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Abstract 

This paper describes the SIGHAN-2024 

shared task for Chinese dimensional aspect-

based sentiment analysis (ABSA), 

including task description, data preparation, 

performance metrics, and evaluation results. 

Compared to representing affective states 

as several discrete classes (i.e., sentiment 

polarity), the dimensional approach 

represents affective states as continuous 

numerical values (called sentiment intensity) 

in the valence-arousal space, providing 

more fine-grained affective states. 

Therefore, we organized a dimensional 

ABSA (shorted dimABSA) shared task, 

comprising three subtasks: 1) intensity 

prediction, 2) triplet extraction, and 3) 

quadruple extraction, receiving a total of 

214 submissions from 61 registered 

participants during evaluation phase. A total 

of eleven teams provided selected 

submissions for each subtask and seven 

teams submitted technical reports for the 

subtasks. This shared task demonstrates 

current NLP techniques for dealing with 

Chinese dimensional ABSA. All data sets 

with gold standards and evaluation scripts 

used in this shared task are publicly 

available for future research. 

1 Introduction 

Aspect-Based Sentiment Analysis (ABSA) 

(Pontiki et al., 2014; 2015; 2016) is a critical NLP 

research topic that aims to identify the aspects of a 

given entity and analyze the sentiment polarity 

associated with each aspect. In recent years, 

considerable research has been devoted to ABSA, 

which can be categorized into different tasks based 

on the number of sentiment elements to be 

extracted. For example, the Aspect Sentiment 

Triplet Extraction (ASTE) task (Yuan et al., 2023; 

Chen et al., 2021; Mao et al., 2021; Peng et al., 

2020; Wu et al., 2020; Xu et al., 2020; Zhang et al., 

2020) extracts three elements in a triplet, including 

aspect/target term, opinion term and sentiment 

polarity (e.g., positive, neutral, and negative). 
Furthermore, the Aspect Sentiment Quadruple 

Prediction (ASQP) task (Cai et al., 2021; Gao et al., 

2022; Mao et al., 2022; Peper and Wang, 2022; 

Zhang et al., 2021; Zhou et al., 2023) extracts the 

same three elements plus an additional aspect 

category to construct a quadruple. 

However, compared to representing affective 

states as several discrete classes (i.e., sentiment 

polarity), the dimensional approach that represents 

affective states as continuous numerical values 

(called sentiment intensity) in multiple dimensions 

such as valence-arousal (VA) space (Russel, 1980), 

providing more fine-grained emotional 

information (Lee et al., 2022; Deng et al., 2022; 

2023; Yu et al., 2016). 

Therefore, we organized a Chinese dimensional 

ABSA shared task (dimABSA) in the 10th 

SIGHAN Workshop on Chinese Language 

Processing (SIGHAN 2024), providing fine-

grained sentiment intensity prediction for each 

extracted aspect of a restaurant review. We have 

three subtasks: 1) Intensity Prediction, 2) Triplet 

Extraction, and 3) Quadruple Extraction. 

Participants are free to participate in any or all 

subtasks. Given a sentence with/without aspects, 

participating systems should be able to extract the 
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sentiment elements with the corresponding 

valence-arousal rating values.  

The rest of this article is organized as follows. 

Section 2 provides a description of the Chinese 

dimensional ABSA shared task. Section 3 

introduces the evaluation data construction. 

Section 4 describes the performance metrics. 

Section 5 compares evaluation results from the 

various participating teams. Finally, we conclude 

this paper with findings and offer future research 

directions in Section 6.  

2 Task Organization  

This task aims to evaluate the capability of an 

automatic system for Chinese dimensional ABSA.  

The four sentiment elements are defined as follows: 

• Aspect Term (shorted as A): 

This denotes an entity indicating the opinion 

target. If the aspect is omitted without being 

mentioned clearly, we use “NULL” to represent the 

term.  

