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Abstract

Causal reasoning, a core aspect of human cogni-
tion, is essential for advancing large language
models (LLMs) towards artificial general in-
telligence (AGI) and reducing their propen-
sity for generating hallucinations. However,
existing datasets for evaluating causal reason-
ing in LLMs are limited by narrow domain
coverage and a focus on cause-to-effect rea-
soning through textual problems, which does
not comprehensively assess whether LLMs
truly grasp causal relationships or merely guess
correct answers. To address these shortcom-
ings, we introduce a novel benchmark that
spans textual, mathematical, and coding prob-
lem domains. Each problem is crafted to
probe causal understanding from four perspec-
tives: cause-to-effect, effect-to-cause, cause-
to-effect with intervention, and effect-to-cause
with intervention. This multi-dimensional eval-
uation method ensures that LLMs must ex-
hibit a genuine understanding of causal struc-
tures by correctly answering questions across
all four dimensions, mitigating the possibil-
ity of correct responses by chance. Further-
more, our benchmark explores the relation-
ship between an LLM’s causal reasoning per-
formance and its tendency to produce hallu-
cinations. We present evaluations of state-
of-the-art LLMs using our benchmark, pro-
viding valuable insights into their current
causal reasoning capabilities across diverse
domains. The dataset is publicly available
for download at https://huggingface.co/
datasets/CCLV/CausalBench.

1 Introduction

Causal reasoning, the ability to understand and
infer causal relationships between variables, is a
fundamental aspect of human cognition and plays
a crucial role in decision-making, problem-solving,
and learning (Pearl, 2009). For large language mod-
els (LLMs), causal reasoning refers to the ability
to accurately identify, represent, and reason about

causal relationships described in text, mathematical
equations, or code snippets (Pearl, 2009). Devel-
oping strong causal reasoning abilities in LLMs is
essential for progress toward artificial general intel-
ligence (AGI), as it enables models to understand
not just correlations but the underlying mechanisms
driving outcomes (Fridman and Pearl, 2022). This
understanding is crucial for making accurate pre-
dictions, generating insightful explanations, and
adapting to new situations, as core components of
AGI.

However, existing causal reasoning benchmarks
have several limitations that hinder their ability
to comprehensively evaluate the causal reasoning
capabilities of LLMs. First, current benchmarks
often focus on a single perspective of causal reason-
ing, such as cause-to-effect, lacking a multifaceted
assessment that considers effect-to-cause reason-
ing and the impact of interventions. This narrow
focus allows models to correctly answer causal
questions by chance without truly understanding
the underlying causal relationships (Kaushik et al.,
2020). Second, current benchmarks are primarily
text-based, lacking diversity in problem types, such
as mathematical and coding problems that can en-
capsulate causal dependencies. Incorporating these
diverse problem formats would enable a more ro-
bust evaluation of LLMs’ capacity to reason about
causality across various modalities. Third, the lim-
ited scale of existing benchmarks may not provide
a sufficiently comprehensive assessment of LLMs’
causal reasoning abilities due to the limited scale
of the benchmark dataset.

To address these limitations, we propose Causal-
Bench, a comprehensive benchmark for evaluating
the causal reasoning capabilities of LLMs. Causal-
Bench comprises four perspectives of causal rea-
soning for each scenario: cause-to-effect, effect-to-
cause, cause-to-effect with intervention, and effect-
to-cause with intervention. This multi-perspective
approach mitigates the potential for correct answers
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by chance and provides a more accurate evaluation
of LLMs’ understanding of causal relationships.
Moreover, CausalBench includes a diverse set of
problem types spanning textual, mathematical, and
coding domains, enabling a comprehensive assess-
ment of causal reasoning abilities across different
modalities. The benchmark consists of more than
60,000 problems and employs six evaluation met-
rics to measure LLMs’ causal reasoning perfor-
mance.

The major contributions of CausalBench are
three-fold: (1) evaluating four causal reasoning
perspectives per scenario to robustly assess causal
understanding, (2) incorporating a diverse prob-
lem set spanning math, code, and natural language
for cross-modal evaluation, and (3) implementing
strict quality control measures, including a causal
inference engine check and human expert review, to
ensure the benchmark’s validity and reliability. By
addressing the limitations of existing benchmarks,
CausalBench aims to provide a more comprehen-
sive and accurate evaluation of the causal reasoning
capabilities of LLMs, facilitating progress towards
AGI.

