Weight

Positional, E

Encoding

Embedding

Embedding

Figure 1: The Incr-Pretrain framework

2.1 Widen the model

Linear transformation is the basic operator that
exists in both the multi-head attention and feed-
forward layer. Incr-Pretrain transfers a smaller-size
matrix of the linear transformation from the source
model to a bigger matrix in the target model. As
shown in Figure 2, by padding small random val-
ues or zeros at the tail of the source matrix, both
vertically and horizontally, the result of the matrix
multiplication is approximate to that by directly
doing matrix multiplication on the source matrix.
This is ensured by the block matrix multiplication

37

rule. We also prove that if we pad random values
§ ~ N(0, 0?) to the dense layer, the changes on the
output can be controlled in O(c?) (Appendix). Es-
pecially, if o reduces to zero, the nonzero values in
the matrix multiplication result will be unchanged.

A 0(8?) AX 0(8?)

RRRRRISE H H

Figure 2: Block matrix multiplication

X

(1 [T >

In the multi-head attention layer, parameters are
the weights and biases in linear transformation for
queries, keys, and values. So we can also apply
the above method to the attention layer. To ensure
the attention score of each head is valid, we can
keep each attention head dimension fixed and only
increase the head number, or keep the head num-
ber and pad values to each attention head, either
combination is feasible. In the embedding layer,
we directly pad small random values or zeros to the
source embeddings. According to the block matrix
multiplication rule, the inner product similarity of
any two-word vectors will not change much, which
is critical to the attention layer.

2.2 Transfer LayerNorm

LayerNorm is a technique to normalize the distri-
butions of intermediate layers. It enables smoother
gradients and faster training by re-centering and
re-scaling both inputs and weight matrix. How-
ever, both re-centering and re-scaling operations
are related to the hidden size, which would change
after transferring. Mathematical inequivalence will
affect the performance of the target model, but the
scaling weight and bias can be updated fast after
training several steps to adjust new model parame-
ters.

We introduce a distillation-based method for
transferring the LayerNorm layer. Let input x €
R, LayerNorm re-centers and re-scales z as
h; = gi - N(z;) + b;, where N (z;) = (z; — u) /o,
p= (L @) H, o = (S (@i — p)? [H)V.
h is the output of the LayerNorm layer, (-); is the
scalar value of the ¢-th dimension, and p and o
are the mean and standard deviation of the input.
The bias b and gain g are parameters with the same

dimension H.
Let z = (.%'1,.%'2,...,xH,el,...,QD_H) be
the input e.g. padded word embeddings, & €

RP. Since we padded D-H values to the
input, the mean and variance were changed.
We define hi = gz N(D+ b, N(xz) =
Ti— [i —

5 H (Zz 1x2+ZD He)/D o =
(/L (@ —)2 + 5257 (0: —)%)/D) V2. To
make the outputs of source and target LayerNorm
equal, for every integer 7 in section [1, H], we need
to let

gi - N(3:) + b = i - N(x:) + by,

1
Vie[l,H NN W

So we established a equation where the variables
are g; and b;,i € [1,H] N N. We need to find
a set of solutions to Eq. 1 which are viable for
V(x1,x9,...,2x). In particular, for any word in-
dex k € [1, |[Vocab|] NN, the equation & is

g

7k S 2
(e w)(§) e
where E is the unit matrix, Nk =
Diag(N(z%), N(25),..., N(z%)). Unfortu-

nately, we found that Eq. 2 is intractable, the proof
is presented in Appendix.

The gain and bias are parameters that can be
updated based on gradient, so we construct a loss
function to train the LayerNorm parameters in the
target model by calculating the KL.-divergence be-
tween the outputs from the target and source. The
loss function L is defined as

L= DKL(P(:U|950’LLTCC)3 P(:Ewmrget))

By minimizing the loss, the target and source Lay-
erNorm outputs are converging.

3

2.3 Deepen the model

Deepening the neural network is the most common
way to increase the model size. When we transfer
a source model with few layers to a deeper tar-
get model, the parameters in deeper layers need
to be initialized with small values. In both self-
attention and MLP layers, the small parameters 6
will result in small layer output layer(x|6), so the
output through residual connection layer(z|0) + x
approximates to z. It enables the deeper layers will
not change the output distribution of shallow layers
much, so a deeper target model can have similar
output distributions to the source model.