• Aspect Category (C) 

This represents a predefined category for the 

explicit aspect of the restaurant domain. We use the 

same categories defined in the SemEval-2016 

Restaurant dataset (Pontiki et al., 2016). There are 

a total of twelve categories; each can be split into 

an entity and attribute using the symbol “#” as 

follows: 1) “餐 廳#概 括” / “餐 厅#概

括”(restaurant#general); 2) “餐廳#價格” / “餐厅

#价格”  (restaurant#prices); 3) “餐廳#雜項” / 

“餐厅#杂项” (restaurant#miscellaneous); 4) “食

物#價格” / 食物#价格 (food#prices); 5) “食物#品

質” / “食物#品质”(food#quality); 6) “食物#份

量 與 款 式” / “食 物#份 量 与 款 式 ” 

(food#style&options); 7) “飲料#價格” / “饮料#价

格”(drinks#prices); 8) “飲料#品質” / “饮料#品

质”(drinks#quality); 9) “飲料#份量與款式” / 

“饮料#份量与款式”(drinks#style&options); 10) 

“氛圍#概括” / “氛围#概括” (ambience#general); 

11) “服 務#概 括” / “服 务#概

括”(services#general);  and 12) “地點#概括” / 

“地点#概括”(location#general). 

• Opinion Term (O) 

This describes the sentiment words or phrases 

towards the aspects. 

• Sentiment Intensity (I) 

This reflects sentiments using continuous real-

valued scores in the valence-arousal dimensions. 

The valence represents the degree of pleasant and 

unpleasant (i.e., positive and negative) feelings, 

while the arousal represents the degree of 

excitement and calm. Both the valence and arousal 

dimensions use a nine-degree scale. Value 1 on the 

valence and arousal dimensions respectively 

denotes extremely high-negative and low-arousal 

sentiment, while 9 denotes extremely high-positive 

Example Version Input & Output 

Example 1 

(subtask 1) 

Traditional 
Input: E0001:S001, 檸檬醬也不會太油，塔皮對我而言稍軟。, 檸檬醬#塔皮 

Output: E0001:S001 (檸檬醬,5.67#5.50)(塔皮,4.83#5.00) 

Simplified 
Input: E0001:S001, 柠檬酱也不会太油，塔皮对我而言稍软。 柠檬酱#塔皮 

Output: E0001:S001 (柠檬酱,5.67#5.50)(塔皮,4.83#5.00) 

Example 2 

(subtask 2) 

Traditional 
Input: E0002:S002, 不僅餐點美味上菜速度也是飛快耶！！ 

Output: E0002:S002 (餐點, 美味, 6.63#4.63) (上菜速度, 飛快, 7.25#6.00) 

Simplified 
Input: E0002:S002, 不仅餐点美味上菜速度也是飞快耶!! 

Output: E0002:S002 (餐点, 美味, 6.63#4.63) (上菜速度, 飞快, 7.25#6.00) 

Example 3 

(subtask 3) 

Traditional 
Input: E0003:S003, 這碗拉麵超級無敵霹靂難吃 

Output: E0003:S003 (拉麵, 食物#品質, 超級無敵霹靂難吃, 2.00#7.88) 

Simplified 
Input: E0003:S003, 这碗拉面超级无敌霹雳难吃 

Output: E0003:S003 (拉面, 食物#品质, 超级无敌霹雳难吃, 2.00#7.88) 

Table 1: Examples of the dimABSA task 
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and high-arousal sentiment, and 5 denotes a neutral 

and medium-arousal sentiment. Valence-arousal 

values are separated by a hashtag (symbol “#”) for 

a mark. 

This dimABSA task can be further divided into 

three subtasks described as follows. 

• Subtask 1: Intensity Prediction 

The first subtask focuses on predicting sentiment 

intensities in the valence-arousal dimensions. 

Given a sentence and a specific aspect, the system 

should predict the valence-arousal ratings. The 

input format consists of ID, sentence, and aspect. 