2 Dataset Construction Process and
Method

The construction of CausalBench involves three
key steps: manual generation of initial test cases,
scaling up using LLM such as GPT-4 Turbo, and
quality control through causal inference engines
together with human verification. Initially, we man-
ually create a set of test cases covering four aspects
of causal inference: (a) cause to effect, (b) effect
to cause, (c) cause to effect with intervention, and
(d) effect to cause with intervention to ensure a
comprehensive evaluation of causal reasoning ca-
pabilities from different perspective. To expand
the dataset, we then use GPT-4 Turbo with few-
shot prompting, leveraging the model’s ability to
generate additional test cases that adhere to the de-
sired format and cover the four causal inference
aspects. The few-shot prompts are designed to
guide GPT-4 Turbo in producing a diverse and ex-
tensive set of problems that maintain consistency
with the manually generated cases. Afterward, we
implement a quality control process involving vali-
dation through causal inference engines and review
by human experts. The causal inference engines
verify the logical consistency and correctness of the
generated test cases, while human experts review

and refine the dataset to maintain high standards of
quality and relevance.

2.1 Workflow Overview

2.2 Manual Analysis and Generation

For the text problems of our Benchmark, we ran-
domly selected 100 questions from the CLADDER
dataset (Choshen et al., 2022) and manually ana-
lyzed them to determine their category within (1)
inference from cause to effect, (2) effect to cause,
(3) cause to effect with intervention, or (4) effect to
cause with intervention. These perspectives repre-
sent different dimensions of causal reasoning: (1)
Cause to the effect: Given the cause, what is the
likelihood of the effect? (2) Effect to cause: Given
the effect, what is the likelihood of the cause? (3)
Cause to effect with intervention: If an interven-
tion is added to the causal relationship, given the
cause, what is the likelihood of the effect? and (4)
Effect to cause with intervention: If an intervention
is added to the causal relationship, given the effect,
what is the likelihood of the cause?

After categorizing the selected cases from the
CLADDER dataset, we expanded them by creating
additional questions for the other three perspectives.
For example, if a case was classified as “cause to
effect”, we generated corresponding questions for
“effect to cause”, “cause to effect with intervention”,
and “effect to cause with intervention” manually.

To correctly expand other perspective questions
and their ground truths, we visualized the relation-
ships between variables using causal diagrams and
analyzed these relationships by calculating con-
ditional probabilities. Causal diagrams represent
variables as nodes and causal relationships as di-
rected edges. For example, consider the following
hypothetical scenario:

Imagine a self-contained, hypothetical world
with only the following conditions, and without any
unmentioned factors or causal relationships: Par-
ents’ intelligence has a direct positive effect on par-
ents’ social status and child’s intelligence. Other
unobserved factors has a positive direct effect on
parents’ social status and child’s intelligence. If a
child is intelligent, would it be more likely that this
child had intelligent parents?

In this scenario, the causal diagram would have
four nodes: Parents’ intelligence, Parents’ social
status, Child’s intelligence, and Other unobserved
factors. There would be directed edges from
Parents’ intelligence to Parents’ social status and
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Figure 1: Workflow overview of the CausalBench dataset construction process.

Figure 2: Causal Graph Example

Child’s intelligence, from Other unobserved factors
to Parents’ social status and Child’s intelligence,
and from Parents’ social status to Child’s intelli-
gence. Conditional probabilities can be estimated
based on the causal graph.

Using the causal graph and conditional probabil-
ities, we can categorized the original questions as
effect-to-cause. The probability of the child being
intelligent given that the parents are intelligent is
higher than the probability of the child being intel-
ligent given that the parents are unintelligent, so
the ground truth is yes. Then extend the questions
to cover four perspectives by adjusting the ques-
tioning logic and incorporating interventions into
the causal path diagram, and calculate ground truth
for each questions.(examples are provided in the
Appendix)

Finally, we obtained 100 causal scenarios, with
400 causal questions. They serve as the foundation
for our few-shot prompting approach, providing
examples for GPT-4 Turbo on how to identify the
type of the initial question and generate additional
questions for the remaining perspectives. By using
these examples in a few-shot prompting setting, we
guide the model to generate additional perspective
questions with answers for all other causal scenar-
ios in the CLADDER dataset.