38

3 Experiments

We conducted extensive experiments on inference
upon transferring and continuing pre-training. We
tested BERT on the cloze tasks and GPT on the next
word prediction tasks, which are corresponding ob-
jectives at their stages of pre-training. To validate
the time efficiency of using Incr-Pretrain, we con-
tinued to pre-train the target model and compared
the loss curve with that of training from scratch.

3.1 Inference upon transferring

We tested BERT on the LAMA (Petroni et al.,
2020) dataset and GPT-2 on the Lambada (Pa-
perno et al., 2016), ClozeStory (Bugert et al., 2017),
and HellaSwag (Zellers et al., 2019) datasets with
a zero-shot method without any continuing pre-
training.

Datasets BERT is a masked language model
whose primary pre-training task is mask filling
(cloze), so the performance on the cloze task is
the most effective indicator. The language model
tested on LAMA needs to understand the whole
sentence and predict the masked keyword. Consid-
ering that some samples are too difficult to BERT
in zero-shot tasks, to reduce the impact of random-
ness, we let BERT predict 5 times for each sample,
and if any time the correct answer is predicted, we
consider it correct.

GPT is a causal language model (CLM) that
is pre-trained by predicting the next word with
only one side of the text visible. LAMBADA, sto-
ryCloze, and HellaSwag are all datasets that aims
to predict the ending text piece(s), so they are con-
sistent with the pre-training process of the causal
language model. In this task, we let GPT predict
only one time on the test part of LAMBADA, the
test part of StoryCloze, and the dev part of Hel-
laSwag. On StoryCloze and HellaSwag datasets,
the inference method is the same as the perplexity-
based method (Zeng et al., 2021).

Configuration We compared three types of mod-
els on both datasets. The Source models exist as
open-resource models, i.e. BERT and GPT-2. The
Target models are the basic enlarged versions in
which parameters of each layer are directly copied
from the Source models with padded values. For
attention, we let the number of heads increase but
the dimension of each head is unchanged. We set
o as zero to make the calculation as equivalent as
possible and also reduced the impact of random-
ness on the experiment. Compared to the target

models, the Target-LN models further transfer the
LayerNorm parameters using the distillation-based
method training on only 2,425 short dialogues (Eric
and Manning, 2017).

The results of the inference tasks are shown in
Table 1. We observe that after transferring, the per-
formances of the Target models drop dramatically
compared with the Source models. This is likely
due to the LayerNorm part, which is not mathemat-
ically equivalent when transferring. In comparison,
the Target-LN (Both GPT and BERT) models are
comparable with the Source models, which shows
that the distillation-based approximation method is
effective.

Table 1: Results on zero-shot tasks. All datasets are
evaluated by accuracy, and perplexity(PPL) is evaluated
on LAMBADA. *Target-LN uses the distillation-based
method to adjust the LayerNorm parameters of target
model.

from small to large, the amount of training time
that can be saved declines, which is likely due to
pre-training larger models needing more computa-
tion. (Kaplan et al., 2020).

From Scratch Medium To Large

55

—— Model-Medium
Model-Large
—— Transfer

—— Model-Small \
Model-Medium \
—— Model-Large

5.0+

4.5

4.0

35

Small To Medium Small To Large

5.5

—— Model-Small
Model-Large
—— Transfer

—— Model-small
Model-Medium
—— Transfer

501

4.5

4.0 q

35

T T T T T T
o] 5000 10000 15000 0O 5000 10000 15000

Figure 3: Testing Loss

Table 2: Pre-training time saved. Pre-training steps num-
ber when reaching the same loss. ECPN: enlargement

Model Dataset Source Target Target-LN .

BERT ConceptNet 26,00 15.24 27.66 coefficient of parameters number, PPTS: percentage of

BERT Squad 15.89 10.26 15.89 pre-training time saved.