The output format consists of the ID and valence-

arousal predicted values that are separated with a 

'space'. The intensity prediction is two real-valued 

scores rounded to two decimal places and separated 

by a hashtag, each respectively denoting the 

valence and arousal rating. Example sentences are 

presented in Table 1. In Example 1, a given 

sentence “檸檬醬也不會太油，塔皮對我而言稍

軟” (The lemon curd is not too oily and the tart 

crust is a little soft for me.) and two aspects “檸檬

醬” (lemon curd) and “塔皮” (tart crust) as an input, 

participating systems are expected to respectively 

predict valence-arousal ratings such as 5.67#5.50 

for “檸檬醬” (lemon curd) and 4.83#5.00 for “塔

皮” (tart crust).  

• Subtask 2: Triplet Extraction 

The second subtask aims to extract sentiment 

triplets composed of three elements. Given a 

sentence only, the system should extract all 

sentiment triplets (aspect, opinion, intensity). The 

output format consists of the ID and sentiment 

triplet that are separated with a 'space'. In Example 

2, the input sentence is “不僅餐點美味上菜速度

也是飛快耶！！” (The meals were not only 

delicious but were also served very quickly!!) and 

the output contains two tuples: the first triple 

contains “餐點” (meals) as an aspect term, “美味” 

(delicious) as an opinion term, with valence-

arousal ratings as 6.63#4.63; the second triple 

consists of “上菜速度” (were served) as an aspect 

term and “飛快” (very quickly) as an opinion term, 

with valence-arousal ratings as 7.25#6.00.   

• Subtask 3: Quadruple Extraction 

The third subtask aims to extract sentiment 

quadruples composed of four elements. Given a 

sentence only, the system should extract all 

sentiment quadruples (aspect, category, opinion, 

intensity). The output format consists of the ID and 

sentiment quadruple that are separated with a 

'space'. In Example 3, if the input sentence is “這

碗拉麵超級無敵霹靂難吃” (This bowl of ramen 

is terribly unpalatable.), the expected quadruple 

includes “拉麵” (ramen) denoted as the aspect 

which belongs to an aspect category “食物#品質” 

(food#quality), along with an opinion term “超級

無敵霹靂難吃” (terribly unpalatable) and a 

sentiment intensity value in terms of valence-

arousal ratings of 2.00#7.88 

3 Data Preparation  

We first crawled restaurant reviews from Google 

Reviews and an online bulletin board system PTT. 

Then, we removed all HTML tags and multimedia 

material and split the remaining texts into several 

sentences. Finally, we randomly selected partial 

sentences to retain content diversity for manual 

annotation. 

The annotation process was conducted in two 

phases. We first annotated the 

aspect/category/opinion elements and then V#A 

element. In the first phase, three graduate students 

majoring in computer science were trained to 

annotate the sentences for aspect/category/opinion. 

One task organizer led a discussion to clarify 

annotation differences and seek consensus among 

the annotators. A majority vote mechanism was 

finally used to resolve any disagreements among 

the annotators. In the second phase, each sentence 

along with the annotated aspect/category/opinion 

was presented to five annotators majoring in 

Chinese language for V#A rating. Similarly, one 

task organizer also led a group discussion during 

annotation. Once the annotation process was 

finished, a cleanup procedure was performed to 

remove outlier values which did not fall within 1.5 

standard deviations (SD) of the mean. These 

outliers were then excluded from calculating the 

average V#A for each instance. 

We provided two versions of all datasets with 

identical content, but one in traditional Chinese 

characters and the other in simplified Chinese 

characters. The participating teams could choose 

their preferred version for the task evaluation. The 

submitted results were evaluated with the 

corresponding version of the gold standard and 

ranked together as the official results.  

This shared task is presented as an open test, and 

participating systems can use other publicly 

available data, but such data must be specified in 

the final system description paper. For example, we 
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also provide the Chinese EmoBank (Lee et al., 

2022) as a potentially useful sentiment resource 

annotated with real-valued scores for both valence 

and arousal dimensions. This data set features 

various levels of text granularity including two 

lexicons called Chinese valence-arousal words 

(CVAW, 5,512 single words) and Chinese valence-

arousal phrases (CVAP, 2,998 multi-word phrases), 

along with two corpora called Chinese valence-

arousal sentences (CVAS, 2,582 single sentences) 

and Chinese valence-arousal texts (CVAT, 2,969 

multi-sentence texts). 