For coding and mathematical problems, we man-
ually created 100 code scenarios and 100 math sce-
narios, each containing causal relationships, and de-

signed four perspective questions for each scenario.
These questions addressed causal issues based on
the relationships described in the scenarios (ex-
amples are provided in the Appendix). We then
used causal graphs and conditional probabilities to
manually generate the ground truths and employed
few-shot prompts with GPT-4 Turbo to generate
additional code, math scenarios and questions with
corresponding answers.

In summary, the manual analysis and generation
process involved visualizing causal relationships
using causal diagrams and calculating conditional
probabilities for each scenario. We modified the
questioning approach and added interventions to ex-
pand each problem into four forms, covering cause-
to-effect, effect-to-cause, cause-to-effect with in-
tervention, and effect-to-cause with intervention,
and generated ground truths for each question. By
the end of this section, we had created 100 sets of
400 text-based questions with ground truths, 100
sets of 400 coding questions with ground truths,
and 100 sets of 400 math questions with ground
truths. These manually generated samples serve
as the foundation for our few-shot prompting ap-
proach, which utilizes GPT-4 Turbo to generate
additional test cases.

2.3 Scaling Up with LLMs

After manually generating and verifying an ini-
tial set of questions, we employed GPT-4 Turbo
to scale up the dataset. The scale-up process was
divided into three parts: text problems, coding prob-
lems, and mathematical problems.

For the text problems, we provided GPT-4 Turbo
with original CLADDER dataset(Choshen et al.,
2022) questions with manually expanded questions
along with their ground truths. By learning from
these samples, GPT-4 Turbo was tasked with read-
ing the remaining CLADDER scenarios (around
10,000 problems) and their corresponding ques-
tions, determining the question perspective, ex-
panding the scenario into the other three perspec-
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tives, and generating the associated ground truths.
This process ensures every text causal scenario
has four dimension questions and corresponding
ground truths.

In the case of coding problems, we supplied
GPT-4 Turbo with the 100 manually created code
examples containing causal relationships. Using
these examples as a foundation, GPT-4 Turbo gen-
erated an additional 2,000 code snippets, each in-
corporating causal relationships. For each newly
generated code snippet, GPT-4 Turbo created four
perspectives of questions and provided the corre-
sponding ground truths, ensuring a comprehensive
evaluation of causal reasoning in the context of
programming.

Similarly, for mathematical problems, GPT-4
Turbo was employed to generate 2,000 new mathe-
matical scenarios across various domains, such as
probability theory, mathematical statistics, differ-
ential equations, and complex analysis. For each
mathematical scenario, GPT-4 Turbo generated
four types of questions and their associated ground
truths, assessing the model’s ability to reason about
causal relationships in mathematical contexts.

By leveraging the capabilities of GPT-4 Turbo,
we were able to create a dataset across all three
problem categories. The text problems were aug-
mented by automatically generating additional
question perspectives and ground truths based on
the existing CLADDER scenarios. The coding
and mathematical problems were scaled up by hav-
ing GPT-4 Turbo create new scenarios containing
causal relationships and generate the correspond-
ing questions and ground truths. This scale-up pro-
cess resulted in a more comprehensive and diverse
dataset, enabling a thorough evaluation of causal
reasoning abilities in large language models across
various domains.

2.4 Quality Control

2.4.1 Causal Inference Engine Design

To ensure the accuracy and consistency of the
generated questions and answers, we developed a
causal inference engine. This engine utilizes causal
diagrams and conditional probabilities associated
with each question to compute the answers for all
questions. The causal inference engine serves as a
verification layer, comparing the answers generated
by the language model. If the answer generated by
the language model differs from the answer gener-
ated by the causal inference engine, the case will

be manually inspected, and the ground truth will be
generated by human experts. Here are the Causal
Inference Engine design details:

Input

• A causal scenario described in natural lan-
guage, code, or mathematical equations, in-
cluding causal relationships among variables,
known conditions, etc.