BERT Google_RE 5.06 4.29 5.23

BERT TREx 19.45 11.22 17.49 Train Mode Steps ECPN PPTS
GPT PPL 80.37 214.1 95.56 GPT-S/M/L from scratch ~ 14.5k - -
GPT LAMBADA 20.28 16.83 20.88 GPT-S to GPT-M 7.05k 2 51%
GPT StoryCloze 59.40 53.10 59.20 GPT-M to GPT-L 8.50k 3 41%
GPT HellaSwag 21.65 22.87 23.08 GPT-S to GPT-L 9.50k 6 34%

3.2 Continuing pre-training

We pre-trained three sizes of Dialog-GPT models
on a benchmark dialog corpus (Zhang et al., 2020a)
to validate our incremental pre-training method,
including small, medium, and large versions. We
conducted transfers between models of different
sizes and the model configuration details are shown
in Appendix. We pre-trained the three GPT models
for 14.5k steps with the batch size 32, and per-
formed the model transfer from the checkpoints of
the 5,000th steps. The testing losses of different
models are shown in Figure 3. In general, the loss
values can continue declining from a smaller value
after transferring. We did not use the distillation-
based method to transfer LayerNorm parameters
since it is no longer needed to make the model
converge to the source model during continuing
pre-training. As shown in Table 2, training GPT-
m using Incr-Pretrain only costs 7.05k steps to
reach a testing loss value comparable with that
of 14.5k steps training from scratch. This shows
that our method saves about 51% of the training
time. However, as more parameters are padded, e.g.

39

Further experiments showed that using our trans-
fer method, the amount of pre-training time saved
depends on not only the enlargement of the num-
ber of parameters but also the padding values.
When padding zeros, the testing loss can decline
starting from near to the loss value of the source
model but converging slowly. Considering previous
work (Glorot and Bengio, 2010; He et al., 2015)
on parameter initialization, we padded smaller ran-
dom values instead of zeros, and the convergence
can accelerate much. More experimental details
are presented in the Appendix.

4 Conclusion

We propose a transfer strategy that can incremen-
tally pre-train language models with acceptable per-
formance decreases. The inference performances
show that the target models are comparable with
the source models. The continuing pre-training ex-
periment demonstrates that the transfer method is
computationally efficient compared to pre-training
a large model from scratch. Our future directions
will be transferring with different parallel styles
and exploring the influence of padding values.

Limitations

During the process of incremental pre-training, al-
though this method effectively reduces training
time and achieves test losses close to those obtained
by training from scratch, the percentage of pre-
training time saved gradually decreases as the num-
ber of model parameters increases. For instance,
transitioning from a small to a medium-sized model
can save approximately 51% of training time, but
extending from a small directly to a large model
reduces the saving to 34%. This indicates a dimin-
ishing marginal return in pre-training efficiency as
the model scale expands.

Acknowledgements

This research was supported in part by the
Major Key Proiect of PCL (NO.PCL2023A09
and NO.PCL2023AS7-1), the National Key Re-
search and Development Program of China
(2021ZD0112905), the National Natural Science
Foundation of China (62176076), the Guang-
dong Provincial Key Laboratory of Novel Secu-
rity Intelligence Technologies(2022B1212010005),
Natural Science Foundation of Guangdong
(2023A1515012922), and Shenzhen Foundational
Research Funding (JCYJ20220818102415032).

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Michael Bugert, Yevgeniy Puzikov, Andreas Riicklé,
Judith Eckle-Kohler, Teresa Martin, Eugenio Mar-
tinez Camara, Daniil Sorokin, Maxime Peyrard, and
Iryna Gurevych. 2017. LSDSem 2017: Exploring
Data Generation Methods for the Story Cloze Test. In
Proceedings of the 2nd Workshop on Linking Models
of Lexical, Sentential and Discourse-level Semantics
(LSDSem), pages 5661, Valencia, Spain. Associa-
tion for Computational Linguistics.

Mihail Eric and Christopher D. Manning. 2017. Key-
value retrieval networks for task-oriented dialogue.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

40

X. Glorot and Y. Bengio. 2010. Understanding the diffi-
culty of training deep feedforward neural networks.
Journal of Machine Learning Research, 9:249-256.