Table 1 presents detailed statistics for the 

mutually exclusive training, development and test 

sets, where #Sent, #Char, and #Tuple respectively 

denote the number of sentences, characters and 

tuples in the dataset. The training set provided for 

all three subtasks included 6,050 sentences (85,769 

characters), annotated with 8,523 tuples. The 

development set only includes 100 sentences for 

output format validation. Two mutually exclusive 

test sets were prepared for system performance 

evaluation, each including 2,000 sentences. One 

was provided for Subtask 1 and the other was used 

for Subtasks 2 and 3.  

We further analyzed the aspect types in the test 

set, including #unique and #repeat which 

respectively denote the number of aspects which 

occurred only one time or more than one time. For 

Subtask 1, a total of 2,658 aspects belong to the 

unique type, without the null and repeat cases. For 

Subtasks 2 and 3, 1821 aspects (51.1% out of total 

3,566) occurred more than one time across all 

testing sentences. In addition, a very small portion 

(near 1.5%) of aspects belonged to the null cases. 

Similarly, we also analyzed the opinion terms, the 

repeat cases occupied about 8.5% (=303/3566). 

These findings revealed: 1) the aspect has a 

centered distribution, reflecting that users’ opinion 

targets may be similar, and 2) the opinion has a 

diverse distribution, indicating that different 

affective words or phrases are used to express a 

user’s feelings.  

Restaurant (REST) Domain 

Subtask Dataset #Sent #Char #Tuple 
Aspect Opinion 

#NULL #Unique #Repeat #Unique #Repeat 

ST1 

Train 6,050 85,769 8,523 169 6,430 1924 - - 

Dev. 100 1,109 115 0 115 0 - - 

Test 2,000 34,002 2,658 0 2,658 0 - - 

ST2 & 

ST3 

Train 6,050 85,769 8,523 169 6,430 1,924 7,986 537 

Dev. 100 1,280 150 0 78 72 143 7 

Test 2,000 39,014 3,566 52 1,693 1,821 3263 303 

Table 2: Detailed data statistics 

Figure 1: Scatter plots of valence-arousal distributions 
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Figure 1 shows the scatter plots of valence-

arousal distributions. They presented similar 

curves for the training and test sets, indicating that 

both high-positive and high-negative opinion terms 

usually have high arousal values. Identical results 

were obtained from the Chinese EmoBank (Lee et 

al., 2022).  

Figure 2 presents the aspect category 

distributions. The distributions are imbalanced for 

both the training and test sets for Subtask 3. This 

finding is the same as that for the SemEval-2016 

Restaurant dataset (Pontiki et al., 2016). The most 

frequently occurring category was “食 物 # 品

質”(food#quality), followed by “食物#份量與款

式 ”(food#style&options) and “飲 料#品 質” 

(drinks#quality). In the training set, these 3 

categories accounted for 87.4% of the total, with 

the remaining 9 categories accounting for 12.6%. 

In the test set for Subtask 3, these 3 categories 

accounted for 89.5% of the total, with the other 9 

categories accounting for the remaining 10.5%. 

4 Performance Metrics 

For Subtask 1, the sentiment intensity prediction 

performance is evaluated by examining the 

difference between machine-predicted ratings and 

human-annotated ratings using two metrics: Mean 

Absolute Error (MAE) and Pearson Correlation 

Coefficient (PCC), defined as the following 

equations.  