• A causal query, which is a question based on
causal scenario

Steps
Causal Graph Extraction:
For natural language scenarios, we identify vari-

ables and causal relationships, and construct causal
graphs (G := (V, E)) by implementing a pipeline
consisting of semantic parsing and coreference res-
olution modules. The semantic parsing module
first uses the Stanford Parser (Klein and Manning,
2003) to perform syntactic parsing and obtain the
sentence structure. Then, it applies Compositional
Semantics (Zettlemoyer and Collins, 2005) to re-
cursively map the syntactic parse tree to a logi-
cal form, based on the principle of compositional-
ity. The coreference resolution module uses tech-
niques such as the mention-pair model (Soon et al.,
2001) to determine which mentions refer to the
same entity, and merges the variables correspond-
ing to coreferent mentions. From the outputs of
the semantic parsing and coreference resolution
modules, the pipeline automatically extracts vari-
ables from nouns and noun phrases, and identifies
causal relationships indicated by verbs and con-
junctions expressing causality (Li and Mao, 2019).
Finally, the causal graph construction module takes
the extracted variables as nodes (V) and causal re-
lationships as directed edges (E) to automatically
build the causal graph (Pearl, 2009).

For code scenarios, we identify variables and
their dependencies, and construct causal graphs
by implementing a pipeline that analyzes the code
structure, control flow, and data flow. The pipeline
first uses a code parser, such as the ast module
(Python Software Foundation, 2023) in Python, to
generate an abstract syntax tree (AST). It then per-
forms control flow analysis using techniques like
control flow graphs (CFGs) (Allen, 1970) and pro-
gram dependence graphs (PDGs) (Ferrante et al.,
1987), and data flow analysis using def-use chains
(Harrold and Rothermel, 1994) and static single
assignment (SSA) form (Cytron et al., 1991), to
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identify execution paths, dependencies between
statements, and variable dependencies. These anal-
yses help automatically extract variables and their
relationships from the code structure. Finally, the
causal graph construction module takes the ex-
tracted variables as nodes (V) and their dependen-
cies as edges (E) to build the causal graph based
on the code semantics (Pearl, 2009), capturing the
causal relationships between variables and enabling
further reasoning and analysis.

For math scenarios, we identify variables and
their functional relationships, and construct causal
graphs by implementing a pipeline that parses and
analyzes the mathematical equations. The pipeline
first uses a math expression parser, such as the
SymPy library (Meurer et al., 2017) in Python, to
convert the equations into an abstract syntax tree
(AST) representation. It then traverses the AST
to identify variables and their functional relation-
ships, such as dependencies and algebraic oper-
ations, using techniques like symbolic differenti-
ation (Griewank and Walther, 2008) and expres-
sion simplification (Moses, 1971). These analyses
help automatically extract variables and their re-
lationships from the equation structure. Finally,
the causal graph construction module takes the
extracted variables as nodes (V) and their func-
tional relationships as directed edges (E) to build
the causal graph based on the equation semantics,
similar to the approach in (Pearl, 2009). The result-
ing causal graph captures the causal relationships
between variables in the mathematical equations,
enabling further reasoning and analysis.
Query Classification: Classify the causal query
into one of the three levels of the Ladder of Cau-
sation (Association, Intervention, Counterfactuals).
Formalize the query into the corresponding causal
language, as discussed in (Jin et al., 2023).
Estimand Derivation:

1. For text and math scenarios, we construct a
module that uses causal inference algorithms
(e.g., do-calculus (Pearl, 1995), counterfac-
tual inference formulas (Pearl et al., 2000)) to
derive the estimand based on the causal graph
and query type.

2. For code scenarios, we use program analysis
techniques (e.g., symbolic execution, data de-
pendency analysis, control flow analysis) to
derive the estimand based on the code struc-
ture and query type. This involve simulating
interventions on code variables and analyzing

the resulting program behavior.

Data Matching: Match the terms in the estimand
with the available data or constraints in the scenario
to obtain a computable estimand expression. Check
the completeness and consistency of the data. Raise
warnings or errors if critical data is missing. For
code scenarios, this involve executing the code with
specific inputs and observing the outputs. This step
is similar to the data matching phase in (Jin et al.,
2023).
Causal Effect Estimation:

1. Calculate the causal effect value based on the
estimand expression and the available data,
yielding the answer to the query.

2. For scenarios with unobserved confounders,
use instrumental variable estimation (Angrist
et al., 1996) or front-door adjustment (Pearl,
1995).

3. For code scenarios, this involve comparing
program behaviors under different interven-
tions.

This step is inspired by causal effect estimation
phase in (Jin et al., 2023).