J. Gou, B. Yu, S. J. Maybank, and D. Tao. 2020. Knowl-
edge distillation: A survey.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Ferndndez. 2016. The lambada dataset: Word predic-
tion requiring a broad discourse context.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktischel, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In Automated
Knowledge Base Construction.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yi-
fan Yao, Xinjing Huang, Jun Wang, Jianfeng Yu,
Qi Guo, Yue Yu, Yan Zhang, Jin Wang, Hengtao
Tao, Dasen Yan, Zexuan Yi, Fang Peng, Fangqing
Jiang, Han Zhang, Lingfeng Deng, Yehong Zhang,
Zhe Lin, Chao Zhang, Shaojie Zhang, Mingyue Guo,
Shanzhi Gu, Gaojun Fan, Yaowei Wang, Xuefeng
Jin, Qun Liu, and Yonghong Tian. 2021. Pangu-
a: Large-scale autoregressive pretrained chinese lan-
guage models with auto-parallel computation.

https://arxiv.org/abs/arXiv:2005.14165
https://aclweb.org/anthology/W/W17/W17-0908.pdf
https://aclweb.org/anthology/W/W17/W17-0908.pdf
https://arxiv.org/abs/arXiv:1705.05414
https://arxiv.org/abs/arXiv:1705.05414
https://arxiv.org/abs/arXiv:2101.03961
https://arxiv.org/abs/arXiv:2101.03961
https://arxiv.org/abs/arXiv:1502.01852
https://arxiv.org/abs/arXiv:1502.01852
https://arxiv.org/abs/arXiv:2001.08361
https://arxiv.org/abs/arXiv:1606.06031
https://arxiv.org/abs/arXiv:1606.06031
https://openreview.net/forum?id=025X0zPfn
https://openreview.net/forum?id=025X0zPfn
https://arxiv.org/abs/arXiv:1909.08053
https://arxiv.org/abs/arXiv:1909.08053
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/arXiv:1905.07830
https://arxiv.org/abs/arXiv:1905.07830
https://arxiv.org/abs/arXiv:2104.12369
https://arxiv.org/abs/arXiv:2104.12369
https://arxiv.org/abs/arXiv:2104.12369

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020a. Dialogpt: Large-scale
generative pre-training for conversational response
generation. In ACL, system demonstration.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan
Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao
Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, and Maosong
Sun. 2020b. Cpm: A large-scale generative chinese
pre-trained language model.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. 2019. A comprehensive survey on transfer learn-
ing.

41

https://arxiv.org/abs/arXiv:2012.00413
https://arxiv.org/abs/arXiv:2012.00413
https://arxiv.org/abs/arXiv:1911.02685
https://arxiv.org/abs/arXiv:1911.02685

A Experimental Details

In the distillation-based method, we used the Adam optimizer, the learning rate was set as 1E-4, batch
size as 8, and the sequence length as 512. Other model configurations are shown in Table 3. We used the
KVRET corpus to train the LayerNorm parameters in GPT-2 for 20k steps (about 3 hours on NVIDIA-
V100) and discovered that using pseudo inputs constructed by randomly choosing word indices produced
better results than those from the real corpus when transferring BERT’s LayerNorm parameters.

In the continuing pre-training experiments, we used the Adam optimizer and linear warm-up at the first
100 steps, the learning rate was 1.5E-4, and the batch size was 32. As shown in Figure 4, we compared
two padding strategies, padding zeros and padding random values § ~ N (i, 0%), u = 0,0 = 0.02. When
padding zeros, the testing loss starts from that of before-transferring, and it proved that our transferring
method is feasible. However, the test loss converged slowly since padding zeros disturbed the initialization
distribution. To speed up the incremental training process, we padded random values that follow a
normal distribution with small variance instead of zeros. Although padding random values breaks the
mathematical equivalence of transferring a bit and the loss value is higher at the beginning, the acceleration
for the convergence is remarkable.