 

MAE =
1

𝑛
∑ |𝑎𝑖 − 𝑝𝑖|
𝑛
𝑖=1              (1) 

PCC =
1

𝑛−1
∑ (

𝑎𝑖−𝜇𝐴

𝜎𝐴
)

𝑛

𝑖=1
(
𝑝𝑖−𝜇𝑃

𝜎𝑃
)           (2) 

 

where 𝑎𝑖 ∈ 𝐴  and 𝑝𝑖 ∈ 𝑃  respectively denote 

the i-th actual value and predicted value, n is the 

number of test samples, 𝜇𝐴  and 𝜎𝐴  respectively 

represent the mean value and the standard 

deviation of A, while 𝜇𝑃  and 𝜎𝑃  respectively 

represent the mean value and the standard 

deviation of P.  

Each metric for the valence and arousal 

dimensions is calculated and ranked independently. 

The actual and predicted real values should range 

from 1 to 9, so MAE measures the error rate in a 

range where the lowest value is 0 and the highest 

value is 8. A lower MAE indicates more accurate 

prediction performance. The PCC is a value 
between −1 and 1 that measures the linear 

correlation between the actual and predicted values. 

A lower MAE and a higher PCC indicate more 

accurate prediction performance. 

For Subtasks 2 and 3, we use the F1-score as the 

evaluation metric, defined as: 

 

𝐹1 =
2xPxR

P+R
                          (3) 

 

where Precision (P) is defined as the percentage 

of triplets/quadruples extracted by the system that 

are correct. Recall (R) is the percentage of 

triplets/quadruples present in the test set found by 

the system. The F1-score is the harmonic mean of 

precision and recall. 

 

Figure 2: Aspect category distributions 
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Each metric for the valence and arousal 

dimensions is calculated either independently or in 

combination. First, the valence and arousal values 

are rounded to an integer. Next, a triplet/quadruple 

is regarded as correct if and only if the three/four 

elements and their combination match those in the 

gold triplet/quadruple. All metrics range from 0 to 

1. A higher Precision, Recall, and F1 score indicate 

more accurate performance. 

5 Evaluation Results  

5.1 System Summary 

We received a total of 214 submissions from 61 

registered participants during the evaluation phase. 

A total of eleven teams provided submissions to the 

leaderboard for each subtask and seven submitted 

their task technical papers. HITSZ-HLT (Xu et al., 

2024) and CCIIPLab (Tong and Wei, 2024) 

participated in all three subtasks, ZZ-NLP (Zhu et 

al., 2024) team took part in two subtasks, and the 

remaining four teams only joined in one subtask.  

Table 3 summarizes the participating systems, 

including involved subtasks, system architectures 

and additional data usage. HITSZ-HLT (Xu et al., 

2024) integrated a BERT-based pre-trained 

language model (PLM) (i.e., ERNIE 3.0 (Sun et al., 

2021)) and a code-style large language model 

(LLM) (i.e., deepseek (Guo et al., 2024)) to address 

this task, demonstrating promising performance in 

different scenarios. CCIIPLab (Tong and Wei, 2024) 

proposed a Contrastive Learning-enhanced Span-

Subtask 1: Intensity Prediction 

Team 
Evaluation Metrics Overall 

Rank V-MAE V-PCC A-MAE A-PCC 

HITSZ-HLT 0.279 (1) 0.933 (1) 0.309 (1) 0.777 (1) 1 

CCIIPLab 0.294 (2) 0.916 (3) 0.309 (1) 0.766 (3) 2 

YNU-HPCC 0.294 (2) 0.917 (2) 0.318 (3) 0.771 (2) 2 

DS-Group 0.460 (4) 0.858 (5) 0.501 (4) 0.490 (4) 4 

yangnan 1.032 (5) 0.877 (4) 1.095 (5) 0.097 (5) 5 

Table 4: Testing results of Subtask 1. V for valence and A for arousal. The best scores of each metrics are in bold. 

Team 
Subtask Architecture Data  

Augmentation ST1 ST2 ST3 PLM LLM 

HITSZ-HLT V V V Erine-3.0-xbase-zg 
deepseek-7B-

instruct-v1.5 
- 

CCIIPLab V V V MacBERT-base - Chinese EmoBank 

YNU-HPCC V   BERT-wwm-ext - Merged-Train 

DS-Group V   - GPT-4o - 

TMAK-Plus  V  - GPT-4o - 

ZZU-NLP  V V BERT Baichuan2-7B - 

JN-NLP   V - T5-base - 

Table 3: Participating system summary. ST for subtask, PLM for pre-trained language models, and LLM for large 

language models.  