Output
• Answer to the causal query, including the esti-

mated causal effect, confidence interval, and
key assumptions.

In a summary, our Causal Inference Engine extends
the original design presented in (Jin et al., 2023) by
incorporating domain-specific graph extraction and
estimand derivation techniques to handle causal in-
ference problems in text, code, and math scenarios.
The overall pipeline remains consistent with the
one described in (Jin et al., 2023), but the internal
methods are adapted to the specific structures and
semantics of each domain.

2.4.2 Quality Control Process
After expansion with GPT4-Turbo, we obtained
around 10000 x 4 text-based questions, 2000 x 4
math questions, and 2000 x 4 coding questions,
along with their GPT-4 Turbo generated answers.
To ensure the accuracy of the ground truth of each
questions, we employed a strict quality control pro-
cess as showing below:

We used the causal inference engine introduced
above to independently solve the problems and
generate its own set of answers. We compared the
answers generated by GPT-4 Turbo and the causal
inference engine. If two answers were the same,

147



we updated the answer as ground truth. If any
of the answers were inconsistent, we conducted
a manual analysis of the question and answers to
determine the correct answer and update ground
truth accordingly.

This multi-step quality control process, involv-
ing the use of causal inference engine and human
expert check, ensures that the final dataset contains
accurate and reliable questions and answers. The
manual review of inconsistent answers further en-
hances the quality of the dataset by addressing any
discrepancies or edge cases that the models may
encounter.

3 Benchmark Results

3.1 Baseline of Mainstream LLMs

We tested several state-of-the-art large language
models, including GPT-4, Claude-3, LLAMA-3,
and others, on our CausalBench. The evaluation
metrics included: Four-Type Questions Group Cor-
rection Rate, Overall Correction Rate (Ignore Ques-
tion Type), From Cause to Effect without Inter-
vention Correction Rate, From Effect to Cause
without Intervention Correction Rate, From Cause
to Effect with Intervention Correction Rate, and
From Effect to Cause with Intervention Correction
Rate. For each causal scenario, there are four ques-
tions: cause-to-effect without intervention, effect-
to-cause without intervention, cause-to-effect with
intervention, and effect-to-cause with intervention.
The Four-Type Questions Group Correction Rate
represents the proportion of scenario cases where
all four types of questions of one scenario are all
answered correctly by the large language models.
If any of the four questions of a scenario is an-
swered incorrectly, the scenario is considered to be
answered incorrectly by the LLM. The Overall Cor-
rection Rate (Ignore Question Type) is calculated
by dividing the total number of correctly answered
questions by the total number of questions, with-
out categorizing the questions by type and scenario.
The From Cause to Effect without Intervention Cor-
rection Rate is calculated by dividing the number of
correctly answered "From Cause to Effect without
Intervention" type questions by the total number
of this type of questions. Similarly, the From Ef-
fect to Cause without Intervention Correction Rate
is calculated by dividing the number of correctly
answered "From Effect to Cause without Interven-
tion" type questions by the total number of this type
of questions. The remaining two metrics, From

Cause to Effect with Intervention Correction Rate
and From Effect to Cause with Intervention Cor-
rection Rate, follow the same calculation method
as the previous two metrics, focusing on their re-
spective question types.

Here are the tables showing LLMs’ performance
on text, math, and code problems.

3.2 Test Result Summary
The evaluation results of state-of-the-art large lan-
guage models on CausalBench provide valuable
insights into their causal reasoning capabilities
across textual, mathematical, and coding problem
domains:

Overall, the models achieved higher correction
rates on mathematical problems compared to tex-
tual and coding problems. For instance, GPT-4
achieved an 88.7% overall correction rate on math
problems, while scoring 73.3% and 71.0% on text
and code problems, respectively. This suggests
that causal reasoning in mathematical contexts is
relatively easier for LLMs compared to natural lan-
guage and programming domains.

The Four-Type Questions Group Correction
Rate, which measures the proportion of scenarios
where all four reasoning perspectives are correctly
answered, was consistently lower than the Over-
all Correction Rate (Ignore Question Type) across
all problem types. For example, GPT-4 achieved a
61.4% Four-Type Questions Group Correction Rate
on math problems, compared to an 88.7% Overall
Correction Rate. This indicates that LLMs often
struggle to maintain a comprehensive understand-
ing of causal relationships when questioned from
multiple perspectives.