Table 3: Model configurations for inference

Model Heads Layers Dim Total
Source BERT 12 12 768 119.5M
Source GPT 12 12 768 124.4M
Target(LN) BERT 16 12 1024 184.0M
Target(LN) GPT 16 12 1024 203.7M

Table 4: Model configurations for pre-training

Model Heads Layers Dim Total
Model-Small 6 6 384 15.8M
Model-Medium 8 8 512 32.2M
Model-Large 12 12 768 95.5M

From Scratch Medium To Large

—— Model-small —— Model-Medium
525 Model-Medium Model-Large

— Modek-Large — Transfer(PadZeros)
— Transfer(PadRandom)

Small To Medium Small To Large

—— Model-small
525 Model-Medium

—— Transfer(PadZeros)
5.00 —— Transfer(PadRandom)

—— Model-small
Model-Large

—— Transfer(PadZeros)

—— Transfer(PadRandom)

350

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Figure 4: Comparison on the testing loss

B Proof-1

We prove that if we pad random values 6 ~ N (0, o) to the parameters of the dense layer, the changes of
output can be controlled in O(c?).

For simplicity of proof, we consider a fully connected layer with a mapping function F : R — R
F(z) = Ax + b, where A € R*H b ¢ R¥ and x is a input column vector such as word embeddings.
The padded layer can be expressed alike, i.e. F:RP & RD, F(f() = AX+ b, A € RPXD b RD,
where

42

i A7 A1 - b s T
A= ()= (5) == ()

All of the A;(i = 1,2,3), 5, and x are independent and identically distributed to the Gaussian
distribution N (0, 02), while A and z are constants.

MoaN Axr+Aix+Db
k(@) = < A2x+A3X+ﬁ>

So the mathematical expectation is

E(F(x)) =

E(Ax) + E(A1)E(x) + E(b) >

The variance is
ey (- D(AX) + D(Ary) + D(b)
DFE) = | DAy + ID)(Algx) +D(B))
(B e,)
—7 @+ x2+ (D~ H)o)E,

RDfH

where 10y is all-one tensor with the same shape of tensor (*) ,F; € R andE, € are all-one

column vectors, x? is elements squared of x, and |x|? is the square of the norm of x.

Above all, we proved that the padded dense layer maintains the same mathematical expectation with that
of before-padding, and the variance is O(c?). Therefore, if we pad random values with small variances,
the output of the model will not change much. Especially, if the variance reduces to zero, the output will
be unchanged.

When applying the method to the multi-head attention layer, we can pad random values § ~ N (0, 02)
to the parameters of queries, keys, and values. The output of the attention layer is SoftMax((QT +
O(0?)) x (K 4+ 0(0?))) x (V +0(c?)), so if the variance o is zero, the output of attention layer remain
unchanged after padding.

C Proof-2

We prove that Eq. 2 has no solution. According to the laws of linear equations, we only need to prove that
the rank of the coefficient matrix is not equal to that of the augmented matrix. The augmented matrix Ay
of Eq. 2 is

\/|V ocab Vocab
NI oca|’ E, h!V ocabl

Let the last |V ocab| — 1 row blocks subtract the first row block, the augmented matrix A changes to

Nt E, h!
R N2_-N', 0, h%>—h!
A =) . .
N|Vocab'\ o Nl 0 h|Vocai)\ _ht
43

Let the first column block subtract the product of N and the second column block, and the third column
block subtract the product of h! and the second column block, the augmented matrix A; changes to

0, E, 0

N N2—-N' 0, h%2-n!

Ag = : : :
N|Vocal;\ _ N1 0 h|Voca£)\ _ht

After going through a similar matrix transformation, the coefficient matrix A changes to

0, E

NZ_NL 0

Ay =))

N|Vocab'\ _ N1 0

We define N* and h* as follows:
N2 _ N1 h? — h'
. N3 - N! h® —h'
N* =) JhY =

RIVI— BVl p!

According to the calculation of N* and h*, they are not linearly dependent. Obviously, it is equivalent
to that the matrices Ao and A, have different ranks. So Eq. 2 has no solution.

D Figures

KL divergence

Freezing

Updating

Feed
Forward

Multi-Head
Attention

Feed
Forward

Multi-Head
Attention
AL A

Positional Positional
Enco

Figure 5: Overview of the distillation-based method

44