Subtask 3: Quadruple Extraction 

Team 
Evaluation Metrics Overall 

Rank V-Quad-F1 A-Quad-F1 VA-Quad-F1 

HITSZ-HLT 0.567 (1) 0.526 (1) 0.417 (1) 1 

CCIIPLab 0.555 (2) 0.507 (2) 0.389 (2) 2 

ZZU-NLP 0.522 (3) 0.489 (3) 0.376 (3) 3 

SUDA-NLP 0.487 (4) 0.444 (4) 0.336 (4) 4 

JN-NLP 0.482 (5) 0.439 (5) 0.331 (5) 5 

BIT-NLP 0.470 (6) 0.434 (7) 0.329 (6) 6 

USTC-IAT 0.438 (7) 0.437 (6) 0.312 (7) 7 

Table 6: Testing results of Subtask 3. V for valence, A for arousal, VA for valence-arousal, and Quad for 

quadruple. The best scores of each metric are in bold. 
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based (CL-Span) framework based on MacBERT 

(Cui et al., 2021) to improve the performance of 

tuple extraction and sentiment intensity prediction. 

The Chinese EmoBank (Lee et al., 2022) was also 

incorporated as an auxiliary training resource to 

boost performance. YNU-HPCC (Wang et al., 

2024) used a BERT-based encoder to generate 

aspect-specific representation and train linear 

predictors to jointly predict valence-arousal ratings. 

DS-Group (Meng et al., 2024) proposed an aspect-

aware example selection method for in-context 

learning based on LLM. TMAK-Plus (Kang et al., 

2024) presented a Multi-Agent Collaboration 

(MAC) model to assemble several GPT-based 

LLM for the dimensional ABSA task. ZZU-NLP 

(Zhu et al., 2024) proposed a two-stage contextual 

learning approach based on the Baichuan2-7B 

(Yang et al., 2023). JN-NLP (Jiang et al., 2024) 

used a paraphrase generation paradigm based on 

the T5 (Raffel et al., 2020) pre-trained model to 

address the dimABSA task.  

5.2 Official Ranking 

Tables 4, 5, and 6 respectively show the testing 

results for each subtask. Each metric in each 

individual subtask is ranked independently. (*) 

means the rank for each metric. A system’s overall 

ranking is computed based on the cumulative rank. 

The lower the cumulative rank, the better the 

system performance.  

The overall best results came from the HITSZ-

HLT (Xu et al., 2024) team, achieving the best 

scores in all metrics across three subtasks, followed 

by the CCIIPLab (Tong and Wei, 2024), ranking 

second on the leaderboard for each subtask.  

6 Conclusions and Future Work  

This paper provides an overview of the 

SIGHAN-2024 dimABSA task for Chinese 

dimensional aspect-based sentiment analysis, 

including task descriptions, data preparation, 

performance metrics and evaluation results. We 

received a total of 214 submissions from 61 

registered participants during the evaluation phase. 

Among eleven participating teams, seven 

presented their task technical reports. Regardless of 

actual performance, all submissions contribute to 

the development of an effective dimensional ABSA 

solution, and each task technical paper for this 

shared task also provides useful insights for further 

research.  

We hope the data sets collected and annotated 

for this shared task can facilitate and expedite 

future development of Chinese dimensional ABSA. 

Therefore, the gold standard test set and evaluation 

scripts are made publicly available in GitHub 

repositories at: https://github.com/NYCU-

NLP/SIGHAN2024-dimABSA  

Future directions will focus on the development 

of Chinese dimensional ABSA models. We plan to 

build new language resources to develop 

techniques for the future enrichment of this 

research topic, especially for reviews in the other 

domains.  
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