The introduction of interventions in the causal
scenarios led to mixed results in correction rates
across models and problem types. In the text do-
main, the correction rates slightly decreased for
most models when interventions were introduced.
However, in the math domain, the correction rates
generally improved with interventions. For in-
stance, GPT-4’s performance increased from 78.6%
to 91.7% on cause-to-effect questions with inter-
vention in math problems. In the coding domain,
the impact of interventions varied across models,
with some showing improvements and others ex-
hibiting a decline in performance.

Among the tested models, GPT-4 and Claude-
3 consistently outperformed other large language
models (LLMs) across most problem types and
reasoning dimensions, achieving the highest cor-
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Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

GPT-4 Turbo 36.9 73.3 74.4 71.2 73.8 73.7
Claude3-Opus 36.8 72.6 74.1 70.9 73.2 72.2
Mistral-7B 25.5 63.6 58.7 66.5 64.2 65.0
Llama3-70B 21.8 61.5 62.6 59.6 63.8 60.1
Llama2-7B 20.7 62.1 62.8 64.0 56.4 65.4
GPT-3.5 16.7 57.8 57.6 58.5 56.2 58.7
Gemma-7b-it 12.8 50.7 50.0 46.9 53.6 52.1
Bloomz 4.2 41.7 41.0 40.7 41.7 43.6
AquilaChat 1.9 31.1 28.7 32.4 33.1 30.4

Table 1: LLM Performance on Text Problems.

Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

Mistral-7B 62.0 87.2 78.9 85.6 85.3 98.9
GPT-4 Turbo 61.4 88.7 78.6 88.3 91.7 96.0
Claude3-Opus 54.6 85.9 74.7 87.1 86.5 95.4
Llama3-70B 40.8 80.7 56.8 86.8 82.0 97.1
Gemma-7b-it 38.3 79.2 50.4 82.8 91.1 92.0
AquilaChat 25.3 68.1 57.0 67.8 69.2 78.3
Bloomz 23.9 69.2 53.3 76.8 67.3 79.7
GPT-3.5 15.9 63.3 47.1 71.5 48.6 86.1
Llama2-7B 2.8 42.3 45.3 54.2 17.5 52.4

Table 2: LLM Performance on Problems.

Model
Four-Type

Questions Group
Correction Rate(%)

Overall Correction
Rate(Ignore Question

Type) (%)

From Cause to Effect
without Intervention
Correction Rate (%)

From Effect to Cause
without Intervention
Correction Rate (%)

From Cause to Effect
with Intervention

Correction Rate (%)

From Effect to Cause
with Intervention

Correction Rate (%)

Llama3-70B 43.8 77.0 82.0 75.7 73.9 76.0
Claude3-Opus 39.6 71.3 78.6 71.3 68.7 66.5
GPT-4 37.2 71.0 80.6 67.5 73.2 62.5
Gemma 32.3 68.4 74.1 67.7 66.0 65.4
Mistral 31.4 66.8 67.5 68.3 61.3 70.2
GPT-3.5 25.0 64.5 71.9 65.4 59.8 60.6
Llama2-7B 22.6 61.9 79.0 45.5 76.3 46.8
Bloomz 17.5 52.4 49.6 56.8 46.4 56.8
AquilaChat 14.7 47.3 36.8 56.4 38.9 57.2

Table 3: LLM Performance on Code Problems.

rection rates. Mistral demonstrated strong per-
formance in mathematical problems but exhibited
shortcomings in code-related tasks. Conversely,
LLAMA-3 showed robust performance in code-
related problems but faced challenges with text and
mathematical tasks.

4 Correlation with Hallucination

To analyze the correlation between LLMs’ causal
reasoning ability and their hallucination rate, we re-
ferred to the LLMs’ performance on hallucination
datasets. The hallucination evaluation results were
obtained from the Hallucination Leaderboard, de-
veloped by Vectara (Hughes and Bae, 2023). This
leaderboard provides a comparison of LLM perfor-
mance in maintaining a low hallucination rate and
ensuring factual consistency when summarizing a
set of facts.

The hallucination evaluation process involves

measuring the hallucination rate, factual consis-
tency rate, answer rate, and average summary
length. These metrics provide a comprehensive
understanding of each model’s tendency to hallu-
cinate and its ability to maintain factual accuracy
(Hughes and Bae, 2023).

After comparing the LLMs’ performance on
CausalBench with their performance on the Hallu-
cination evaluation leaderboard provided by Vec-
tara on Huggingface (Hughes and Bae, 2023), we
found that models with stronger causal reason-
ing abilities tend to exhibit lower hallucination
rates. For instance, GPT-4 Turbo, LLAMA-3-
70B, and Mistral-7B, which demonstrated superior
performance on causal reasoning tasks, also had
low hallucination rates. In contrast, models like
Google Gemma-7b-it and LLAMA-2-7B, which
showed weaker performance on our CausalBench,
had higher hallucination rates of 7.5% and 5.6%,
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Model Hallucination
Rate

Factual
Consistency Rate

Answer
Rate)

Average Summary
Length (Words)

GPt-4 Turbo 2.5% 97.5% 100.0% 86.2
Llama3-70B 4.5% 95.5% 99.2% 68.5
Mistral 7B Instruct-v0.2 4.5% 95.5% 100.0% 106.1
Llama2-7B 5.6% 94.4% 99.6% 119.9
Claude3-Opus 7.4% 92.6% 95.5% 92.1
Google Gemma-7b-it 7.5% 92.5% 100.0% 113.0

Table 4: Performance of LLMs on the Hallucination Dataset.

respectively.
This trend indicates a potential link between

a model’s ability to understand and reason about
causal relationships and its likelihood of not pro-
ducing hallucinations. Further research is required
to explore this correlation in more depth and to
understand the underlying mechanisms driving this
relationship.

5 Impact and Limitations

5.1 Impact

For the first time, we innovatively propose four
types of questioning approaches for the same causal
scenario: cause-to-effect, effect-to-cause, cause-to-
effect with intervention, and effect-to-cause with
intervention. We also calculate the proportion of
cases where large language models correctly an-
swer all four types of questions for a given causal
scenario. This effectively avoids the situation
where large language models coincidentally answer
causal questions correctly without understanding
the causal relationships embedded in the causal
scenario, thereby improving the accuracy of the
dataset’s test results. By providing causal reason-
ing problems spanning multiple domains(text, code,
math), it addresses the limitations of existing causal
datasets and offers a more comprehensive and ro-
bust tool for assessing the causal reasoning abilities
of language models. The findings in this paper sug-
gest that models with stronger causal reasoning ca-
pabilities tend to exhibit lower hallucination rates,
providing a new perspective on exploring the re-
lationship between causal reasoning and reducing
hallucinations. CausalBench has the potential to
become a benchmark for driving progress in causal
reasoning in artificial intelligence.

6 Conclusion

In this paper, we present CausalBench, a com-
prehensive benchmark dataset for evaluating the
causal reasoning capabilities of large language
models. CausalBench innovatively proposes four

types of questioning approaches for each causal
scenario: cause-to-effect, effect-to-cause, cause-to-
effect with intervention, and effect-to-cause with
intervention. By calculating the proportion of cases
where models correctly answer all four question
types, CausalBench effectively assesses whether
LLMs truly understand the underlying causal rela-
tionships, mitigating the impact of models coinci-
dentally providing correct answers without causal
comprehension.

The dataset encompasses a diverse set of prob-
lems spanning textual, mathematical, and coding
domains, addressing the limitations of existing
causal reasoning benchmarks. Evaluated on Causal-
Bench, state-of-the-art LLMs demonstrate stronger
performance on mathematical problems compared
to textual and coding tasks. Notably, models with
superior causal reasoning abilities tend to exhibit
lower hallucination rates, suggesting a potential
link between the two capabilities.

Despite its contributions, CausalBench has sev-
eral limitations, including the need for expanded
domain coverage and deeper exploration of the in-
trinsic mechanisms connecting causal reasoning
and hallucination reduction. Future work will fo-
cus on addressing these limitations, further refining
the evaluation metrics, and providing insights to ad-
vance the development of causal reasoning abilities
in large language models. CausalBench serves as a
robust tool and an important step towards achieving
artificial general intelligence.

Limitations

CausalBench has several limitations that need to be
addressed in future work. These include the need
for further expanding the domain coverage, increas-
ing the scale of the dataset, incorporating causal
discovery tasks and exploring the intrinsic mecha-
nisms between causal reasoning and hallucinations
through more empirical studies.
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